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Abstract

Background: Coronavirus disease (COVID-19) has spread explosively worldwide since the beginning of 2020. According to
a multinational consensus statement from the Fleischner Society, computed tomography (CT) is a relevant screening tool due to
its higher sensitivity for detecting early pneumonic changes. However, physicians are extremely occupied fighting COVID-19
in this era of worldwide crisis. Thus, it is crucial to accelerate the development of an artificial intelligence (AI) diagnostic tool
to support physicians.

Objective: We aimed to rapidly develop an AI technique to diagnose COVID-19 pneumonia in CT images and differentiate it
from non–COVID-19 pneumonia and nonpneumonia diseases.

Methods: A simple 2D deep learning framework, named the fast-track COVID-19 classification network (FCONet), was
developed to diagnose COVID-19 pneumonia based on a single chest CT image. FCONet was developed by transfer learning
using one of four state-of-the-art pretrained deep learning models (VGG16, ResNet-50, Inception-v3, or Xception) as a backbone.
For training and testing of FCONet, we collected 3993 chest CT images of patients with COVID-19 pneumonia, other pneumonia,
and nonpneumonia diseases from Wonkwang University Hospital, Chonnam National University Hospital, and the Italian Society
of Medical and Interventional Radiology public database. These CT images were split into a training set and a testing set at a
ratio of 8:2. For the testing data set, the diagnostic performance of the four pretrained FCONet models to diagnose COVID-19
pneumonia was compared. In addition, we tested the FCONet models on an external testing data set extracted from embedded
low-quality chest CT images of COVID-19 pneumonia in recently published papers.

Results: Among the four pretrained models of FCONet, ResNet-50 showed excellent diagnostic performance (sensitivity 99.58%,
specificity 100.00%, and accuracy 99.87%) and outperformed the other three pretrained models in the testing data set. In the
additional external testing data set using low-quality CT images, the detection accuracy of the ResNet-50 model was the highest
(96.97%), followed by Xception, Inception-v3, and VGG16 (90.71%, 89.38%, and 87.12%, respectively).
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Conclusions: FCONet, a simple 2D deep learning framework based on a single chest CT image, provides excellent diagnostic
performance in detecting COVID-19 pneumonia. Based on our testing data set, the FCONet model based on ResNet-50 appears
to be the best model, as it outperformed other FCONet models based on VGG16, Xception, and Inception-v3.

(J Med Internet Res 2020;22(6):e19569) doi: 10.2196/19569
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Introduction

The coronavirus disease (COVID-19) pandemic is currently a
global health crisis; more than 1,700,000 cases had been
confirmed worldwide and more than 100,000 deaths had
occurred at the time of writing this paper [1]. COVID-19, an
infection caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), is highly contagious and has
spread rapidly worldwide. In severe cases, COVID-19 can lead
to acute respiratory distress, multiple organ failure, and
eventually death. Countries are racing to slow the spread of the
virus by testing and treating patients in the early stage as well
as quarantining people who are at high risk of exposure due to
close contact with patients with confirmed infection. In addition,
early diagnosis and aggressive treatment are crucial to saving
the lives of patients with confirmed infection [2].

COVID-19 is typically confirmed by viral nucleic acid detection
using reverse transcription–polymerase chain reaction (RT-PCR)
[3]. However, the sensitivity of RT-PCR may not be sufficiently
high; it ranges from 37% to 71% according to early reports
[4-6]. Thus, RT-PCR can afford a substantial number of false
negative results due to inadequate specimen collection, improper
extraction of nucleic acid from the specimen, or collection at a
too-early stage of infection. A chest computed tomography (CT)
scan can be used as an important tool to diagnose COVID-19
in cases with false negative results by RT-PCR [6-9].

Recently, a multinational consensus statement from the
Fleischner Society was issued to guide chest imaging during
the COVID-19 pandemic in different clinical settings [6].
According to this consensus statement, in a setting such as South
Korea, where detecting patients at an early stage and isolating
all patients and people with high risk of exposure is essential,
CT is a relevant screening tool due to its greater sensitivity for
detecting early pneumonic changes. CT can also contribute to
the management and triage of the disease by detecting severe
cases. In addition, chest CT is noninvasive and is easy to
perform in an equipped facility.

However, radiologic diagnostic support is not maintained 24
hours per day in many institutions [10]. In addition, CT may
show similar imaging features between COVID-19 and other
types of pneumonia, thus hampering correct diagnosis by
radiologists. Indeed, in a study that evaluated radiologists’
performance in differentiating COVID-19 from other viral
pneumonia, the median values and ranges of sensitivity and

specificity were 83% (67%-97%) and 96.5% (7%-100%),
respectively [11].

The use of artificial intelligence (AI) may help overcome these
issues, as AI can help maintain diagnostic radiology support in
real time and with increased sensitivity [8,12]. In this era of
worldwide crisis, it is crucial to accelerate the development of
AI techniques to detect COVID-19 and to differentiate it from
non–COVID-19 pneumonia and nonpneumonia diseases in CT
images. Therefore, we aimed to rapidly develop an AI technique
using all available CT images from our institution as well as
publicly available data.

Methods

Data Sets and Imaging Protocol

This study was approved by the institutional review boards of
Wonkwang University Hospital (WKUH) and Chonnam
National University Hospital (CNUH). Informed consent was
waived. Table 1 summarizes the training, testing, and additional
validation data sets. In this study, we initially collected data
from 3993 chest CT images, which were categorized into
COVID-19, other pneumonia, and nonpneumonia disease
groups.

For the COVID-19 data group, we used a total of 1194 chest
CT images: 673 chest CT images (56.3%, from 13 patients)
from CNUH, 421 images (35.3%, from 7 patients) from WKUH,
and 100 images (83.8%, 60 patients) from the Italian Society
of Medical and Interventional Radiology (SIRM) public database
[13]. The 20 patients from CNUH and WKUH included 9 male
patients and 11 female patients, with an average age of 59.6
years (SD 17.2). Regarding the COVID-19 data from WKUH
and CNUH, all the patients with COVID-19 tested positive for
the virus by RT-PCR viral detection, and the CT images were
acquired between December 31, 2019 and March 25, 2020. The
median period from symptom onset to the first chest CT
examination was 8 days (range 2-20 days). The most common
symptoms were fever (75%) and myalgia (30%). In addition,
according to previous studies related to COVID-19 by Zhao’s
group [14] from January 19 and March 25, 2020, 264
low-quality chest CT images were used as additional testing
data. In summary, 1194 COVID-19 images (80 patients) from
WKUH, CNUH, and SRIM were split into the training data set
(955 images, 80.0%) and testing data set (239 images, 20.0%).
For the additional testing, 264 COVID-19 images (264 patients)
from the low-quality image data set were used.
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Table 1. Summary of the training, testing, and additional testing data sets (N=4257).

Testing images, n (%)Training images, n (%)Data type, data source, and data group

Training and testing data

WKUH
a

84 (20.0)337 (80.0)COVID-19 pneumonia (n=421)

271 (20.0)1086 (80.0)Other pneumonia (n=1357)

200 (20.0)798 (80.0)Nonpneumonia and normal lung (n=998)

89 (20.0)355 (80.0)Lung cancer (n=444)

CNUH
b

135 (20.0)538 (80.0)COVID-19 pneumonia (n=673)

SIRM
c

20 (20.0)80 (80.0)COVID-19 pneumonia (n=100)

Additional external testing data

Low-quality CT images from papers

264 (100.0)0 (0.0)COVID-19d pneumonia (n=264)

aWKUH: Wonkwang University Hospital.
bCNUH: Chonnam National University Hospital.
CSIRM: Italian Society of Medical and Interventional Radiology.
dCOVID-19: coronavirus disease.

For the other pneumonia data group, we selected 1357 chest
CT images from 100 patients diagnosed with non–COVID-19
pneumonia at WKUH between September 1, 2019, and March
30, 2020. The average age of this group was 62.5 years (SD
17.2), with 68 male and 32 female patients. For the
nonpneumonia data group, we also selected 1442 chest CT
images from 126 patients who had no lung parenchymal disease
or lung cancers at WKUH between January 2009 and December
2014. The average age of these patients was 47 years (SD 17),
with 63 male patients (721/1442 images, 50.0%) and 63 female
patients (721/1442 images, 50.0%). The patient demographic
statistics of the COVID-19 and other pneumonia groups are
summarized in Table 2. In this table, other pneumonia (not
COVID-19) was categorized into two different types based on
clinical characteristics: 68 cases of community-acquired
pneumonia (onset 48 hours before hospital admission) and 32
cases of hospital-acquired pneumonia (onset 48-72 hours after
hospital admission). Of these other pneumonia patients, 24/100
(24.0%) received laboratory confirmation of the etiology, 21
(21.0%) were confirmed to be bacterial culture positive, 3

(3.0%) were viral influenza positive by RT-PCR, and 76 (76.0%)
were negative. Regarding the imaging protocols, each volumetric
examination contained approximately 51 to 1094 CT images,
with varying slice thicknesses from 0.5 millimeters to 3 mm.
The reconstruction matrix was 512×512 pixels, with in-plane
pixel spatial resolution from 0.29×0.29 to 0.98×0.98 square
millimeters.

The data from WKUH, CNUH, and SIRM were randomly split
with a ratio of 8:2 into a training set and a testing set,
respectively, in a stratified fashion. In addition, the data for each
group (WKUH, CNUH, and SIRM) were spread over different
splits with a ratio of 8:2. The training data set was then further
separated into sets used for training the model (80% of the
training set) and for internal validation (20% of the training set).
The testing set was used only for independent testing of the
developed models and was never used for training the model
or for internal validation. Furthermore, we tested the trained
model with the additional external validation data set of
low-quality images to evaluate the external generalizability of
the model.
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Table 2. Demographic data of patients with COVID-19 and other pneumonia.

P valueOther pneumonia (n=100)COVID-19a pneumonia (n=20)Characteristic

.9160.1 (17.1)59.6 (17.2)Age (years), mean (SD)

.1268 (68.0)9 (45.0)Male sex, n (%)

.00768 (68.0)20 (100.0)Community-acquired pneumonia, n (%)

32 (32.0)0 (0.0)Hospital-acquired pneumonia, n (%)

Microbiological study, n (%)

<.0010 (0.0)20 (100.0)COVID-19 positive (RT-PCRb)

3 (3.0)0 (0.0)Other virus positive (influenza)

21 (21.0)0 (0.0)Bacterial culture positive

76 (76.0)0 (0.0)Unknown

Human radiologist's diagnosis, n (%)

N/Ac15 (15.0)20 (100.0)Atypical pneumonia or

viral pneumonia

77 (77.0)0 (0.0)Pneumonia

26 (26.0)0 (0.0)Aspiration pneumonia

5 (5.0)0 (0.0)Necrotizing pneumonia

5 (5.0)0 (0.0)Tuberculosis

3 (3.0)0 (0.0)Empyema

9 (9.0)0 (0.0)Emphysema

4 (4.0)0 (0.0)Bronchiectasis

1 (1.0)0 (0.0)Interstitial lung disease

aCOVID-19: coronavirus disease.
bRT-PCR: reverse transcription–polymerase chain reaction.
cN/A: not applicable.

Preprocessing

For the data acquired from WKUH and CNUH, we converted
Digital Imaging and Communications in Medicine (DICOM)
images to one-channel grayscale PNG images to standardize
the image file format, as the images in the low-quality image
data set were in PNG format. To minimize the information loss,
we first displayed the DICOM images using a lung window
with a 1500 Hounsfield unit window width and a –600 HU
window level [15,16] and converted the images to PNG format.
Subsequently, we rescaled the images to a size of 256×256
pixels and normalized the pixel values to a range between 0 and
1. All of the converted PNG format images were confirmed by
three radiologists to determine any loss of image information
related to pulmonary diseases. For the data from SIRM, the
original JPEG format was also reformatted to the PNG format,

and the images were rescaled and normalized in the same
manner. For the low-quality image data set, we also rescaled
and normalized the images. In this study, no further
preprocessing such as lung segmentation was performed.

Image Augmentation

To reduce overfitting of the training image data, we employed
two distinct forms of data augmentation: image rotation and
zoom. In the data augmentation method for the rotation, angles
of rotation between –10° and 10° were randomly selected.
Regarding the zoom, the range was randomly selected between
90% (zoom-in) and 110% (zoom-out). Either rotation or zoom
was randomly selected 10 times for each training image. By
applying data augmentation, we increased the number of images
in the training data set to 31,940. Table 3 shows the number of
augmented images for training in each group.
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Table 3. Augmented images for training in each group (N=31,940).

Augmented images for training, n (%)Data source and group

WKUHx
a

3370 (10.6)COVID-19b pneumonia

10,860 (34.0)Other pneumonia

7890 (24.7)Nonpneumonia and normal lung

3550 (11.1)Lung cancer

CNUH
c

5380 (16.8)COVID-19 pneumonia

SIRM
d

800 (2.5)COVID-19 pneumonia

aWKUH: Wonkwang University Hospital.
bCOVID-19: coronavirus disease
cCNUH: Chonnam National University Hospital.
dSIRM: Italian Society of Medical and Interventional Radiology.

The Fast-Track COVID-19 Classification Network for

COVID-19 Classification

We developed a simple 2D deep learning framework based on
a single chest CT image for the classification of COVID-19
pneumonia, other pneumonia, and nonpneumonia, named the
fast-track COVID-19 classification network (FCONet; Figure
1). FCONet was developed by transfer learning based on one
of the following four pretrained convolutional neural network
(CNN) models as a backbone: VGG16 [17], ResNet-50 [18],

Inception-v3 [19], and Xception [20]. Transfer learning is a
popular method in computer vision because it enables an
accurate model to be built in a short time [21]. With transfer
learning, instead of starting the learning process from an optimal
model search, one can start it from patterns that were learned
when solving a different problem. To minimize the training
time, we initially used the predefined weights for each CNN
architecture, which were further updated through the learning
process of classification of COVID-19 pneumonia, other
pneumonia, and nonpneumonia.

Figure 1. Scheme of FCONet, a 2D deep learning framework based on a single chest CT image for the classification of COVID-19 pneumonia, other
pneumonia, and non-pneumonia. COVID-19: coronavirus disease.

Input Layer

After the simple preprocessing stage, in the input layer, we
arranged three channels (256×256×3 pixels) by copying the
one-channel normalized image. The three-channel images were
fed into the pretrained model layers.

Pretrained Model Layers

A pretrained model is a model that was trained on a large
benchmark data set to solve a similar problem to the one we
want to solve. In the pretrained model layers, we included one
of the four pretrained models (VGG16, ResNet-50, Inception-v3,
and Xception). Each model comprises two parts: a convolutional
base and a classifier. The convolutional base is composed of a
stack of convolutional and pooling layers to generate features
from the images. The role of the classifier is to categorize the

image based on the extracted features. In our pretrained model
layers, we retained the convolutional base and removed the
classifier, which was replaced by another classifier for
COVID-19, other pneumonia, or nonpneumonia.

Additional Layers

The activations from the pretrained model layers were fed into
the additional layers. The layers acted as classifiers for
COVID-19 pneumonia, other pneumonia, and nonpneumonia.
In the additional layers, we first flattened the activations and
connected two fully connected layers; one of the layers consisted
of 32 nodes, and the other consisted of three nodes.
Subsequently, the three activations from the second fully
connected layer were fed into a SoftMax layer, which provided
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the probability for each of COVID-19, other pneumonia, and
nonpneumonia.

Implementation

We implemented FCONet using the TensorFlow package, which
provides a Python application programming interface (API) for
tensor manipulation. We also used Keras as the official front
end of TensorFlow. We trained the models with the Adam
optimizer [22] and the categorical cross-entropy cost function
with a learning rate of 0.0001 and a batch size of 32 on a
GeForce GTX 1080 Ti graphics processing unit (NVIDIA). For
the performance evaluation, 5-fold cross-validation was
performed to confirm the generalization ability. The training
data set (N=31,940) was randomly shuffled and divided into
five equal groups in a stratified manner. Subsequently, four
groups were selected to train the model, and the remaining group
was used for validation. This process was repeated five times
by shifting the internal validation group. Next, we averaged the
mean validation costs of the five internal validation groups
according to each epoch and found the optimal epoch that
provides the lowest validation cost. Then, we retrained the model
using the entire training data set with the optimal epoch. The
testing data set was evaluated only after the model was
completely trained using the training data set. This holdout
method provides an unbiased evaluation of the final model by
avoiding overfitting to the training data set.

Performance Evaluation and Statistical Evaluation

For each of the different four pretrained models (VGG16,
ResNet-50, Inception-v3, and Xception) in FCONet, we
evaluated the classification performance based on sensitivity,
specificity, and accuracy. More specifically, we calculated true
positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN) based on the groups of COVID-19
pneumonia, other pneumonia, and nonpneumonia. For each
group, we expressed measure metrics with the subscripts covid

for COVID-19, other for other pneumonia, and none for
nonpneumonia, as

where TPcovid is the number of COVID-19 testing data correctly

classified as COVID-19, TNcovid is the number of

non–COVID-19 testing data correctly classified as
non–COVID-19, FPcovid is the number of non–COVID-19

testing data misclassified as COVID-19, and FNcovid is the

number of COVID testing data misclassified as non–COVID-19.

Here, non–COVID-19 testing data include other pneumonia
and nonpneumonia. Note that the same calculations were applied
to the other pneumonia and nonpneumonia testing data as

We also plotted the receiver operating characteristic (ROC)
curve and calculated the area under the curve (AUC) for each
of the four different models. Additionally, statistical analysis
was performed using MATLAB (R2013b). Analysis of variance
(ANOVA) was used to compare differences among COVID-19
pneumonia, non–COVID-19 pneumonia, and nonpneumonia
groups. A P value less than .001 was considered to indicate
statistical significance.

Results

The performance of the FCONet models based on the four
pretrained models in the classification of COVID-19 pneumonia,
other pneumonia, and nonpneumonia is summarized in Table
4. We compared the metric values of sensitivity (%), specificity
(%), and accuracy (%) as well as the AUCs of the four FCONet
models based on VGG16, ResNet-50, Inception-v3, and
Xception. Based on the testing data, the FCONet models based
on ResNet-50, VGG16, and Xception showed excellent
classification performance; all these models provided AUC
values ranging from 0.99 to 1.00. More specifically, with
ResNet-50, the sensitivity, specificity, and accuracy for
classifying COVID-19 pneumonia were 99.58%, 100%, and
99.87%, respectively. With VGG16, the sensitivity, specificity,
and accuracy for classifying COVID-19 pneumonia were 100%,
99.64%, and 99.75%, respectively. With Xception, the
sensitivity, specificity, and accuracy for COVID-19 pneumonia
classification were 97.91%, 99.29%, and 98.87%, respectively.
For other pneumonia and nonpneumonia, the sensitivity,
specificity, and accuracy ranged from 97% to 100% when
ResNet-50, VGG16, or Xception was used as the backbone in
FCONet. On the other hand, Inception-v3–based FCONet
provided relatively low sensitivity, specificity, and accuracy
values for all groups of COVID-19 pneumonia, other
pneumonia, and nonpneumonia (P<.001).
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Table 4. Performance of the FCONet frameworks based on the four pretrained models on the testing data set.

P valueAUCaAccuracy, %Specificity, %Sensitivity, %Model and data group

<.001ResNet-50

1.0099.87100.0099.58COVID-19b pneumonia

0.9999.0099.8197.42Other pneumonia

0.9999.1298.63100.00Nonpneumonia

<.001VGG16

1.0099.7599.64100.00COVID-19 pneumonia

0.9999.8799.81100.00Other pneumonia

0.9999.8799.80100.00Nonpneumonia

<.001Xception

0.9998.8799.2997.91COVID-19 pneumonia

0.9998.8799.0598.52Other pneumonia

1.00100.00100.00100.00Nonpneumonia

<.001Inception-v3

0.9794.8797.6888.28COVID-19 pneumonia

0.9895.2495.8394.10Other pneumonia

0.9997.6297.2598.27Nonpneumonia

aAUC: area under the curve.
bCOVID-19: coronavirus disease.

The confusion matrices and ROC curves for the pretrained
models on the testing data set are presented in Figures 2-5. More
specifically, ResNet-50 exhibited TPcovid, TPother, and TPnone of

238/239, 268/271, and 289/289, respectively (Figure 2). VGG16
exhibited TPcovid, TPother, and TPnone of 234/239, 269/271, and

289/289, respectively (Figure 3). Xception exhibited TPcovid,

TPother, and TPnone of 188/239, 257/271, and 289/289,

respectively (Figure 4). Inception-v3 exhibited TPcovid, TPother,

and TPnone of 211/239, 255/271, and 284/289, respectively

(Figure 5). For the three models of ResNet-50, VGG16, and
Xception, the values of AUC were very close to 1 because the
predicted probability values were provided as values close to 1
for correct labeling and values close to 0 for incorrect labeling.

On the additional external validation data set, which comprised
low-quality CT images of COVID-19 pneumonia embedded in
recently published papers, the detection accuracy of ResNet-50
was the highest with 96.97%, followed by Xception (90.71%),
Inception-v3 (89.38%), and VGG16 (87.12%) (Table 5).

Figure 2. Confusion matrix and ROC curve in FCONet using ResNet-50; COVID-19: coronavirus disease; ROC: receiver operating characteristic.
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Figure 3. Confusion matrix and ROC curve in FCONet using VGG16; COVID-19: coronavirus disease; ROC: receiver operating characteristic.

Figure 4. Confusion matrix and ROC curve in FCONet using Xception; COVID-19: coronavirus disease; ROC: receiver operating characteristic.

Figure 5. Confusion matrix and ROC curve in FCONet using Inception-v3; COVID-19: coronavirus disease; ROC: receiver operating characteristic.
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Table 5. Performance of each deep learning model on the additional external validation data set of COVID-19 pneumonia images.

Detection accuracy, %Model

96.97ResNet-50

87.12VGG16

90.71Xception

89.38Inception-v3

To improve the interpretability of our model, we used the
gradient-weighted class activation mapping (Grad-CAM)
method [23] to visualize the important regions leading to the
decision of FCONet. The model fully generates this localization
map without the mapping annotation. The heatmaps (Figure 6)
show the suspected regions for the examples of COVID-19,
other pneumonia, and nonpneumonia. The heatmaps are standard
jet colormaps and are overlapped on the original image, where
red color highlights the activation region associated with the
predicted class. More specifically, for the COVID-19 image
group, the heatmap strongly indicated the suspected regions, as

shown in examples from WKUH (Figure 6, top left), CNUH
(Figure 6, top middle) and SIRM (Figure 6, top right). For the
other pneumonia image groups, the heatmap demonstrated some
suspected regions inside the lung area; the intensity was lower
than that of the regions in the COVID-19 image group (Figure
6, bottom left). For the healthy image group, there was no
heatmap corresponding to the suspected regions (Figure 6,
bottom middle). For the lung cancer images, the heatmap
indicated some suspected regions inside the lung area; however,
the intensity was also lower than that of the regions in the
COVID-19 pneumonia group (Figure 6, bottom right).

Figure 6. Confusion matrice and ROC curve in FCONet using VGG16; COVID-19: coronavirus disease; ROC: receiver operating characteristic.

To test the generalizability of our proposed framework, we also
trained and tested the models based on institutional data split
for COVID-19 data: training data from CNUH and SIRM and
tested data from WKUH. Because the COVID-19 data were
split with a ratio of 65:35 (773 training data and 421 testing
data for COVID-19), the other non–COVID-19 data were
randomly split with the same ratio in a stratified fashion. Table
6 summarizes the performance of the FCONet framework. With
ResNet-50, the sensitivity, specificity and accuracy for
classifying COVID-19 pneumonia were 97.39%, 99.64% and

98.67%, respectively (P<.001). With VGG16, the sensitivity,
specificity, and accuracy for classifying COVID-19 pneumonia
were 97.15%, 99.64% and 98.57%, respectively (P<.001). With
Xception, the sensitivity, specificity, and accuracy for
classifying COVID-19 pneumonia were 90.50%, 94.82% and
92.97%, respectively (P<.001). With Inception-v3, the
sensitivity, specificity, and accuracy for classifying COVID-19
pneumonia were 74.58%, 99.46% and 88.79%, respectively
(P<.001). These results show that the FCONet framework can
classify COVID-19 regardless of the data split approach.
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Table 6. Performance of the FCONet framework based on institutional data split for COVID-19 data.

P valueAUCaAccuracy, %Specificity, %Sensitivity, %Model and data group

<.001ResNet-50

0.9998.6799.6497.39COVID-19 pneumonia

0.9998.63798.4599.26Other pneumonia

1.0100100100Nonpneumonia

<.001VGG16

0.9998.5799.6497.15COVID-19 pneumonia

0.9998.5798.3199.26Other pneumonia

1.0100100100Nonpneumonia

<.001Xception

0.9892.9794.8290.50COVID-19 pneumonia

0.9892.9794.3789.30Other pneumonia

1.0100100100Nonpneumonia

<.001Inception-v3

0.9888.7999.4674.58COVID-19 pneumonia

0.9788.3884.9397.42Other pneumonia

0.9999.5999.42100Nonpneumonia

aAUC: area under the curve.

Discussion

Principal Findings

We were able to develop the FCONet deep learning models to
diagnose COVID-19 pneumonia in a few weeks using transfer
learning based on pretrained models. The FCONet based on
ResNet-50 showed excellent diagnostic performance to detect
COVID-19 pneumonia. Although the diagnostic accuracy of
the FCONet models based on VGG16, ResNet-50, and Xception
was excellent in the testing data set (sensitivity, 97.91%, 100%,
and 97.91%, respectively; specificity, 100%, 99.64% and
99.29%, respectively), external validation using the low-quality
image data set demonstrated that detection accuracy was the
highest with ResNet-50 (96.97%), followed by Xception
(90.71%), Inception-v3 (89.38%), and VGG16 (87.12%).

To collect as many images as possible within a limited time,
we collected readily available chest CT images of COVID-19
patients from institutions in our region (WKUH and CNUH)
and a public COVID-19 database established by SIRM. We
also systematically searched for chest CT images of COVID-19
embedded in recent papers published between January 19 and
March 25, 2020. As these CT images in the published paper
were of low quality, we used them only in an additional external
validation data set.

During a national crisis such as the COVID-19 pandemic, when
the number of infected patients is precipitously increasing and
physicians are occupied combating the disease, rapid
development of AI methods to detect COVID-19 in CT is crucial
to alleviate the clinical burden of physicians and to increase the
efficiency of the patient management process [8]. However,
significant challenges remain when developing such AI

techniques within a limited time to collect CT data and train AI
models.

To save time for AI training, we used the chest CT images
directly without preprocessing of the lung segmentation. In
general, lung segmentation preprocessing is regarded to improve
the accuracy of AI training [24-27]; we believe that this
improvement can be traded off in exchange for saving time. For
AI training, we chose the transfer learning algorithms. Transfer
learning enabled us to save time by using pretrained CNN
models in the ImageNet data sets, including VGG16, ResNet-50,
Inception-v3, and Xception [28]. In our study, FCONet based
on ResNet-50 showed excellent results and outperformed the
FCONet models based on the other three pretrained models in
both our testing data set and the additional external validation
data set. The VGG model is regarded as a traditional sequential
network architecture and may be hampered by slow training
and a large model size [17]. The ResNet-50 model is
characterized by network-in-network architectures, which have
much deeper layers than those of VGG models, enabling
reduction of the model size [18]. Our results suggest that transfer
learning for a 2D deep learning framework can be robustly
applied to deep learning models and that the ResNet-50 model
provides the best accuracy.

We adopted AI training based on a 2D image framework rather
than a 3D framework because 3D deep learning requires
significantly higher computation power than sequential 2D
image analyses [29]. In our emergent clinical setting to fight
COVID-19, a simple and rapid model may be preferable to a
complex and slow model. In addition, training a 2D image
framework saves time for AI development.
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Despite limited resources and time, we were able to generate a
deep learning model to detect COVID-19 from chest CT with
excellent diagnostic accuracy. To date, a few papers have been
published on AI models for detecting COVID-19 in chest CT
images [6]. An AI model named COVNet was trained using
4356 CT images from six hospitals in China. It showed 90%
sensitivity (95% CI 83%-94%) and 96% specificity (95% CI
93%-98%) in detecting COVID-19, which is comparable with
our results. However, we cannot compare our FCONet to
COVNet because the training and testing data sets are different.

Although chest radiography is the most commonly used imaging
tool to detect COVID-19, its sensitivity is lower than that of
CT [30]. However, in this pandemic period, clinicians may
hesitate to perform chest CT due to limited resources such as
CT scanners and radiologists as well as contamination of CT
scanners [31]. In our hospitals (WKUH and CNUH), we recently
dedicated a mobile CT scanner exclusively to COVID-19
patients to alleviate the physical and mental stress of medical
staff. We believe that incorporating an AI model to detect
suspicious lesions of COVID-19 pneumonia can improve the
workflow by providing rapid diagnostic support.

Limitations and Future Work

Our study has several limitations. Firstly, our AI models were
validated mainly using a split testing data set. Thus, the testing
data set was obtained from the same sources as the training data
set. This may raise issues of generalizability and overfitting of
our models [32,33]. Indeed, the detection accuracy of our model
decreased slightly for the external validation data set using chest
CT images from published papers. However, the initial goal
was to incorporate a deep learning model in our emergent
clinical setting as a supporting tool. In the near future, we will
train our model using CT images from various institutions and
countries. Secondly, we used a relatively small amount of data
to train the deep learning models. Thus, we will establish a
sustainable AI training system that can continue to train our
model using prospectively collected CT images.

Conclusions

We described FCONet, a simple 2D deep learning framework
based on a single chest CT image, as a diagnostic aid that
provides excellent diagnostic performance to diagnose
COVID-19 pneumonia. The FCONet model based on ResNet-50
appears to be the best model, outperforming other models based
on VGG16, Xception, and Inception-v3.
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