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COVID‑19 predictability 
in the United States using Google 
Trends time series
Amaryllis Mavragani1* & Konstantinos Gkillas2

During the unprecedented situation that all countries around the globe are facing due to the 
Coronavirus disease 2019 (COVID‑19) pandemic, which has also had severe socioeconomic 
consequences, it is imperative to explore novel approaches to monitoring and forecasting regional 
outbreaks as they happen or even before they do so. To that end, in this paper, the role of Google 
query data in the predictability of COVID‑19 in the United States at both national and state level is 
presented. As a preliminary investigation, Pearson and Kendall rank correlations are examined to 
explore the relationship between Google Trends data and COVID‑19 data on cases and deaths. Next, 
a COVID‑19 predictability analysis is performed, with the employed model being a quantile regression 
that is bias corrected via bootstrap simulation, i.e., a robust regression analysis that is the appropriate 
statistical approach to taking against the presence of outliers in the sample while also mitigating 
small sample estimation bias. The results indicate that there are statistically significant correlations 
between Google Trends and COVID‑19 data, while the estimated models exhibit strong COVID‑19 
predictability. In line with previous work that has suggested that online real‑time data are valuable 
in the monitoring and forecasting of epidemics and outbreaks, it is evident that such infodemiology 
approaches can assist public health policy makers in addressing the most crucial issues: flattening 
the curve, allocating health resources, and increasing the effectiveness and preparedness of their 
respective health care systems.

In December 2019, a novel coronavirus of unknown source was identi�ed in a cluster of patients in the city of 
Wuhan, Hubei,  China1. �e outbreak �rst came to international attention a�er the World Health Organization 
(WHO) reports said that there was a cluster of pneumonia cases on Twitter on January  4th2, followed by the 
release of an o�cial report on January  5th3. China reported its �rst COVID-19-related death on January 11th, 
while on January 13th, the �rst case outside China was  identi�ed4. On January 14th, the World Health Organiza-
tion (WHO) tweeted that Chinese preliminary investigations reported that no human-to-human transmission 
had been  identi�ed5. However, the virus quickly spread to other Chinese regions and neighboring countries, 
while Wuhan, identi�ed as the epicenter of the outbreak, was cut o� by authorities on January 23rd,  20206. On 
January 30th, the WHO declared the epidemic to be a public health  emergency1, and the disease caused by the 
virus received its o�cial name, that is, COVID-19, on February  11th7.

�e �rst serious COVID-19 outbreak in Europe was identi�ed in northern Italy during February, with the 
country recording its �rst death on February  21st8. �e novel coronavirus was transmitted to all parts of Europe 
within the next few weeks, and as a result, the WHO declared COVID-19 to be a pandemic on March 11th, 2020. 
As of 16:48 GMT on April 18th,  20209, there were 2,287,369 con�rmed cases worldwide, with 157,468 con�rmed 
deaths and 585,838 recovered patients. �e most a�ected countries with more than 100 k cases (in absolute 
numbers, not divided by population) were the US, with 715,105 con�rmed cases and 37,889 deaths; Spain, with 
191,726 con�rmed cases and 20,043 deaths; Italy, with 175,925 con�rmed cases and 23,227 deaths; France, with 
147,969 con�rmed cases and 18,681 deaths; Germany, with 142,614 con�rmed cases and 4405 deaths; and the 
UK, with 114,217 con�rmed cases and 15,464 deaths. �e worldwide geographical distribution of COVID-19 
cases and deaths by country is depicted in Fig. 1.

As shown, Europe has been severely a�ected by COVID-19. However, the spread of the disease now indicates 
that the center of the epidemic has moved to the US, with the state of New York counting more than 240 k cases 
and 17 k deaths. Figure 2 shows the distribution of COVID-19 cases and deaths in the United States by state as 
of April 18th,  202010.
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To �nd new methods and approaches for disease surveillance, it is crucial to take advantage of real-time 
internet data. Infodemiology, i.e., information epidemiology, is a concept that was introduced by Gunther 
 Eysenbach11,12. In the �eld of infodemiology, internet sources and data are employed to inform public health and 
 policy13,14. �ese approaches have been suggested to be valuable for the monitoring and forecasting of outbreaks 
and  epidemics15, such as  Ebola16,  Zika17,  MERS18,  in�uenza19, and  measles20,21.

During the COVID-19 pandemic, several research studies using web-based data have been published. Google 
Trends, the most popular infodemiology source along with Twitter, has been widely used in health and medicine 
for the analysis and forecasting of diseases and  epidemics22. As of April 20, 2020, seven (7) papers on the topic 
of monitoring, tracking, and forecasting COVID-19 using Google Trends data had already appeared online in 
PubMed (advanced search: covid AND google trends)23 for several regions:  Taiwan24,  China25,26,  Europe27,28, 
the  US28,29, and Iran 28,30. Note that for Twitter publications related to the COVID-19 pandemic, eight papers 
(8) published from March 13, 2020 to April 20,  202031–38 are available online (PubMed advanced search: covid 
AND  twitter23). Table 1 systematically reports these COVID-19 Google Trends studies, in order of the reported 
publication date.

In this paper, Google Trends data on the topic of “Coronavirus (virus)” in the United States are employed at 
both the national and state levels to explore the relationship between COVID-19 cases and deaths and online 
interest in the virus. First, a correlation analysis between Google Trends and COVID-19 data is performed; then, 
the role of Google Trends data in the predictability of COVID-19 is explored. To the best of our knowledge, this 
paper is the �rst attempt of this kind performed for the United States.

�e rest of the paper is structured as follows. �e Methods section details the data collection procedure and 
the statistical analysis tools and methods. �e Results section consists of the correlation analysis and of the 
forecasting models at both national and state levels. �e Discussion section presents the main �ndings of this 
work, along with the limitations of this paper and future research suggestions.

Methods
Data from the Google Trends platform are retrieved in .csv39 and are normalized over the selected period. Google 
Trends reports the adjustment procedure as follows: “Search results are normalized to the time and location of a 
query by the following process: Each data point is divided by the total searches of the geography and time range it 
represents to compare relative popularity. Otherwise, places with the most search volume would always be ranked 

Figure 1.  Geographical distribution of worldwide COVID-19 cases and deaths as of April 18th  (Chartsbin43).

Figure 2.  Geographical distribution of COVID-19 cases and deaths in the US as of April 18th  (Pixelmap42).
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highest. �e resulting numbers are then scaled on a range of 0 to 100 based on a topic’s proportion to all searches 
on all topics. Di�erent regions that show the same search interest for a term don’t always have the same total search 
volumes”40. �e data collection methodology is designed based on the Google Trends Methodology Framework 
in Infodemiology and  Infoveillance41. Note that the data may slightly vary based on the time of retrieval.

For keyword selection, the online interest in all commonly used variations is examined, and the variations are 
compared, i.e., “coronavirus (virus)”; “COVID-19 (search term)”; “SARS-COV-2 (search term)”; “2019-nCoV 
(search term)”; and “coronavirus (search term)”. Only “coronavirus (virus)” and “coronavirus (search term)” 
yield, as expected, considerably high online interest. Between the two, i.e., the topic (virus) and the search term, 
“coronavirus (virus)” is selected for further analysis.

Data on the worldwide distribution of COVID-19 cases and deaths are retrieved from  Worldometer9. Data 
for the United States analysis of COVID-19 are retrieved from “�e COVID Tracking Project”, which provides 
detailed structured data on COVID-19 cases and deaths nationally and at state  level10. Maps of COVID-19 cases 
and deaths and online interest are created by the authors using the free online tools  Pixelmap42 and  Chartsbin43, 
with data from the respective  sources9,10, while graphs, spider web charts, and maps of the correlation coe�cients 
are created by the authors using Microso� Excel (version 16.39).

As Google Trends data are normalized, the timeframe for which search tra�c data are retrieved should 
exactly match the period for which COVID-19 data are available. �erefore, the timeframes for which analysis 
is performed are di�erent among states, starting either on March 4th (for most cases) or on the date on which 
the �rst con�rmed case was identi�ed in each state, as shown in Table 2.

Each variable used in this study is divided by its full-sample standard deviation, estimated or calculated 
based on the basic formula of the standard deviation of a variable. By doing so, the inherent variability of each 
variable was moved, and thus, all variables have a standard deviation equal to 1. �is equivalence makes it pos-
sible to compare the strength of the impact of the explanatory variables used on the dependent variable. �e 
 nonparametric44 unit root test is also applied to reveal whether or not the variables are stationary. �e results 
suggest that both variables can be used directly in the present analysis without further transformation.

�e �rst step in exploring the role of Google Trends in the predictability of COVID-19 is to examine the 
relationship between Google Trends and the incidence of COVID-19. As Pearson correlation analysis is the 
benchmark analysis in this kind of approach, the Pearson correlation coe�cients (r) between the ratio (COVID-
19 deaths)/(COVID-19 cases) and Google Trends data are calculated. In particular, a minimum variance bias-
corrected Pearson correlation  coe�cient45,46 via a bootstrap simulation is applied to deal with the limited number 
of observations and, therefore, small sample estimation bias (also  see45,47). �e bias-corrected bootstrap coe�cient 
∼

ρ
b

 for the Pearson correlation is given as follows:

Table 1.  Systematic reporting of publications on COVID-19 using Google Trends as of April 20th, 2020.

Authors Date Region Objective Publisher Journal

Husnayain et al.24 March 12 Taiwan Analyzing COVID-19 related searches Elsevier International Journal of Infectious Diseases

Li et al.25 March 25 China Correlating Internet searches with COVID-19 cases Eurosurveillance Eurosurveillance

Mavragani27 April 2 Europe
Correlating Google Trends data with COVID-19 
cases and deaths

JMIR JMIR Public Health and Surveillance

Hong et al.29 April 7 USA
Relationship between telehealth searches and 
COVID-19

JMIR JMIR Public Health and Surveillance

Walker et al.28 April 11 USA, Iran, Europe
Exploring of the online activity related to loss of 
smell

Wiley International Forum of Allergy and Rhinology

Ayyoubzadeh et al.30 April 14 Iran Prediction of COVID-19 cases JMIR JMIR Public Health and Surveillance

E�enberger et al.26 April 16 China
Correlation between Google Trends data and 
COVID-19 cases

Elsevier International Journal of Infectious Diseases

Table 2.  Timeframes for which Google Trends data are retrieved by state.

March 4th–April 15th
USA; Arizona; California; Florida; Georgia; Illinois; Massachusetts; New Hampshire; New York; North Carolina; 
Oregon; Texas; Washington; Wisconsin

March 5th–April 15th Nevada; New Jersey; Tennessee

March 6th–April 15th Colorado; Indiana; Maryland; Pennsylvania

March 7th–April 15th Hawaii; Kentucky; Minnesota; Nebraska; Oklahoma; Rhode Island; South Carolina; Utah

March 8th–April 15th Connecticut; District of Columbia; Kansas; Missouri; Vermont; Virginia

March 9th–April 15th Iowa; Louisiana; Ohio

March 11th–April 15th Delaware; Michigan; New Mexico; South Dakota

March 12th–April 15th Arkansas; Maine; Mississippi; Montana; North Dakota; Wyoming

March 13th–April 15th Alabama; Alaska

March 14th–April 15th Idaho

March 18th–April 15th West Virginia
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where B corresponds to the length of the bootstrap samples; in this case, it is set equal to  99948. Note that the 
terms “COVID-19 deaths” and “COVID-19 cases” refer to the cumulative (total) COVID-19 deaths and cases 
in the United States and that this terminology is used herea�er unless otherwise stated.

Next, secondary correlation analysis is performed using the Kendall rank correlation, which is a nonpara-
metric test that measures the strength of dependence between two variables. �e Kendall rank correlation is 
distribution free and is considered robust in ratio data. Considering two samples with sample sizes n , the total 
number of pairings is 1

2
n(n − 1) . �e following formula is used to calculate the value of the bias-corrected Ken-

dall rank correlation:

where τ is given by τ =
nc−nd
1

2
n(n−1)

 , nc is the concordant value, and nd is the discordant value.

Following, a COVID-19 predictability analysis approach based on Google Trends time series for the United 
States and all US states (plus DC) is performed. �e predictability model is a quantile regression, which is con-
sidered to be a robust regression analysis against the presence of outliers in the sample; it was introduced  by49. 
Building on the study conducted  by46, a quantile regression that is bias corrected via balanced bootstrapping is 
employed. Such a model is the appropriate statistical approach for mitigating small sample estimation bias and 
the presence of outliers in the dataset, as it combines the advantages of bootstrap standard errors and the merits 
of quantile regression. Additional knowledge on quantile regression can be found in the studies conducted  by50 
 and51, while recent applications of quantile regression can be found  in52,53. More  recently54 introduced uncon-
ditional quantile regression, while the study  by55 provides further insights into robust estimates of regressions.

Let Yt , with t ∈ T , be a time series that represents the dependent variable, supposing a bivariate speci�cation. 
Quantile regression estimates the impact of the explanatory variable Xt , with t ∈ T , on the variable Yt at di�erent 
points of the conditional q-quantile, with q ∈ (0, 1) , of the conditional distribution. A value of the q-quantile 
close to zero and a value of the q-quantile close to one represent the le� (lower) and right (upper) tails of the 
conditional distribution, respectively. �e conditional quantile function is de�ned as follows:

Given the distribution of Yt , the estimation of the conditional quantile functions βq can be obtained by solv-
ing the following minimization problem:

where ρq
(

y
)

= y
(

q − 1{y<0}

)

 represents the loss function.

By minimizing the sample analog 
{

y1, . . . , yn
}

 that corresponds to a qth quantile sample, the estimator βq 
takes the following form:

where βXt is an approximation of the conditional q-quantile of the variable Yt.
In our analysis, Yt stands for the ratio (COVID-19 deaths)/(COVID-19 cases), Xt−1 is the respective Google 

Trends value in lag order, and t = 1, . . . ,T , with T being the respective number of observations. A linear trend 
is used as well.

Finally, the bias-corrected parameter is estimated as follows:

where b̂ias
(
β̂
(
q
))

 is given by B−1
∑B

j=1
β̂∗

j

(
q
)

− β̂
(
q
)
 and q ∈ (0, 1) denotes the quantile considered and, in this 

case, is set equal to 0.5 (median). Median regression is considered more robust to outliers than, for example, 
least squares regression. Finally, it also avoids assumptions about the error parametric  distribution56.

Αll estimation results reported in this paper were computed in the R programming  environment57. In par-
ticular, we employed the R packages "quantreg" and "boot" to compute the quantile regression estimates and to 
perform the bootstrapping, respectively. �e code is available in a “Supplementary Online Material �le”.

Results
Figure 3 depicts the worldwide and US online interest in terms of Google queries in the “coronavirus (virus)” 
topic from January 22nd to April 15th, 2020. It shows that this topic is very popular, especially in Europe and 
North America. Speci�cally, interest in the United States is considerably high (above 70) for all US states.

∼

ρ
b

= B−1

B∑

j=1

∼

ρ
b

j (ρ)

∼

τ
b

= B−1
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τ
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q
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To perform a �rst assessment of the relationship between Google Trends and COVID-19 data, the Pearson 
and Kendall rank correlations between the two variables are calculated, and the results are further compared. 
Tables 3 and 4 present the results of the Pearson and Kendall correlation analysis by state, respectively.

As reported in Table 3, statistically signi�cant correlations are observed for the United States and for the states 
of Alabama, Arkansas, California, Colorado, Florida, Georgia, Illinois, Kentucky, Massachusetts, Minnesota, 
Nebraska, Nevada, New Hampshire, New York, North Carolina, Oregon, Pennsylvania, South Dakota, Tennessee, 
Vermont, Virginia, Washington, Wisconsin, and Wyoming as well as DC. �e states of Iowa, Louisiana, Maine, 
Mississippi, Missouri, North Dakota, South Carolina, and Utah do not marginally reach the p < 0.1 threshold of 
statistical signi�cance, i.e., p ∈ (0.1, 0.2).

Based on the Kendall correlation analysis, statistically signi�cant correlations are observed for the United 
States and for the states of Alaska, Arizona, Arkansas, California, Connecticut, Florida, Georgia, Hawaii, Iowa, 
Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Montana, Nebraska, 
Nevada, New Hampshire, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, 
Pennsylvania, Tennessee, Utah, Vermont, Virginia, Washington, and Wisconsin as well as DC. Figure 4 depicts 

Figure 3.  Heat maps of the worldwide and US online interest in “Coronavirus (Virus)”  (Chartsbin43).

Table 3.  Pearson correlation analysis by state. *p < 0.1; **p < 0.05; ***p < 0.01.

State Pearson correlation Standard error Wald test (r = 0) p-value State Pearson correlation Standard error Wald test (r = 0) p-value

USA − 0.7054*** (0.0536) [13.1672] < 0.0001 Missouri − 0.2627 (0.1608) [1.6333] 0.1024

Alabama − 0.6896*** (0.0748) [9.2185] < 0.0001 Montana − 0.063 (0.1727) [0.3651] 0.7151

Alaska − 0.1162 (0.1276) [0.9107] 0.3625 Nebraska − 0.2763* (0.1503) [1.8381] 0.0661

Arizona − 0.313** (0.1292) [2.4225] 0.0154 Nevada − 0.3452** (0.1519) [2.273] 0.0230

Arkansas 0.4282*** (0.1105) [3.8742] 0.0001 New Hampshire − 0.406*** (0.1432) [2.8349] 0.0046

California − 0.4123*** (0.1300) [3.1711] 0.0015 New Jersey − 0.065 (0.2013) [0.3227] 0.7469

Colorado 0.435** (0.1761) [2.4694] 0.0135 New Mexico − 0.1474 (0.1367) [1.0783] 0.2809

Connecticut − 0.1266 (0.1895) [0.668] 0.5041 New York − 0.5925*** (0.0790) [7.5016] < 0.0001

Delaware 0.182 (0.2004) [0.908] 0.3639 North Carolina − 0.3172** (0.1561) [2.032] 0.0421

DC − 0.3464** (0.1632) [2.1219] 0.0338 North Dakota 0.2567 (0.1705) [1.5056] 0.1322

Florida − 0.3171** (0.1559) [2.034] 0.0420 Ohio − 0.1645 (0.1979) [0.8311] 0.4059

Georgia − 0.3467** (0.1462) [2.3708] 0.0178 Oklahoma − 0.1703 (0.1713) [0.9944] 0.3200

Hawaii − 0.1591 (0.1692) [0.9405] 0.3470 Oregon 0.4605*** (0.1432) [3.2154] 0.0013

Idaho 0.0614 (0.1436) [0.4276] 0.6689 Pennsylvania − 0.3645** (0.1446) [2.5218] 0.0117

Illinois 0.2501* (0.1512) [1.6541] 0.0981 Rhode Island − 0.0366 (0.1805) [0.2031] 0.8391

Indiana 0.0162 (0.1884) [0.086] 0.9314 South Carolina − 0.2094 (0.1400) [1.4958] 0.1347

Iowa − 0.2172 (0.1539) [1.4112] 0.1582 South Dakota 0.3518* (0.1920) [1.8323] 0.0669

Kansas 0.1141 (0.1748) [0.6531] 0.5137 Tennessee − 0.3878*** (0.1495) [2.5937] 0.0095

Kentucky − 0.2789* (0.1663) [1.677] 0.0935 Texas 0.0223 (0.1931) [0.1157] 0.9079

Louisiana − 0.2422 (0.1713) [1.4141] 0.1573 Utah − 0.2135 (0.1448) [1.4749] 0.1402

Maine − 0.1811 (0.1387) [1.3062] 0.1915 Vermont − 0.3255** (0.1549) [2.1007] 0.0357

Maryland − 0.0385 (0.2045) [0.1884] 0.8505 Virginia − 0.286** (0.1414) [2.0228] 0.0431

Massachusetts − 0.4285*** (0.1421) [3.0152] 0.0026 Washington − 0.5805*** (0.0835) [6.9492] < .0001

Michigan − 0.1045 (0.1757) [0.5949] 0.5519 West Virginia 0.0033 (0.0426) [0.0781] 0.9378

Minnesota − 0.3513** (0.1550) [2.2657] 0.0235 Wisconsin − 0.3972*** (0.1285) [3.09] 0.002

Mississippi 0.308 (0.1975) [1.5599] 0.1188 Wyoming 0.396** (0.1840) [2.1524] 0.0314
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the heat map of the (a) Pearson and (b) Kendall correlation coe�cients in the United States by state over the 
period examined.

As depicted in the heat maps and in the spider web charts for the respective correlation analyses in Fig. 5, 
visual comparison of the two approaches indicates that the results are consistent in both analyses.

However, the main purpose of this study is to explore the predictability of COVID-19 using Google Trends 
data in the United States. Proceeding with the results of the predictability analysis, Fig. 6 depicts the heat map 
for β1 by state, while Table 5 presents the quantile regression estimated predictability models for the US and for 
each US state (plus DC). As shown, the estimated Google Trends models exhibit strong COVID-19 predictability.

Note that due to the low number of observations, the states of Maine, Montana, North Dakota, West Virginia, 
and Wyoming are not included in the predictability analysis results, but they are given the value “zero (0)” to be 
included in the heat map for purposes of uniformity.

Table 4.  Kendall rank correlation analysis by state. *p < 0.1; **p < 0.05; ***p < 0.01.

State Kendall correlation Standard error Wald test (r = 0) p-value State Kendall correlation Standard error Wald test (r = 0) p-value

USA − 0.6230*** (0.0780) [7.9891] 1.36E−15 Missouri − 0.2919** (0.1187) [2.4585] 0.0140

Alabama − 0.0679 (0.1389) [0.4887] 0.6251 Montana − 0.2903** (0.1405) [2.0660] 0.0388

Alaska − 0.2713** (0.1279) [2.1218] 0.0339 Nebraska − 0.3589*** (0.1216) [2.9517] 0.0032

Arizona − 0.3372** (0.1313) [2.5684] 0.0102 Nevada − 0.2989** (0.1424) [2.0996] 0.0358

Arkansas 0.4083*** (0.1497) [2.7278] 0.0064 New Hampshire − 0.3397*** (0.1313) [2.5884] 0.0096

California − 0.2801** (0.1285) [2.1794] 0.0293 New Jersey − 0.0690 (0.1451) [0.4759] 0.6342

Colorado 0.0510 (0.1459) [0.3498] 0.7265 New Mexico − 0.2851** (0.1184) [2.4070] 0.0161

Connecticut − 0.3060** (0.1371) [2.2320] 0.0256 New York − 0.4379*** (0.0871) [5.0283] 0.0000

Delaware − 0.0095 (0.1545) [0.0618] 0.9507 North Carolina − 0.2817** (0.1305) [2.1582] 0.0309

DC − 0.4986*** (0.1119) [4.4565] 0.0000 North Dakota 0.2737* (0.1507) [1.8160] 0.0694

Florida − 0.3247** (0.1323) [2.4538] 0.0141 Ohio − 0.4007*** (0.1350) [2.9683] 0.0030

Georgia − 0.3262** (0.1290) [2.5291] 0.0114 Oklahoma − 0.2902** (0.1400) [2.0725] 0.0382

Hawaii − 0.2372* (0.1262) [1.8805] 0.0600 Oregon 0.2751** (0.1320) [2.0830] 0.0373

Idaho − 0.1065 (0.1435) [0.7425] 0.4578 Pennsylvania − 0.4173*** (0.1192) [3.5013] 0.0005

Illinois − 0.1379 (0.1369) [1.0077] 0.3136 Rhode Island − 0.1088 (0.1497) [0.7266] 0.4675

Indiana − 0.0738 (0.1344) [0.5491] 0.5830 South Carolina − 0.1900 (0.1172) [1.6215] 0.1049

Iowa − 0.4162*** (0.1172) [3.5507] 0.0004 South Dakota − 0.1255 (0.1641) [0.7645] 0.4446

Kansas − 0.0851 (0.1480) [0.5752] 0.5651 Tennessee − 0.3333*** (0.1236) [2.6974] 0.0070

Kentucky − 0.3496*** (0.1275) [2.7423] 0.0061 Texas 0.0202 (0.1346) [0.1502] 0.8806

Louisiana − 0.3701*** (0.1345) [2.7529] 0.0059 Utah − 0.3029*** (0.1138) [2.6617] 0.0078

Maine − 0.3012** (0.1388) [2.1690] 0.0301 Vermont − 0.3658*** (0.1298) [2.8179] 0.0048

Maryland − 0.2630** (0.1301) [2.0218] 0.0432 Virginia − 0.4270*** (0.1141) [3.7409] 0.0002

Massachusetts − 0.3833*** (0.1377) [2.7829] 0.0054 Washington − 0.4560*** (0.0909) [5.0152] 0.0000

Michigan − 0.3908*** (0.1466) [2.6658] 0.0077 West Virginia − 0.0733 (0.1126) [0.6515] 0.5147

Minnesota − 0.3785*** (0.1383) [2.7372] 0.0062 Wisconsin − 0.3506*** (0.1191) [2.9441] 0.0032

Mississippi 0.0992 (0.1486) [0.6679] 0.5042 Wyoming − 0.0416 (0.1481) [0.2811] 0.7786

Figure 4.  Heat map of the (a) Pearson and (b) Kendall correlation coe�cients by state (Microso� Excel).
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Discussion
As of July 29th, 2020, there were 16,920,857 COVID-19 recorded cases worldwide, with the reported death toll 
at 664,141 and the number of recovered patients at 10,485,3169. In light of the COVID-19 pandemic and to �nd 
new ways of forecasting the spread of the disease, infodemiology approaches have provided valuable input in 
monitoring and forecasting the development of the COVID-19 pandemic over time and in measuring and ana-
lyzing the public’s awareness and response. Google Trends and Twitter have been identi�ed as the most popular 
infodemiology sources, while other social media, such as Facebook and Instagram, exhibit promising results in 
analyzing users’ online behavioral  patterns13.

Figure 5.  Radar chart of the (a) Pearson and (b) Kendall correlation coe�cients by state (Microso� Excel).

Figure 6.  Heat map of β1 of the predictability analysis models by state (Microso� Excel).
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Social media platforms can provide us with more qualitative data that can shi� the focus to other directions. 
Such approaches include sentiment analysis, educational purposes, and e�orts to measure and raise public 
awareness. Recent approaches to analyzing aspects of the COVID-19 pandemic using social media data include 
monitoring the Twitter usage of G7  leaders58, monitoring self-reported symptoms on  Twitter59, and analyzing the 

Table 5.  Predictability analysis by state. �e numbers in parentheses report the standard errors; the t-statistics 
are given in brackets. ***, ** and * indicate statistical signi�cance at the 0.01, 0.05 and 0.1 levels, respectively. 
�e corresponding critical values are 2.575, 1.96 and 1.645.

β0 β1 β2

USA − 0.0509 (0.4339) [− 0.1172] − 0.7506*** (0.2197) [− 3.4173] − 0.0014 (0.0169) [− 0.0831]

AL 0.8944*** (0.2176) [4.1099] − 0.5961*** (0.1160) [− 5.1383] − 0.0413*** (0.0070) [− 5.8850]

AK − 1.4528*** (0.2003) [− 7.2539] − 0.2449** (0.1006) [− 2.4341] 0.0663*** (0.0087) [7.6030]

AZ − 1.4183*** (0.1309) [− 10.8362] − 0.2429*** (0.0817) [− 2.9745] 0.0637*** (0.0049) [12.8777]

AR − 0.2565 (0.4658) [− 0.5507] 0.2785 (0.2531) [1.1004] 0.0023 (0.0124) [0.1825]

CA − 1.4274*** (0.0936) [− 15.2521] − 0.1634*** (0.0539) [− 3.0325] 0.0642*** (0.0046) [13.8481]

CO − 0.9688*** (0.1916) [− 5.0561] 0.3007 (0.2587) [1.1623] 0.0290*** (0.0074) [3.9132]

CT − 1.7866*** (0.0654) [− 27.3353] − 0.1645*** (0.0470) [− 3.4989] 0.0782*** (0.0026) [30.6221]

DE − 2.0415*** (0.4639) [− 4.4003] − 0.2687 (0.2446) [− 1.0987] 0.0715*** (0.0110) [6.4873]

DC − 1.3077*** (0.1980) [− 6.6064] − 0.1548* (0.0849) [− 1.8228] 0.0578*** (0.0094) [6.1513]

FL − 1.5483*** (0.0766) [− 20.2209] − 0.2128*** (0.0431) [− 4.9412] 0.0715*** (0.0024) [29.3170]

GA − 1.5727*** (0.0808) [− 19.4690] − 0.2047*** (0.0570) [− 3.5898] 0.0721*** (0.0042) [17.2658]

HI − 1.6732*** (0.0873) [− 19.1647] − 0.2083*** (0.0470) [− 4.4343] 0.0758*** (0.0041) [18.3027]

ID − 1.8929*** (0.1465) [− 12.9167]] − 0.2686*** (0.0663) [− 4.0507] 0.0866*** (0.0067) [12.8631]

IL − 1.4466*** (0.1404) [− 10.3063] 0.3943*** (0.0707) [5.5764] 0.0680*** (0.0056) [12.2022]

IN − 1.4674*** (0.2157) [− 6.8020] 0.0977 (0.1624) [0.6018] 0.0693*** (0.0065) [10.7392]

IA − 1.5912*** (0.1402) [− 11.3507] − 0.2957*** (0.0733) [− 4.0346] 0.0732*** (0.0042) [17.3342]

KS − 1.5579*** (0.2298) [− 6.7799] 0.0463 (0.1101) [0.4204] 0.0635*** (0.0106) [5.9774]

KY − 1.5530*** (0.1396) [− 11.1222] − 0.2415*** (0.0599) [− 4.0291] 0.0719*** (0.0062) [11.5292]

LA − 1.6432*** (0.0602) [− 27.2763] − 0.2050*** (0.0357) [− 5.7381] 0.0751*** (0.0026) [28.6534]

MD − 1.1066*** (0.2339) [− 4.7306] 0.1135 (0.1008) [1.1255] 0.0550*** (0.0088) [6.2834]

MA − 1.6424*** (0.0771) [− 21.3061] − 0.1757*** (0.0538) [− 3.2668] 0.0742*** (0.0034) [21.8651]

MI − 1.7657*** (0.0813) [− 21.7133] − 0.1884*** (0.0406) [− 4.6375] 0.0800*** (0.0032) [25.2349]

MN − 1.6085*** (0.0773) [− 20.7963] − 0.2344*** (0.0521) [− 4.4970] 0.0728*** (0.0027) [26.9966]

MS − 1.3047*** (0.2959) [− 4.4088] 0.1773 (0.1600) [1.1086] 0.0570*** (0.0082) [6.9200]

MO − 1.5382*** (0.0883) [− 17.4271] − 0.2326*** (0.0478) [− 4.8610] 0.0718*** (0.0051) [14.0987]

NE − 1.4875*** (0.1909) [− 7.7908] − 0.2192*** (0.0746) [− 2.9375] 0.0717*** (0.0063) [11.3935]

NV − 1.6778*** (0.0862) [− 19.4683] − 0.1872*** (0.0348) [− 5.3846] 0.0763*** (0.0037) [20.4946]

NH − 1.6586*** (0.0723) [− 22.9526] − 0.1515*** (0.0365) [− 4.1562] 0.0741*** (0.0025) [30.0037]

NJ − 1.8518*** (0.2428) [− 7.6277] − 0.2395 (0.2427) [− 0.9867] 0.0688*** (0.0060) [11.3949]

NM − 1.2414*** (0.1640) [− 7.5679] − 0.1188 (0.0803) [− 1.4805] 0.0593*** (0.0066) [8.9371]

NY − 1.2201*** (0.0468) [− 26.0596] − 0.1482*** (0.0562) [− 2.6358] 0.0482*** (0.0043) [11.2916]

NC − 1.6575*** (0.0953) [− 17.3914] − 0.1613*** (0.0476) [− 3.3848] 0.0722*** (0.0038) [18.8471]

OH − 1.8408*** (0.1464) [− 12.5751] − 0.1758** (0.0750) [− 2.3436] 0.0790*** (0.0048) [16.3817]

OK − 1.7038*** (0.0544) [− 31.2986] − 0.2463*** (0.0318) [− 7.7497] 0.0767*** (0.0026) [29.5090]

OR − 0.7953*** (0.2019) [− 3.9392] 0.4395*** (0.1362) [3.2257] 0.0293*** (0.0069) [4.2697]

PA − 1.3917*** (0.1279) [− 10.8769] − 0.1845** (0.0758) [− 2.4348] 0.0716*** (0.0041) [17.5561]

RI − 1.4924*** (0.0752) [− 19.8418] − 0.1461*** (0.0408) [− 3.5844] 0.0588*** (0.0049) [12.1036]

SC − 1.2889*** (0.0941) [− 13.7030] − 0.1816*** (0.0513) [− 3.5395] 0.0520*** (0.0069) [7.5216]

SD − 1.1230*** (0.2939) [− 3.8212] 0.2815** (0.1388) [2.0277] 0.0537*** (0.0084) [6.4280]

TN − 1.5098*** (0.0658) [− 22.9294] − 0.2157*** (0.0524) [− 4.1179] 0.0676*** (0.0020) [33.1730]

TX − 1.4766*** (0.3041) [− 4.8557] 0.2749 (0.1903) [1.4442] 0.0660*** (0.0077) [8.5342]

UT − 1.4381*** (0.1399) [− 10.2768] − 0.1586** (0.0723) [− 2.1944] 0.0720*** (0.0069) [10.3640]

VT − 1.5359*** (0.1854) [− 8.2848] − 0.2499*** (0.0848) [− 2.9476] 0.0770*** (0.0081) [9.5352]

VA − 1.5878*** (0.2504) [− 6.3400] − 0.3147*** (0.1021) [− 3.0837] 0.0767*** (0.0106) [7.2484]

WA − 1.3476*** (0.1540) [− 8.7488] − 0.2236** (0.1007) [− 2.2212] 0.0660*** (0.0101) [6.5118]

WI − 1.3407*** (0.0992) [− 13.5142] − 0.2143*** (0.0698) [− 3.0711] 0.0618*** (0.0053) [11.6287]
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public perception of the disease through  Facebook60. Moreover, infodemiology sources have provided valuable 
input in recruiting online survey participants through Facebook to measure individuals’ COVID-19 con�dence 
 levels61 and in assessing the behavioral variations in COVID-19-related online search tra�c in more than one 
search  engine62. Finally, commentaries that make recommendations on the integration of other social media 
platforms, such as Facebook, Reddit, and TikTok, for disseminating medical information to inform public health 
and policy have been  published63.

Google Trends o�ers a solid foundation for quantitative analysis with respect to the monitoring and predict-
ability of COVID-19, as in the analysis presented in this study, where Google Trends data on the “coronavirus 
(virus)” topic were used to explore the predictability of COVID-19 in the United States at both national and 
state level. First, for a preliminary assessment of the relationship between Google Trends and COVID-19 data, 
Pearson correlation and Kendall rank correlation analyses were performed. Statistically signi�cant correlations 
were observed for the United States and for several US states, which is in line with previous studies that argue 
that there is a relationship between Google Trends and COVID-19 data.

�e COVID-19 predictability analysis, which used a quantile regression approach, exhibits very promising 
results and indicates the most important contribution of this study to the international literature: detecting and 
predicting the early spread of COVID-19 at the regional level. �is contribution can be a substantial supple-
ment in further assisting local authorities in taking the appropriate measures to handle the spread of the disease.

Figure 7 illustrates a graph of the COVID-19 deaths/cases ratio, daily COVID-19 deaths, daily COVID-19 
cases, and the respective Google Trends normalized data in the United States from March 4th to April 15th, 
2020. For purposes of consistency in the graph, the COVID-19-related time series are normalized on a 0–100 
scale. As depicted in the graph and con�rmed by the predictability analysis, the two variables are not linearly 
dependent. Instead, they exhibit an inversely proportional relationship, meaning that as COVID-19 progresses, 
the online interest in the virus decreases.

From a behavioral point of view, this result can be explained as follows. First, online interest starts to increase 
and reaches a peak as the number of con�rmed cases becomes high and as the deaths rates start to show that 
the pandemic does indeed have severe consequences. However, a�er a certain period, the interest has an inverse 
course, which could also indicate that the public is overwhelmed by information overload and decreases its 
information “intake”. �e spike in Google queries and the decline in the ratio of COVID-19 deaths/cases could 
be attributed to the spread of the virus over these days and the “delay” in deaths. Regarding this latter point, this 
means that cases increase while the total number of deaths has not yet started to considerably increase.

�e latter point is in line with previous work on the  topic27 suggesting that although signi�cant correlations 
between COVID-19 and Google data are observed, the relationship tends to decrease in both strength and sig-
ni�cance in regions that have been a�ected by COVID-19 as we move forward in time because the interest in 
the virus decreases. �is decrease is counterintuitive and occurs before the case and death curves start to exhibit 
a downward trend, i.e., when a region is being heavily a�ected, independent of whether or not it has reached 
its peak. However, it would be interesting for future investigators to explore the relationship from this point 
onwards since, as shown in Fig. 7, the lines converge, with this convergence being indicative of a future change in 
the relationship dynamics when deaths peak at a later point and when they start their downward course as well.

�e above can partly explain the di�erences in signs among states in both the Pearson and Kendall rank cor-
relation coe�cients, but a more in-depth explanation from a statistical perspective is that the Pearson correla-
tion coe�cient is estimated as the average of the deviations of observations from the sample mean. �e weights 

Figure 7.  COVID-19 and Google Trends data from March 4th to April 15th in the US (Microso� Excel).
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of observations in the tails of the distribution are equal to the weight of other observations, and therefore, the 
outliers could a�ect the estimation of the results, especially in the case of the small sample. In consideration of 
ties, this study employs a bootstrap bias-corrected approach, but the main conclusions are based on quantile 
regressions. Unlike linear measures of dependency, quantile regression is considered superior in a sampling 
situation and more resistant to outliers than linear regressions, the Pearson correlation, or the Kendall rank 
 correlation64. Taking into account that the current pandemic is a dynamic process that constantly evolves and 
has a serious social impact, it is very probable that there now exist—or, at a later stage, could develop—several 
data anomalies (e.g., due to non-pharmaceutical interventions); therefore, formal statistical tools such as the 
Pearson and Kendall rank correlations should be carefully interpreted.

�is study has limitations. First, data from only one search engine are considered. Although Google Trends is 
the most popular search engine, some data on the coronavirus topic from other search engines were not included 
in this analysis. Second, the data at this point are very limited, and the results are based on few observations. 
�ird, the 50 (+ 1) states exhibit diversity in terms of con�rmed cases and deaths. �erefore, any conclusions 
drawn from this analysis refer to each case individually. Despite the known limitations of online search tra�c 
data, the use of infodemiology metrics for informing public health and policy in general and for monitoring 
outbreaks and epidemics in particular has received wide attention.

To dynamically �nd the determinants of COVID-19, the predictability analysis in this study provides insights 
into how online search tra�c data can play a considerable role in forming public health policies, especially in 
times of epidemics and outbreaks, when real-time data are essential. With the COVID-19 pandemic, the world 
is in uncharted territory socially, economically, and socially. �is situation calls for immediate action and open 
research and data, and the term “multidisciplinary” has never before been more important. To that end, the role 
of big data in providing “opportunities for performing modeling studies of viral activity and for guiding individual 
country healthcare policymakers to enhance preparation for the outbreak” has been  acknowledged65, and current 
research on the subject should focus on both exploring the role of other infodemiology variables in the predict-
ability of COVID-19 and combining infodemiology sources with traditional sources to explore the full potential 
of what online real-time data have to o�er for disease surveillance.

Data availability
�e COVID-19 and query datasets analyzed during the current study are available on the COVID-19 Tracking 
Project  website10 and on the “Google Trends” explore  page39, respectively.
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