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The ongoing outbreak of Coronavirus disease 2019 infection achieved pandemic

status on March 11, 2020. As of September 8, 2020 it has caused over 890,000

mortalities world-wide. Coronaviral infections are enabled by potent immunoevasory

mechanisms that target multiple aspects of innate immunity, with severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) able to induce a cytokine storm,

impair interferon responses, and suppress antigen presentation on both MHC class I and

class II. Understanding the immune responses to SARS-CoV-2 and its immunoevasion

approaches will improve our understanding of pathogenesis, virus clearance, and

contribute toward vaccine and immunotherepeutic design and evaluation. This review

discusses the known host innate immune response and immune evasion mechanisms

driving SARS-CoV-2 infection and pathophysiology.
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INTRODUCTION

In December 2019, the outbreak of novel severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) – the causative agent of Coronavirus disease 2019 (COVID-19) – began in Wuhan, Hubei
Province, China, from where it spread rapidly. On March 11, 2020 the World Health Organization
declared COVID-19 a global pandemic (1, 2). COVID-19 is not the first severe respiratory disease
outbreak caused by coronaviruses (CoVs) in humans, with two epidemic diseases – severe acute
respiratory syndrome (SARS-CoV) in 2003–2004 and Middle East respiratory syndrome (MERS–
CoV) in 2012 – caused by similar zoonotic transmission of CoVs (3). The primary symptoms of
COVID-19 are similar to those of SARS-CoV andMERS-CoV: fever, fatigue, dry cough, discomfort
in the upper chest, occasional diarrhea, and dyspnea. Severe cases exhibit secondary infections,
cytokine-storm driven sepsis, and multi-organ failure (4, 5). COVID-19 patients primarily develop
pneumonia, lymphopenia, and feature pulmonary ground glass opacity on chest CT (6, 7).

Coronaviruses are in the Coronaviridae family, enveloped viruses with a positive-sense single-
stranded RNA genome ranging from 26 to 32 kb in size (8). In humans CoV infections are common,
with four CoVs (229E, NL63, OC43, and HKU1) causing ∼10% of common cold cases (4). The
infection of human cells by CoVs is mediated by interactions between envelope-anchored spike
glycoprotein (S-protein) of CoVwith one of two host cell receptors: angiotensin-converting enzyme
2 (ACE2) or CD147 (9, 10). The S-protein consists of two subunits: S1 which functions as the
receptor-binding domain (RBD), and S2 which drives the fusion of the viral membrane with the
host cell membrane (11). Spike glycoprotein activation and viral entry is mediated by cleavage of the
S protein by the host transmembrane protease, serine 2 (TMPRSS2) (12, 13). Sequencing of SARS-
CoV-2 from patients revealed that it shares 79.6% homology to SARS-CoV, 50% MERS-CoV, and

Frontiers in Immunology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 580641

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.580641
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fimmu.2020.580641
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.580641&domain=pdf&date_stamp=2020-09-30
https://www.frontiersin.org/articles/10.3389/fimmu.2020.580641/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Taefehshokr et al. COVID-19 and Innate Immunity

96% to bat SARS-like CoV at the whole genome level (12, 14).
The RBD of SARS-CoV-2 is derived from a pangolin-infecting
CoV and exhibits a 10-fold increase in affinity between the RBD
and ACE2 compared to SARS-CoV, further consistent with ACE2
as the prominent receptor for SARS-CoV-2 (15). This increase
in receptor affinity was generated by the recombination of the
pangolin CoV and a bat SARS-like CoV within the RBD region,
a characteristic which could lead to a more efficient cell entry
(16). Interestingly, crytal structure evaluation by cryo-electron
microscopy (Cryo-EM) showed that SARS-CoV-2 RBD is biased
toward the lying state conformation, which reduces receptor
binding by burying the RBD within the spike protein trimer. In
contrast, the SARS-CoV RBD is mostly in the exposed “standing
up” state which favors receptor binding (17–19). This bias toward
the lying state may favor SARS-CoV-2 immune evasion by
masking the RBD domain from neutralizing antibodies. There
have been reports that SARS-CoV-2 can also gain entry into cells
via CD147, but the importance of this pathway for viral entry,
and the concordant receptor-binding motifs, remain largely
unelucidated (10).

Less well understood than SARS-CoV-2’s biology is it resulting
immune responses, immunopathology, and immune evasion
mechanisms. Understanding these responses will be vital for the
development of immunotherapies or vaccines against COVID-
19 (1, 20). Coronaviruses are adept at manipulating immune
responses and interfere with the interferon (IFN) pathway, with
several structural proteins (M and N) and non-structural protein
(NSP1 and NSP3) from SARS-CoV and MERS-CoV acting
as interferon antagonists (21). These CoVs also interfere with
pattern recognition receptor (PRR) signaling such as Toll-like
receptors (TLRs) and retinoic acid-inducible gene I (RIG-I) like
receptors (22), and generate a strong inflammatory response
(23, 24). This drives a non-productive inflammation, resulting
in a cytokine storm and disseminated damage to the host, while
avoiding induction of an anti-viral interferon response. Indeed,
an early study of 41 COVID-19 patients identified increased levels
of pro-inflammatory cytokines including IL-2 and IL-7, with
more severe disease producing elevated G-CSF, MCP-1, MIP-
1α, IP-10, and TNF-α (25). These pro-inflammatory cytokines
drive an influx of neutrophils and other myeloid cells into
the lung, producing a strong local inflammatory response and
significant immunopathology (26). This is consistent with SARS
and MERS, indicating that a cytokine storm and lymphopenia
play a crucial role in the COVID-19 pathogenesis (25, 27, 28). In
addition to manipulating cytokines, CoVs also manipulate other
immunological processes including antigen presentation (29). In
this review we discuss the major innate immunological pathways
involved in responses to CoV infection, and themechanisms used
by SARS-CoV-2 and related CoVs to overcome these defenses.

INTERFERONS AND CYTOKINES

The innate immune system is an evolutionary conserved set of
cellular and chemical defenses critical for the recognition and
restriction of pathogens, and for the subsequent activation of an
adaptive immune response (21). Innate immunity is initiated

by pathogen-associated molecular patterns, evolutionarily
conserved molecular structures specific to pathogens that act as
ligands for PRRs. Ligand binding triggers signaling pathways
that coverage on transcription factors including NF-κB, IRF3,
and AP-1, which synergistically promote type I interferon
(IFN-I) production. These cytokines act in a paracrine fashion
on neighboring cells via the IFN-α/β receptor (IFNAR) and
induce expression of interferon-stimulated genes (ISGs) (30).
Interferon-stimulated genes are an essential component of
innate antiviral defense, acting to both limit viral entry and
restricting viral replication after a virus enters a host cell (31, 32).
Interferon-stimulated gene expression is driven predominantly
by IFNAR-mediated activation of the Jak/STAT pathway,
resulting in binding of STAT1 homodimers and STAT1/2
heterodimers to the promoter region of ISGs.

Severe acute respiratory syndrome coronavirus 2 has evolved
multiple mechanisms to manipulate this key antiviral response.
It was recently demonstrated that ACE2 is an ISG, suggesting
that SARS-CoV-2 may exploit IFN-driven ACE2 upregulation
to enhance infection (31). Furthermore, CoVs including SARS-
CoV andMERS-CoV encode multiple proteins which antagonize
IFN signaling. These functions represent a key anti-immune
mechanism of SARS-like CoV’s, and are critical for the viral
manipulation of the innate immune response and promoting
early viral pathogenesis (33, 34). Because SARS-CoV-2 may
utilize ISG’s to enhance infectivity, and because it is unclear
whether the IFN response restricts SARS-CoV-2 replication,
it is unknown if IFN-directed therapies will be beneficial to
COVID-19 patients. A recent study found that COVID-19
patients who failed to produce IFN-α experienced more severe
clinical outcomes (35). In addition, IFN-α potently inhibits the
replication of SARS-CoV-2 in vitro (36). The National Health
Commission of China has proposed guidelines for the treatment
of SARS-CoV-2, which includes aerosolized recombinant IFN-
α, based on the observation that IFN-α inhibits SARS-CoV
replication in vitro (37, 38). At the time of this writing only
one retrospective analysis of these treatment guidelines has been
published, identifying a modest benefit of IFN-α in combination
with lopinavir, ritonavir, and ribavirin (39). The combinatorial
use of these drugs makes it difficult to assess the role of IFN-
α alone, but these data suggest that induction of the IFN-I
pathway produces a beneficial response in SARS-CoV-2 patients.
In addition to IFN-I, type III IFNs (IFN-λ) exhibit more potent
antiviral functions than IFN-α in treating influenza infection,
without activating inflammation and tissue damage induced by
IFN-α (40, 41). On the other hand, it has been shown that IFN-
λ treatment could inhibit bacterial uptake by neutrophils in
the lung during influenza superinfection, suggesting that IFN-
λ may increase susceptibility to lower repiratory tract infection,
potentially increasing the risk of super-infection of COVID-19
patients to super-infection with other pathogens (42, 43).

Similar to type I IFNs, IFNs-λ is decreased during COVID-
19 infection (44), and IFN-λ hinders SARS-CoV-2 replication
in vitro in human intestinal epithelial cells (45). Interestingly,
IFN-λ is present in lower airways in COVID-19 patients where
it mediates antiproliferative effects in during the repair of
the lung epithelium. This antiprolifertative effect occurs via

Frontiers in Immunology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 580641

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Taefehshokr et al. COVID-19 and Innate Immunity

p53 induction, but due to its slowing of epithelial repair,
may increase the risk of life-threating bacterial superinfections
in the lung during both influenza and COVID-19 infection
(46, 47). Thus, timing and duration are critical parameters
of IFN action and in COVID-19 patients who contract a
secondary bacterial infection, it might be crucial to intervene
with recombinant interferons when virus is in upper airways.
Later in disease, when inflammation is increased in the lower
airways, it may be beneficial to block signaling cascades initiated
by interferons and other inflammatory cytokines in order to
control superinfecting pathogens.

The mechanisms used by CoVs to manipulate the IFN
response can be divided into three categories: (1) avoidance,
where the virus protects itself from recognition by PRRs, (2) IFN
induction suppression, where the virus inhibits the transcription
of interferons (48), and (3) IFN signaling suppression, where
viral proteins inhibit IFNAR signaling (49). The viral membrane
(M) protein, nucleocapsid (N) protein, and the non-structural
proteins NSP1, NSP3b, NSP4a, NSP4b, NSP15, play crucial
roles in modulation of the host immune response (50). The
SARS-CoV N protein modulates signaling though the TGF-
β receptor by forming a complex with Smad3. This enhances
Smad3/p300 transcription, driving lung fibrosis. This interaction
also prevents Smad3 from complexing with Smad4, thereby
enhancing the survival of infected cells by antagonizing TGF-
β-sensitized apoptosis (51). Moreover, SARS-CoV and MERS-
CoV hide their RNA genome from host detection by cytosolic
(e.g., RIG-I) and endosomal (e.g., TLR3/7) PRRs by replicating
in double membrane vesicles that excludes these PRRs (52,
53). Indeed, both the induction of IFN-α or β and the ability
to restrict both MERS-CoV and SARS-CoV infection requires
TLR3 signaling, and SARS-CoV is able to antagonize the TLR
signaling pathway via its papain-like protease (PLpro) (54, 55).
Finally, during viral replication the SARS-CoV and MERS-
CoV N protein catalytically modifies host proteins through
SUMOylation and ubiquitination, via interactions with the host
proteins hUbc9 and TRIM25, respectively (22, 56). While the
targets of N protein-mediated SUMOylation remains unclear,
N protein-targeted ubiquitination targets RIG-I for proteasomal
degradation, thus depleting the cell of a critical virus-detecting
PRR (22). The N proteins of SARS-CoV and SARS-CoV-2
are 90% conserved, suggesting that these immune avoidance
activities are likely conserved in SARS-CoV-2 (Supplementary

Figure 1). Thus, through manipulating multiple components of
the host’s PRR system, CoVs are able to limit or avoid activation
of many host anti-viral processes.

Analysis of MERS-CoV patients with differing severity has
demonstrated significantly lower IFN-I responses in patients who
succumb to infection versus to those who recover, highlighting
the importance of IFN induction (57). It has been shown that
the IFN pathway is inhibited by SARS-CoV-2 to an extent
similar to the inhibition by MERS-CoV and SARS-CoV, thereby
impairing both innate T cell antiviral responses (58–60). While
the specific molecular pathways mediating the suppression of
IFN induction in SARS-CoV-2 have not been fully elucidated,
these mechanisms are well understood in SARS-CoV and MERS
and are likely conserved (Figure 1). Severe acute respiratory

syndrome coronavirus NSP1 promotes the degradation of IFN-β
mRNA (61), while ORF6 disrupts IFN induction by preventing
the transport of IRF3 and STAT1 into the nucleus (62, 63).
This occurs via two mechanisms, with ORF6 and ORF3b
reducing IFNAR signaling by disrupting STAT1 nuclear import
and promoting STAT1 proteolytic degradation, respectively (62,
64). ORF4a interacts with dsRNA and the RIG-I like receptor
cofactor PACT, inhibiting IFN induction (65, 66). ORF4b blocks
IFN induction by binding to both TBK1 and IKKε (67, 68).
MERS-CoV’s ORF4b, 5, and M proteins have been shown to
prevent nuclear translocation of IRF3 (69). At least some of
these pathways are conserved in SARS-CoV-2, with a recent
study demonstrating that SARS-CoV-2 ORF3b is a potent IFN
antagonist, which suppresses IFN induction more efficiently than
the SARS-CoV ortholog (70). Notably, a recent study reported
that ORF3b is one of the most common antibody-recognized
antigens during early stage COVID-19 infection (71), suggesting
that ORF3b is highly expressed in the acute stage of the infection
andmay represent an immunodominant epitope. NSP13, NSP14,
NSP15, and ORF6 have been suggested to function as IFN
antagonists by suppressing IRF3 nuclear localization (72).
Additionally, SARS-CoV-2 M protein through interacting with
RIG-I/MDA-5-MAVS signaling pathway inhibits the production
of type I and III IFNs (73). As discussed above, the SARS
and MERS PLpro is a deubiquitinating/deISGylating enzyme
(74), which enhances immunoevasion by downregulating IFN-β
transcription (75). The PLpro proteins of SARS-CoV and SARS-
CoV-2 are 76% conserved, suggesting that this activity is likely
conserved in SARS-CoV-2 (Supplementary Figure 2).

COVID-19 patients experience a cytokine storm that drives
much of the pathophysiology of the disease. Both pro-and
anti-inflammatory circulating cytokines increase in SARS-CoV-2
patients, with cytokines including G-CSF, TNFα, MCP1, IL-
10, IL-2 and IL-7 becoming elevated in critically ill patients
(76, 77). IL-6 is thought to be a major driver of pathology,
with the highest levels observed in non-survivors and critically
ill COVID-19 patients (78, 79). The mechanism leading to
elevated IL-6 in severe COVID-19 is not currently clear, but is
likely driven through activation of virus-specific PRRs. However,
other pathways are likely involved in patients with severe
disease. For example, SARS-CoV triggers the production of
oxidized phospholipids, which then drives IL-6 production via
TLR4 (80). The upregulation of IL-6 is an established effect of
TLR4 signaling, which occurs via NF-κB and MAPK signaling
pathways (81). Finally, the N protein of SARS-CoV-2 induces the
expression of IL-6 in infected airway epithelium by binding to the
NF-κB regulatory elements of the IL-6 promoter (82). Clearly,
SARS-CoV-2 pathology is driven by an unbalanced cytokine
response, although the viral processes driving these responses
remain to be fully elucidated.

PATTERN RECOGNITION RECEPTOR
EVASION

In addition to modulating IFN-I and IL-6 responses, CoVs also
engage in immune evasion through limiting PRR activation.
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FIGURE 1 | CoV Innate Immune Evasion. The innate immune response to CoV’s is activated upon detection of viral pathogen-associated molecular patterns, such

as double-stranded RNA, via host PRRs such as RIG-I. Following viral recognition, transcription factors including NF-κB, AP-1 and IRF3 are activated and

translocate to the nucleus where they induce the expression of interferons. Both MERS-CoV and SARS-CoV, through their M, N, non-structural proteins (NSP1, 3b,

4a, 4b, 5, 6), and PLpro, have developed mechanisms to interfere with these signaling pathways. This alters the cytokine secretion profile of infected cells to

enhance the recruitment of myeloid immune cells over NK cells, which in turn produce more cytokines, creating a cycle of inflammation that damages the lung. Many

of these processes are likely conserved in SARS-CoV-2.

Coronaviruses replicate in a double-membrane structure
derived from the endoplasmic reticulum (52). The endoplasmic
reticulum lacks PRR’s, and as such, this compartment secludes
the replicating virus from both cytosolic PRRs such as RIG-I
and from endosomal PRRs such as TLR3 and TLR7 (83–85).
In addition to physically excluding PRRs from the site of
viral replication, CoVs suppress PRR signaling directly. As
discussed above, coronaviral N-proteins direct the host cell
ubiquitination machinery to target the cytosolic RNA sensor
RIG-I, leading to RIG-I degradation (22). Coronaviruses also
suppress TLR signaling; for example, the MERS-CoV spike
protein induces expression of the negative TLR regulator
IRAK-M in macrophages through activating the dipeptidyl-
peptidase 4 receptor (86). Likewise, SARS-CoV induces the
broad dysregulation of TLR-associated signaling molecules in
infected macrophages, although the specific mechanism of this
dysregulation and its net effect on TLR signaling has not been
established (87). While these activities have not yet been reported
in SARS-CoV-2, the high degree of conservation between it,

MERS-CoV, and SARS-CoV indicates that some manipulation of
the PRR system likely occurs during SARS-CoV-2 infection.

NEUTROPHILS

Neutrophilia is an early indicator of SARS-CoV-2 infection,
although it is unclear whether this increase is due to the
release of the marginated neutrophil pool versus the release of
bone marrow-derived cells (88–90). While the extent to which
neutrophils are responsible for COVID-19 pathophysiology is
unclear, significant neutrophil infiltration has been reported
in autopsied COVID-19 patients (91, 92). Infiltration is
not the only mechanism by which neutrophils may cause
pathology on COVID-19 patients. Indeed, pathological effects
of neutrophil extracellular traps (NETs) have been identified
in a variety of inflammatory conditions including thrombosis,
sepsis, and respiratory failure (93–95). Neutrophil extracellular
traps are comprised of extracellular DNA fibers, histones,
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microbicidal proteins, proteases such as neutrophil elastase, and
oxidant enzymes such as myeloperoxidase, that are released
by neutrophils in response to many infectious agents. If not
regulated properly, NETs initiate and propagate inflammation
and thrombosis (96–98).

For the first time, a recent study showed that NETs released
by neutrophils contributes to organ damage and mortality
in COVID-19 patients (99). This is consistent with another
recent study that identified markers of NET release, including
myeloperoxidase-DNA and citrullinated histone H3, in COVID-
19 patients, with the sera of these patients potently inducing
NETosis of control neutrophils in vitro (100). The high
levels of IL-6 observed in COVID-19 patients is likely a
driver of this NETosis, as in other inflammatory diseases IL-
6 induces the systemic release of NETs (101, 102). Additional
triggers of NETosis include virus-damaged epithelial cells (103,
104), activated endothelial cells (105), activated platelets (106,
107), and inflammatory cytokines such as IL-1β (108, 109).
Transcriptional analysis of bronchoalveolar lavage fluid and
peripheral blood mononuclear cells from COVID-19 patients
showed that elevated levels of CXCL2 and CXCL8 contributes
to the recruitment of neutrophils to the lung, aggravating the
inflammatory response (110). Moreover, activated neutrophils
express properdin, factor B, and C3, thus driving complement
activation (111), a marker of severe COVID-19 disease (112, 113).
Consistent with a role for NETs in COVID-19 immunopathology,
a small clinical trial demonstrated a protective effect of
dipyridamole, an FDA approved drug which inhibits NETosis via
blocking signaling through adenosine A2A receptors (93, 114).

NK CELLS

Natural killer (NK) cells are essential to the control of viral
infections, and functional impairment of NK cells correlate with
persistence of SARS-CoV-2 (115, 116). Reduced peripheral blood
NK cells numbers is frequently observed in severe COVID-
19 patients (89, 116–118). Killer-immunoglobulin like receptors
(KIRs) which are expressed on plasma membrane of NK cells
alongside CD16 play crucial roles in NK cells licensing and
their subsequent cytotoxic functions (119). In peripheral blood,
NK cells expressing KIRs and CD16 are significantly decreased
in SARS-CoV and SARS-CoV-2 infection, suggesting either
impaired maturation of NK cells or migration of circulating NK
cells into the peripheral tissues of SARS-CoV-2 patients (120,
121). Moreover, lower NK cell numbers correlate with higher
IL-6 plasma concentrations in SARS-CoV-2 infection (117, 120).
In vitro, IL-6 and soluble IL-6 receptor impair perforin and
granzyme B production by healthy donor NK cells, which could
be restored by treatment with the IL-6R inhibitor tocilizumab
(122). Furthermore, secretion of cytokines such as IL-12 by
macrophages and dendritic cells (DCs) could promote NK
cell proliferation, cytotoxicity, survival, and IFN-γ production
(123, 124). The later may occur through IFN-λ-mediated IL-12
production by macrophages (125), suggesting that early IFN-γ
production and NK cell stimulation may act to limit SARS-CoV-
2 infection.

The expression of inhibitory receptor NKG2A on NK cells
results in the functional exhaustion of NK cells in chronic
viral infection and cancer (126, 127). It is reported that NK
cells become functionally exhausted in SARS-CoV-2 patients,
as evidenced by increased NKG2A expression and decreased
expression of CD107a, IFN-γ, IL-2 and granzyme B in NK
cells (76, 116). Additionally, recent studies reported upregulated
expression of the genes encoding inhibitory receptors including
TIM3 and LAG3 in NK cells from COVID-19 patients (60,
128). The implications of this high incidence of exhausted NK
cells in SARS-CoV-2 patients remain unelucidated. While NK
cell numbers and activity appear to be diminished in COVID-
19 patients, anti-S protein antibodies are capable of inducing
NK-cell mediated antibody-dependent cell cytotoxicity in an
in vitromodel of SARS-CoV-2 infection, indicating that normally
functional NK cells should contribute to protective immunity
against SARS-CoV-2 (129).

MACROPHAGES

Macrophages are one of the primary drivers of innate immunity
in response to CoV infection, with macrophage activity driving
both inflammation, and much of the pathology, in COVID-19
patients (130). Macrophages in the lung and upper respiratory
tract act as sentinel cells and are among the first immune cells
to encounter incoming virions. In response, these macrophages
can limit early viral replication through initiating a IFN-
I response, as well as through initiating an inflammatory
response to recruit additional immune cells (131). While
this inflammatory response is required to initiate immune
responses against SARS-CoV-2, excess inflammation in the form
of a cytokine storm contributes to the mortality associated
with COVID-19 (132). The lung has at least two distinct
macrophage populations - interstitial macrophages and alveolar
macrophages (AMs) (125), and there are at least two subsets
of interstitial macrophages – of which, the nerve-and airway-
associated macrophages (NAMs) may be particularly important
for restricting inflammation in response to CoV’s. Nerve-and
airway-associated macrophages are highly divergent from AMs
in their gene expression profile and tissue localization. Nerve-and
airway-associated macrophages are located in the lung interstitia,
closely associated with innervating nervous tissue, and have
a different ontology and growth factor dependence than AMs
(133). During influenza infection NAMs are critical in limiting
viral-induced inflammation, whereas AMs are pro-inflammatory
and required for viral clearance. These findings indicate that AMs
are anti-viral and pro-inflammatory, whereas NAMs are and act
to prevent excessive and damaging inflammation. Importantly,
during influenza NAMs suppress IL-6 production, indicating
that NAMs may be a critical control point in determining IL-6
levels, and thus may regulate the cytokine storm in COVID-19
patients (133).

Consistent with these observations, distinct macrophage
populations were identified in the lungs of COVID-19 patients,
and while this study did not investigate NAMs, it did identify
enrichment of anti-inflammatory monocyte-derived (FCN1high)
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macrophages in patients with mild disease, while resident pro-
fibrotic (SPP1high) and inflammatory AM (FAPB4+) populations
dominated in patients with severe COVID-19 (134). Combined,
these studies demonstrate that macrophage polarization and the
relative proportion of macrophage subtypes is a major factor in
COVID-19 severity.

Macrophages can be infected by SARS-CoV-2 (130),
indicating that SARS-CoV-2 directly manipulates macrophages
to evade immunity. It is unclear what effect SARS-CoV-
2 infection has on macrophage function, but infection of
macrophages by other CoVs is known to induce altered
functional states. Macrophages infected by MERS-CoV express
high levels of major histocompatibility complex I (MHC I),
CD80 and CD86, but lack major histocompatibility complex II
(MHC II), indicating that MHC II presentation is impaired by
MERS-CoV (58, 135). Consistently, MHC II downregulation
was recently demonstrated in monocytes and B cells from
COVID-19 patients (128). Moreover, monocyte HLA-DR is
downregulated in severe COVID-19 patients, with expression
patially restored by an IL-6 inhibitor (136). The mechanism
of MHC II downregulation is not completely understood, but
is due in-part to changes in the epigenetic landscape of the
infected cells (137). Indeed, the epigenetic downregulation of
MHC II is a mechanism shared by other CoVs, for example, the
human CoV-EMC also downregulates MHC II via epigenetic
reprograming (29). However, epigenetic reprograming of antigen
presentation is not universal, and for example, is not a feature of
SARS-CoV despite this virus also limiting antigen presentation
on MHC II (29).

The recently published interactome of SARS-CoV-2 provides
some potential insights into mechanisms by which this virus
may interfere with macrophage function (138). The blockade
of interferon signaling, described above, would limit ISG
expression in macrophages, including cytokine-induced MHC
II expression (139). The SARS-CoV-2 protein Nsp5 interacts
with the epigenetic regulator histone deacetylase 2 (HDAC2),
which regulates MHC II expression and cytokine production
(138, 140, 141). While it is unknown whether SARS-CoV-2
inhibits or enhances HDAC2 activity, this interaction indicates
a potential direct modulation of the cytokine storm and antigen
presentation. Nsp13 and ORF8 of SARS-CoV-2 interacts with
multiple components of the Golgi trafficking system and may
utilize this as a mechanism to restrict MHC export to the cell
surface. Indeed, a recent study demonstrated that ORF8 of SARS-
CoV-2 can directly bind to MHC I molecules at endoplasmic
reticulum and redirect them to autolysosomes for degradation
(142). This is a common approach used by viruses to limit antigen
presentation; for example, the HIV Nef protein restricts antigen
presentation on MHC I by redirecting MHC trafficking toward
the Golgi (143, 144). Lastly, SARS-CoV-2’s Nsp10 interacts
with the endocytosis regulator AP2, a critical regulator of
MHC II trafficking to antigen loading compartments (138, 145,
146). While these immunoevasory mechanisms remain largely
theoretical, the ability of SARS-CoV-2 to infect macrophages and
interact with proteins central to macrophage function suggests a
potent ability to modulate macrophage activity, and through this,
the systemic immune response.

DENDRITIC CELLS

Dendritic cells are key players in antigen presentation, cytokine
production, priming specific T cell responses, and a loss of DCs
function could lead to delayed immune responses in COVID-
19 patients (147). Previous studies demonstrated that SARS-CoV
infects DCs, resulting in poor antiviral cytokine expression with
an upregulation of inflammatory chemokines including MIP-
1α (148). SARS-CoV also enhanced pro-inflammatory cytokine
(IL-6 and IL-12) production by DCs in response to secondary
activation signals by bacterial LPS, further contributing to a
damaging inflammatory response (149). Moreover, plasmacytoid
dendritic cells (pDCs) have been identified as a subset of DCs able
to secrete large amounts of IFN I after contact with CoVs (150),
although this is not universal – MERS-CoV infection induces
significantly higher type I and III IFNs production by pDCs than
does SARS-CoV (151). While the role of pDCs in COVID-19
remains largely unexplored, the high levels of IFN-Is produced
by these cells suggests a protective role.

Severe acute respiratory syndrome coronavirus 2 infection
appears to target DCs directly – a recent study identified reduces
DC frequency and functionally in COVID-19 patients, and a
concordant impairment in the subsequent activation of T cells.
Thus, in addition to further driving the cytokine storm, SARS-
CoV-2may infect DCs to limit DCmaturation, and thus suppress
T cell-mediated responses (44, 152, 153). This may represent
a critical juncture in disease progression, as interference of T
cell activation by modulating DC maturation could account for
the lack of long-lasting humoral immunity and other defects
in adaptive immunity associated with CoV infection. While
infection of DCs appears to play an important role in driving the
cytokine storm and modulating T cell responsiveness to SARS-
CoV-2, the specific mechanisms used by the virus to alter DC
function remains to be investigated.

TRAINED IMMUNITY: A DEFENSE
AGAINST COVID-19?

Recent studies have shown that innate immune populations
may possess a memory phenotype, termed Trained Immunity
(TRIM), wherein innate immune cells undergo mitochondrial,
metabolic, and epigenetic reprograming following exposure
to a pathogen (154), making the cell more responsive to
subsequent pathogen exposures. Unlike with adaptive immunity,
this “training” primes the cell to respond in an enhanced manner
not only to the initial pathogen, but also to other pathogens
encountered during the multi-week period over which TRIM
lasts (154). TRIM can be effective against viral pathogens – for
example, aerosolized bacterial lysates enhanced innate immune
responses and increase survival against influenza A and other
respiratory viruses (155, 156).

The induction of TRIM by Bacillus Calmette-Guerin (BCG)
and other vaccines has been extensively demonstrated (157,
158). A recent study demonstrated that BCG administration
to low-weight newborns reduced mortalities from infectious
diseases by 43% over the neonatal period (159). It is tempting to
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postulate that the decreased incidence and rate of complications
of COVID-19 reported in children (160) may be partially
attributed to the frequent vaccinations – and therefore the
frequent induction of TRIM – that occurs during routine
childhood vaccination schedules. Encouraging studies have
shown a correlation between universal BCG and influenza
vaccination policies and reduced mortality rates in COVID-19
infection (161, 162), and while these studies are not directly
indicative of a causal relationship between these vaccinations
and protection against SARS-CoV-2, they suggest that using
existing approved vaccines to induce TRIM may be a viable
approach to limit the negative effects of COVID-19 (157, 158).
Consequentially, a number of studies are investigating whether
BCG and MMR vaccines can attenuate COVID-19 pathology
(163–166).

While existing vaccines represent the quickest avenue to
leverage TRIM as a preventative measure for COVID-19, other
compounds may provide superior protection. For example, β-
glucan polysaccharides found in the cell wall of bacteria, yeast and
fungi, are known potent initiators of TRIM (167). β-glucans exert
antiviral effects and decrease the severity of several respiratory
viruses (168, 169). Orally administered β-glucan traffics into
lymph nodes and spleen, where they activate DCs, leading to the
expansion and activation of antigen-specific T cells and enhance
T cell production of effector cytokines such as IFN-γ (170). This
enhanced T cell activity results from β-glucan induced IFN-β
production by DCs, which enhances the production of IFN-γ
and Granzyme-B by CD8+ T cells (171). While β-glucans are
commonly consumed by humans in foods prepared with yeast,
care needs to be taken when considering their use for inducing
TRIM in SARS-CoV-2 patients, as some studies have shown that
β-glucans enhance M1 polarization of AMs – a phenomenon
that may enhance the cytokine storm induced by SARS-CoV-2
(172, 173).

FUTURE PROSPECTS AND
CONCLUSION

The rapid spread of SARS-CoV-2 has become a global concern.
Currently, there are no approved drugs or vaccines to treat
human CoVs, but recent advances in our understanding of the
immune response and immune evasion mechanisms of CoV’s
opens up many therapeutic avenues. These include mechanisms

for limiting viral entry and replication, promoting viral
clearance, and inducing productive anti-CoV immune responses.
Investigating how SARS-CoV-2 modifies gene expression in
innate immune cells will be crucial to identifying immune
mechanisms that could be modulated to improve patient
outcomes. Addressing IFN evasion mechanisms and preventing
viral immune evasion may contribute to enhancing viral
clearance and lessening immunopathology. While a major driver
of the cytokine storm in COVID-19 patients, IL-6 has both
pro- and anti-inflammatory properties, giving it a complex
role in COVID-19 pathology. Inhibition of IL-6 signaling and
elucidation of the mechanism which elevates IL-6 in patients
will help to find new potential strategies to reduce pathology
during COVID-19 infection. Finally, newly available tools such
as next generation sequencing will provide key information on
the clinical features of the disease and potential targets for the
development of drugs and vaccines. While an effective treatment
for COVID-19 remains elusive, this large array of tools and
knowledge should enable the rapid development of preventative
and therapeutic treatments for this newly emerged disease.
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