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Abstract

The COVID-19 (SARS-CoV-2) pandemic is overwhelming global healthcare delivery systems due to

the exponential spike in cases requiring specialty tests, facilities and equipment, including complex,

precision devices like ventilators. In particular, the surge in critically ill patients has revealed a

significant deficiency in regional availability of respiratory care ventilators. The authors offer a

mathematical framework for ventilator distribution under scarcity conditions using an optimized

network model and solver. The framework is interoperable with existing COVID-19 healthcare

demand models and scales for different user-defined system sizes, including hospital networks,

city, state, regional and national-scale prioritization. The authors’ approach improves current

capabilities for medical device resource management within the existing incident command system

while accounting for availability of devices, ventilation treatment time periods, disinfection and

cleaning between patients, as well as shipping logistics time. The authors present a proof of concept

using a high fidelity COVID-19 data set from Colorado, discusses how to scale nationally, and

emphasizes the importance of applying ethical human-in-the-loop decision making when using this

or similar approaches to managing medical device resources during epidemic emergencies.

Keywords: COVID-19, SARS, ventilators, medical device resources, pandemic management

1. Introduction1

The global health challenges of combating the COVID-19 (SARS-CoV-2) pandemic have exposed2

constraints on healthcare systems including insufficient healthcare staffing, test kit availability,3

hospital ICU facilities, personal protective equipment, and availability of respiratory care devices4
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such as ventilators. While traditional disaster incident command systems can account for broad5

resource management, the extreme ventilator resource demand and scarce supply during the6

pandemic have revealed shortcomings in current approaches to medical device resource management7

as described by Adelman [1] where intra-regional resource sharing must be considered as a risk8

mitigation. However the majority of mitigation efforts have been placed primarily on the emergency9

care of infected patients or on the strategy and tactics to reduce infection rates and not on the10

optimization of resource management for the complex demands within the U.S.11

The complexity of medical device resource management during the COVID-19 pandemic provides12

a key opportunity for using computer based modeling and expert advisory systems to aid in the13

decision-making process of allocating resources as described by Beemer and Gregg [2]. In response to14

the pandemic in the United States, at least thirty predictive models on infection rates, ICU resource15

demand, and future ventilator demand have been developed. When these computational models are16

combined with real COVID-19 data, they allow for decisions to be made based on expected growth17

or demand. Additional models such as that presented by Polanco, et al. [3] aid in early detection of18

extreme demand on healthcare systems from severe respiratory disease epidemic outbreaks, however19

none of the models fully explore effective medical device resource management at regional or national20

levels.21

This body of work presents a framework using a mathematical optimization for ventilator22

utilization and significantly aids in the management of scarce medical resources. And while the peak23

infection rates are gradually declining at the time of writing this manuscript, the approach will be24

highly applicable to any resurgence of COVID-19 or other future pandemics. The framework plans25

ventilator sharing within a region of interest by focusing on minimizing the number of patients not26

receiving a ventilator. The approach takes into account current ventilator inventories, addresses the27

arrival of new ventilators, typical ventilator treatment time periods, disinfection and cleaning time28

between patients, as well as shipping logistics time. The framework leverages existing COVID-1929

infection prediction and healthcare demand models but can accommodate improved demand models30

or regional tailoring. The flexibility offered in the framework allows it to scale from local communities31

to counties, state, and nation. This work also presents a proof of concept using recent COVID-1932

data from Colorado to demonstrate the algorithm along with a discussion on scaling to a national33

level. And finally the authors describe the importance of applying ethical decision making when34

using this or similar approaches to managing medical device resources during epidemic or pandemic35

emergencies.36

2. COVID-19 Data Sets37

Since the outbreak of the COVID-19 pandemic, a wide variety of data sets have been made38

available to the public. For example, the COVID-19 Dashboard by the Center for Systems Science39

2
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and Engineering at Johns Hopkins University (JHU) provides case, recovery, and deaths counts40

globally by nation [4]. For the United States, this tool also breaks case counts down by county.41

Several states, counties, and municipalities within the United States are also providing COVID-1942

data to the public, often with additional metrics.43

Our research focuses on a proof-of-concept for ventilator sharing similar in nature to that44

described by Adelman and Gregg [1], but rather providing a scalable solution during peak and non-45

peak events. As such, we use the Colorado COVID-19 data provided by the Colorado Department46

of Public Health and Environment for this effort. Colorado has a population of nearly 6 million47

people and is made up of 64 counties. By using each county as a region for distributing ventilators,48

we are able to use a smaller set of data than would be required to distribute ventilators across49

the entire United States. Colorado’s data also provides many of the metrics needed to seed the50

model and demonstrate its capability. By using this smaller set of higher fidelity data, we are able51

to illustrate and provide proof of concept of our modeling construct, showing an optimal schedule52

of distributing ventilators across all Colorado counties in need. The modeling construct can then53

be scaled at regional, state or national levels. Sections 3 and 4 discuss all precise data needed to54

execute the model.55

3. Modeling Ventilator Sharing56

Mathematical optimization models are a representation of a set of choices to be made by a57

decision maker with the goal of maximizing or minimizing some objective. These decisions are58

subject to a set of constraints that express the limits on possible decision choices. For this work,59

time-phased decision variables are used in conjunction with time-phased balanced constraints over a60

fixed time horizon to allocate ventilators among facilities in order to meet demands in the entire61

region of interest. The following sections establish the notation and the structure of our model. The62

first three sections describe the sets, data parameters, and variables needed for the model with the63

final two sections establishing the objective and constraints for the model.64

3.1. Sets65

For our model we consider three sets. The first, T denotes time periods of interest when utilizing66

ventilators. The length of these time periods is inconsequential and could be set to whatever duration67

makes sense for the region. For our work we consider a time period to be one 24 hour period as most68

of the predictive models for ventilator demand predict daily values. The second, F denotes the set69

of facilities in the region of interest utilizing ventilators. The last set, A denotes the set of shipping70

routes, or arcs, between the facilities and is defined as the set of (i, j) pairs where i, j ∈ F and i 6= j.71

3
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3.2. Parameters72

Parameters are the data items needed to execute the model. For our research we identified73

five parameters of interest. The parameter P denotes the intubation period for a patient and any74

ventilator reset time post extubation. While in practice these values will vary (i.e. intubation75

periods vary with patient age, gender, etc.), for a large scale planning model, it is helpful to assume76

away some of these sources of variability. Further research could explore the effects of variability in77

these parameters. The next two parameters κi and kit are similar and denote the initial number of78

ventilators at facility i and any new ventilators arriving at facility i during time period t respectively.79

The first parameter κi represents the ventilators that are native to the region while the second80

parameter kit represents ventilators not native to the region and are those supplied by increases in81

manufacturing, new purchases, arrivals from other regions, donations, etc. These new ventilators do82

not represent those shipped from another facility. We also assume that these new ventilators arriving83

in time period t will not be available for use until at least time period t+ 1 as there will likely be84

some overhead time associated with in-processing the ventilator. The next parameter dit denotes85

the number of new patients at facility i needing ventilators in time period t. For our research, this86

parameter is based on predictive models and will be discussed later. The last parameter s(i,j) is87

simply the shipping time, in time periods, on arc (i, j).88

3.3. Variables89

Variables represent the decisions that can be made when allocating ventilators. The first variable90

yit denotes the number of ventilators that are assigned to new patients at facility i during the time91

period t. The second variable Iit represents the number of ventilators held in inventory at facility92

i at the end of time period t. The last variable x(i,j),t denotes the number of ventilators that are93

shipped along arc (i, j) during time period t. This model assumes that the shipping logistics along94

the arc can be handled either by the facility or through a contracted shipper. Further research95

could explore the optimal shipping method although the pure logistics problem set is already well96

understood by large scale shipping companies such as FedEx or United Parcel Service (UPS).97

3.4. Objective98

The overall objective of our research is to minimize death of COVID-19 patients due to the lack

of ventilators. To do this we make the assumption that if a patient does not receive a ventilator

in the time period they need it, they will die of acute hypoxia or respiratory failure. To minimize

death due to lack of ventilators we establish the following equation.

Minimize:
∑

i∈F

∑

t∈T

(dit − yit) (1)

4
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This objective function does not take into account any socio-political assumptions on the value of99

one life over another nor does it attempt to address disparity between facilities in the region. Future100

research could consider the effect of these assumptions on ventilator sharing.101

For the modeling effort, a slightly different objective function is used to prevent excessive102

movement of ventilators in the schedule. That is, this objective as seen in Equation 2 simply103

penalizes the objective for moving the ventilator but not so much that the movement of ventilators104

will result in the loss of a life. This has the added benefit of creating a movement or transportation105

schedule that is relatively simple. For example, a 180-day planning period involving 28,775 cases106

spread across 64 counties in the state of Colorado produces a sharing schedule that involves only107

117 shipments.108

Minimize:
∑

i∈F

∑

t∈T

(dit − yit) + 0.1
∑

(i,j)∈A

∑

t∈T

x(i,j),t (2)

3.5. Constraints109

All decisions are constrained including ventilator assignment and distribution. For this effort the

following six constraints were identified.

yit ≤ dit ∀ i ∈ F , t ∈ T (3)

κi = Ii,1 +
∑

j

x(i,j),1 + yi,1 ∀ i ∈ F (4)

ki,t + Ii,t−1 +
∑

j|s(j,i)<t

x(j,i),t−s(j,i) = Iit +
∑

j

x(i,j),t + yit

∀ i ∈ F , 1 < t ≤ P (5)

ki,t + Ii,t−1 + yi,t−P +
∑

j|s(j,i)<t

x(j,i),t−s(j,i) = Iit +
∑

j

x(i,j),t + yit

∀ i ∈ F , P < t ≤ |T | (6)

x(i,j),t, yit, Iit ∈ Z
+ ∀ i, j ∈ F , i 6= j, t ∈ T (7)

Constraint 3 ensures that ventilators assigned at a facility in a time period do not exceed the110

number of new patients arriving at the facility who need ventilator support during the time period.111

5
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Constraints 4, 5, and 6 are the balance constraints and ensure that something is done with each112

available ventilator during the time period (assigned to patients, moved to a different facility, or113

held in inventory at the facility). These three constraints are needed as constraint 4 sets the initial114

conditions, constraint 5 holds during the time periods where extubations have yet to occur, and115

constraint 6 includes those time periods where extubations begin to occur. The last constraint 7116

confines the decisions to non-negative integers.117

4. Predicting Demand for Ventilators118

The network optimization model is agnostic to the demand prediction model. Any model that119

can project new demand for ventilators can be used to populate the demand signal in the network120

optimization. The best available forecasting model for a specific region should be used to project121

demand.122

To demonstrate our modeling construct, we model the demand projections, dit, using a standard123

Susceptible, Infected, Recovered (SIR) model to project new hospital admissions due to COVID-19124

with a fixed proportion of these admissions requiring ventilators. The standard SIR model derived125

from Kermack-McKendrick [5] is defined by the following set of equations and constants where t126

represents the time period of interest.127

St+1 = St − βStIt (8)

It+1 = It − βStIt − γIt (9)

Rt+1 = Rt + γIt (10)

where

γ =
1

Tr
(11)

β = (21/Td − 1) + γ (12)

The constants, Td and Tr represent doubling time and recovery time respectively and also aid in128

calculating the basic reproduction number (R0) of a disease. R0 represents the expected number of129

cases generated by a single case of a disease and indicates how contagious an infections disease is.130

Higher values of R0 indicate more rapid growth with R0 ≥ 1 indicating that the disease will spread.131

For a notional disease, a doubling time of 4 days (Td = 4) and recovery time of 14 days (Tr = 14)132

implies133

R0 =
β

γ
=

(21/Td − 1) + 1/Tr

1/Tr
=

0.2606

0.0714
= 3.65. (13)

6
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This means each infected person, on average, will infect 3.65 other people. Applications of the134

SIR model can also be adjusted to account for social distancing measures by making adjustments to135

the reproduction number over time, i.e. Rt. For our notional disease, if we assume social distancing136

measures reduce population interaction by 30% beginning on day t, this will increase the disease’s137

doubling time to 6.6 days, resulting in Rt = 2.55.138

For our research we use the COVID-19 Hospital Impact Model for Epidemics (CHIME) developed139

by the Penn Medicine Predictive Healthcare team [6]. CHIME implements a SIR model that allows140

hospitals to enter information about the population in their entrapment area and modify assumptions141

around the spread and behavior of COVID-19. CHIME applies to a population, specifically a142

hospital’s entrapment area, it is expandable to any population. For example, Figure 1 shows how143

CHIME can be applied at the county level and displays new ventilator demand in the 10 most144

infected counties in the State of Colorado. This figure assumes a 30% reduction in social contact,145

one ventilator needed per hospitalization, and R0 = 2.55. Figure 1 also demonstrates how demand146

for ventilators will peak at different times during the COVID-19 pandemic. This further supports147

the thesis that if ventilators are shared between populations within a region of interest more patients148

will receive needed ventilators.149

Figure 1: Predicted daily ventilator demand for Colorado counties with highest COVID-19 infection counts on March
31, 2020. Assumes 30% population interaction reduction due to social distancing measures.

CHIME also allows for sensitivity analysis by changing the underlying assumptions required to150

predict new ventilator demand. Figure 2 shows the expected ventilator demand in Denver County,151

Colorado throughout the COVID-19 pandemic adjusted for differing reductions in social contact. For152

7
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example, if planners assume that social distancing measures result in a 30% reduction in population153

interaction and social contact in Denver County, then the model will surge ventilators to the county154

in the early days of the pandemic. However, if the measures had instead resulted in a 50% reduction155

in population interaction the ventilator surge will arrive early and be unavailable in other counties.156

Since the social distancing parameters can be adjusted and modeled quickly, the impact of varying157

assumptions can be compared and better sharing strategies developed. One potential limitation of158

the CHIME model is that it is not calibrated at the local level.159

Institute for Health Metrics and Evaluation (IHME) COVID-19 Projections model [7] is another160

high fidelity model that takes into account when social distancing policies go into effect at the state161

and global levels, which has a strong impact on the infections over time. IHME’s model could also162

be considered for predicting ventilator demand over time.163

Figure 2: Effect of social distancing assumptions on predicted daily ventilator demand for Denver County on March
31, 2020.

5. Demonstration164

This section demonstrates how the prediction and ventilator sharing models work together to165

minimize patient death due to lack of ventilators. To demonstrate, we utilize population data,166

case counts, and ventilator inventory estimates from each county in the State of Colorado with a167

confirmed COVID-19 infection as of March 31, 2020. The population estimates, case counts, and168

hospitalization estimates are used to predict future demand for ventilators. The population estimate169

is also used to estimate the number of ventilators in each county with a ratio of 19.7 ventilators per170

100,000 people [8]. These ventilator counts serve as the κi values in the ventilator sharing model.171

8
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The counties serve as proxies for facilities as the data can be readily accessed and can aid in172

planning at a regional level. Future research could isolate the planning to individual hospitals.173

Table 1 shows the estimated populations, case counts, estimated hospitalizations, and estimated174

ventilator inventory from each of the Colorado counties with at least one estimated COVID-19175

hospitalization.176

County Pop. Cases Hospitalized Vent. Inv.

Denver 717797 539 97 142
El Paso 714395 286 51 141
Arapahoe 651342 333 60 129
Jefferson 579491 304 55 115
Adams 511473 181 32 101
Larimer 350362 99 18 70
Douglas 342842 141 25 68
Boulder 325476 107 19 65
Weld 314251 255 46 62
Pueblo 167116 21 4 33
Mesa 153630 14 3 31
Broomfield 69453 20 4 14
Garfield 59807 33 6 12
La Plata 56403 23 4 12
Eagle 54863 227 41 11
Montrose 42260 13 2 9
Summit 30973 20 4 7
Morgan 28503 4 1 6
Elbert 26218 5 1 6
Routt 25683 17 3 6
Teller 25060 7 1 5
Logan 21854 6 1 5
Chaffee 20028 17 3 4
Park 18557 3 1 4
Otero 18364 3 1 4
Pitkin 17879 30 5 4
Gunnison 17173 82 15 4
Grand 15474 4 1 4
Moffat 13181 4 1 3
Rio Grande 11226 5 1 3
Clear Creek 9663 4 1 2
San Miguel 8177 4 1 2
Costilla 3809 3 1 1
Baca 3547 3 1 1

Table 1: Population, case counts, estimated hospitalizations, and ventilator inventory estimates from Colorado counties
with at least one estimated COVID-19 hospitalization on March 31, 2020.

Populations, positive COVID-19 case counts, and total Colorado COVID-19 hospitalizations177

are provided by the Colorado Department of Public Health and Environment. Hospitalizations by178

county are estimated using the total hospitalizations and the proportion of positive cases in each179

county.180

To begin the demonstration we adapt CHIME in MATLAB to batch process demand predictions181

for all 34 counties in Colorado with at least one estimated hospitalization due to COVID-19. The182

9
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data of interest are new daily ventilator admissions. Table 2 shows the model inputs and assumptions183

used to predict ventilator demand. Settings were kept the same as the default settings in CHIME184

with the exception of regional population and currently hospitalized, which were varied based on the185

regions of interest. The settings can be easily modified as new data emerges regarding COVID-19.186

Figure 3 demonstrates the new demand predictions generated for Denver County. Day 0 in the187

figure represents March 31, 2020. For our model we assume social distancing measures went into188

effect on this date and accounts for the slight dip in new hospital admissions early on. In order to189

adequately account for partial values in the prediction we round all partial values up to the nearest190

integer (e.g., 2.02 new admissions → 3 new admissions). And while this is a slight over-prediction,191

the authors believe that this provides the best means to conservatively handle these types of values192

especially since fractional patients cannot be a real value.193

Table 2: CHIME inputs & settings

Variable Setting

Regional Population see Table 1
Hospital Market Share 100%
Currently Hospitalized COVID-19 Cases see Table 1
Doubling Time (Days) 4
% Reduction in Population Interaction (Social Distancing) 30%
Hospitalizations (% Infected) 2.5%
ICU (% Infected) 0.75%
Ventilated (% Infected) 0.5%
Infectious Days 14
Average Days Hospitalized 7
Average Days in ICU 9
Average Days on Ventilator 10
Number of Days to Project 180

Once generated, the predicted ventilator demands provide the dit values needed for the ventilator194

distribution model. Note that two parameters needed for the CHIME model are also needed for the195

ventilator sharing model. First the average number of days on a ventilator equates to the ventilator196

intubation and reset period. We use P = 10 in this ventilator distribution model demonstration,197

although P can be adjusted to a value that is consistent with current clinical data on ventilator198

treatment periods. Second, the number of days to project equates to the number of time periods to199

plan, in our case |T | = 180. This leaves two remaining parameters to discuss, shipping times and200

new ventilators.201

For shipping times in our demonstration we simply use the geographic coordinates for the center202

of each county and measure the straight-line distance between all counties, divide by a estimated203

travel distance per day and round up. Rounding up occurs to force at least one day for shipping.204

This assumption is based on our belief that the ventilator, if shipped, will take at least a day to pull205

out of service at the facility, go through processing to clean and inventory, be packaged for shipping,206

shipped, and then processed on the receiving end before being put back into service. Further work is207
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Figure 3: Denver 30% Social Distancing New Admissions - March 31, 2020

needed to precisely calculate shipping times and facilities may have to work with their local shipping208

vendors to establish these times.209

Lastly, new ventilators being introduced into the system are accounted for. Since this team does210

not have accurate counts nor expected arrival dates for any new ventilators in Colorado (either211

purchases or national stockpile), we provide new ventilator counts for demonstration purposes only.212

For the demonstration the team will use the following values; 100, 250, and 500 new ventilators213

arriving in Denver (Denver is the main transportation hub for Colorado) on the 6th, 13th, and 20th214

of April respectively.215

Now that the parameters have been defined we demonstrate the sharing model utilizing two216

different scenarios. The first scenario shows the predicted death rate due to lack of ventilators under217

three conditions: (1) no sharing, (2) sharing, and (3) sharing with new ventilators. The second218

demonstrates how sensitivity analysis can be conducted as the social distancing parameters are219

adjusted to show how ventilator sharing is robust to changes in assumptions.220

For the first scenario the sharing model is run under three conditions. The first condition,221

no sharing, indicates that there will be 17,678 deaths due to the lack of ventilators. The second222

condition, sharing, indicates that there will be no deaths due to lack of ventilators. To accomplish223

this 117 ventilator shipping actions will occur throughout the 180 day planning cycle. The last224

scenario also results in no deaths due to lack of ventilators as simply injecting more ventilators into225

a system that already contains enough to meet demand throughout the planning horizon produces226

the same result. However, the additional ventilators do produce a sharing plan that only involves 62227

shipping actions. Table 3 provides a snapshot of the shipping schedule for condition 2.228
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Table 3: First ten entries of the ventilator sharing schedule from scenario 1 condition 2.

Shipping Receiving Shipping Day Amount

Adams Arapahoe 1 10
Adams Boulder 1 2
Alamosa Larimer 1 3
Archuleta Douglas 1 1
Archuleta Elbert 1 1
Archuleta Morgan 2 1
Bent Grand 1 1
Chaffee Baca 1 1
Chaffee El Paso 1 1
Chaffee Teller 1 1

For the second scenario we demonstrate a sensitivity analysis using the model setup parameters229

as presented except we will vary the social distancing (or reduction in social contact) parameter230

when predicting new ventilator demands. This demonstration shows how planning assumptions can231

be varied allowing planners to understand the associated risks and to adjust their plans as these232

assumptions change. The first condition for this demonstration will serve as the baseline and use the233

30% reduction in social contact parameter, as well as sharing with no new ventilators. The second234

condition will increase the social distancing to 50%, highlighting the movement of peak demand235

further into the planning horizon. Lastly, the social distancing parameter will begin with 30%,236

increase to 50% on day 15 of the planning horizon, then decrease back to 30% on day 61 of the237

planning horizon. This attempts to emulate an initial social distancing period, followed by a period238

of tightening restrictions, and a return to looser restrictions. This demonstrates the robustness of239

the method under changing and dynamic assumptions. Each run condition will assume the arrival240

of new ventilators into the region.241

The first condition of the second scenario assumes a 30% reduction in social contact and yields242

zero deaths due to not having a ventilator and produces 62 shipping actions. The second scenario243

assumes a 50% reduction in social contact and also yields zero deaths due to not having a ventilator.244

The difference is in the sharing of ventilators and yields a sharing schedule that involves 64 shipping245

actions. The final scenario varies the social distancing parameter over time and again yields zero246

deaths due to lack of ventilators. These scenarios show that the initial planning assumptions can247

be modified throughout the course of the pandemic and schedules adjusted. Also while the social248

distancing assumptions were modified in the scenarios, sensitivity analysis is not limited with this249

parameter. In fact, any of the parameters used in the sharing model or the prediction model can be250

varied and their impacts explored.251

6. Scaling Considerations252

While our mathematical framework and approach can accommodate improved ventilator demand253

models and other constraints, it is important to recognize the various regional aspects for scaling254
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(up or down) to specific problem sets. The presented proof of concept is based on publicly available255

COVID-19 data for the state of Colorado that serves as a general proxy for both ventilator demand256

and shipping in other regions, but in order to make healthcare resource allocation decisions for257

local communities, counties, state and national levels there are a number of tailored inputs that258

should be considered. For example, each region is likely to have different assumptions of ventilator259

prioritization and maintenance cycles within single hospital, city, county, state, etc. Additionally260

the presented model generally optimizes for nearest neighbor (non-mathematical competitors), but261

might require human-in-loop decisions based on existing healthcare partnerships or other sources of262

medical devices or disposable ventilator service items.263

One of the key elements of this framework that lends itself to scalability is the flexibility of264

parameter s(i,j), the shipping time along transportation route or arc (i, j). The shipping time265

needs to account for intra-regional and inter-regional transportation, roadways, airways, railways,266

waterways, and also logistics midway nodes or transportation hubs. While our proof of concept267

uses GPS lat/long of mid-points for each county, the details of shipping time and logistics are best268

provided by the available commercial companies such as FedEx, UPS, DHL, or other express logistic269

services who offer an application programming interface (API). In some cases the transportation270

estimation may be provided by a local staff or public health employee who will be individually271

transporting the medical devices following an optimized route provided by a GPS traffic mapping272

application.273

Additional considerations for scaling this approach to a national level are the computational274

needs, both hardware and software, for computing the distribution solution of a complex national275

system. If computer calculations are too slow, then solutions will not account for current event data276

or may be obsolete by the time the output is available. For the ventilator sharing model, scenarios277

were run on a Sun Fire x4150 with 2 Intel Zeon E5440 2.83GHz 8 core processors with 16 GB RAM.278

CPLEX 12.10.0.0 served as the solver and AMPL was used to setup and implement the sharing279

model into CPLEX. All scenarios presented solve to optimality within 5 minutes.280

For the demand prediction model, projections were done on a Dell Latitude 7480 Intel Core281

i7-7600U CPU @ 2.8GHz, 2901Mhz, 2 Cores, 4 Logical Processors and 16GB RAM. For Colorado, 34282

out of the 64 counties have at least one estimated hospitalization as of March 31, 2020. Predicting283

demand curves for all 34 counties over 180 days using MATLAB R2019a takes 1.12 seconds. To284

predict all 64 counties over 180 days takes 1.15 seconds. However these time frames are very285

dependent on the hardware used and the scale of the sharing model (64 counties and 180 days to286

plan).287

There is no guarantee that the optimal solution for larger regions or the national-level will solve288

within this documented time frame on the described hardware. It is suggested to consider the use of289

high performance computing systems that might be available through government or local university290

resources for larger problem sets desiring a higher fidelity solution within hospital networks, counties,291
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or regions with more cities.292

7. Ethical Considerations of Using a Scarce Resource Allocation Framework293

During a catastrophic public health crisis, a scarce resource allocation framework can aid health294

officials more effectively use medical resources to do the greatest good for the greatest number of295

patients [9, 10, 11]. However, healthcare decisions based solely on computational predictive models296

will be limited by their assumptions, and may not be grounded in standard healthcare practices297

nor would they account for ethical decisions that take into account situational considerations.298

Fortunately there are many different guidelines regarding the ethical criteria to inform the creation of299

an allocation framework for ventilators or critical care resources [12, 13]. The goals of an allocation300

framework often include providing meaningful access and individualized assessments based on the301

best available medical evidence for all patients. In addition, most decision makers agree a successful302

allocation effort requires public trust and cooperation through transparent and inclusive participation303

in the process.304

The use of an allocation framework generated with community engagement prior to a crisis305

can help ensure no patient is denied care based on stereotypes, assessments of quality of life or306

judgments about their ‘worth’ based on the presence or absence of disabilities or other factors.307

There is significant caution to consider not using categorical exclusion criteria because they are often308

too rigid during a dynamic crisis and can be associated with discrimination. Other considerations309

include: periodic reassessments of patients to maximize population health outcomes; prioritization310

of individuals with vital functions during a pandemic (e.g. essential workers and healthcare workers).311

Potential methods to generate an allocation of resources are outlined by White et. al [12, 11]; we312

adapt those to the use of our mathematical framework for ventilator distribution:313

1. Create triage teams to ensure consistent decision making on the availability and needs of314

scarce critical care resources at the local healthcare facility;315

2. Establish criteria for initial allocation of incoming ventilators; and316

3. Establish reassessment criteria to determine whether ongoing provision of ventilators are317

justified for individual patients, and to ensure the extensive regional demand for ventilator318

resources are not biasing individual patient healthcare decisions.319

Another key consideration is that any implemented solution based on the method described320

in the mathematical framework should use demand values based on actual healthcare data or in321

combination with predictive models that fully describe their assumptions. Some states like Colorado322

and other regions offer this data, while others may not. It is important to consider the fusion of323

real and predictive data to guide ethical decision making but not to provide definitive healthcare324

resource management.325
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8. Conclusions326

Our work demonstrates a mathematical framework for ventilator distribution under scarcity327

conditions using an optimized network model and solver and shows when to transport ventilators and328

to which locations while accounting for availability of devices, ventilation treatment time periods,329

disinfection and cleaning between patients, as well as shipping logistics time. While the proof of330

concept used Colorado data with GPS center point locations and a generalized ventilator predicative331

demand model, it represents elements of all healthcare systems. Our work also discusses some of332

the scaling considerations that require regional or situational adjustments for actual geographic333

locations, shipping logistics and a daily or 12-hour updates to the ventilator demand signal with334

real data. We also emphasize the importance of applying ethical human-in-the-loop decision making335

when using this or similar computational predictive model approaches to managing medical device336

resources during epidemic emergencies. The foundations of this work can also apply to other scarce337

medical resource challenges. Future work should investigate the nuances of applying this approach338

to special hospital health networks in addition to leveraging synthetic patient healthcare data [14]339

as a more accurate predictor of emerging resource needs.340
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