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Abstract: To predict the spread of the new coronavirus infection COVID-19, the critical values of
spread indicators have been determined for deciding on the introduction of restrictive measures using
the city of Moscow as an example. A model was developed using classical methods of mathematical
modeling based on exponential regression, the accuracy of the forecast was estimated, and the
shortcomings of mathematical methods for predicting the spread of infection for more than two
weeks. As a solution to the problem of the accuracy of long-term forecasts for more than two weeks,
two models based on machine learning methods are proposed: a recurrent neural network with two
layers of long short-term memory (LSTM) blocks and a 1-D convolutional neural network with a
description of the choice of an optimization algorithm. The forecast accuracy of ML models was
evaluated in comparison with the exponential regression model and one another using the example
of data on the number of COVID-19 cases in the city of Moscow.

Keywords: COVID-19; epidemic spreading; forecasting; mathematical methods; machine learning

1. Introduction

In the context of the sanitary and epidemiological situation in Moscow associated with
the spread of the new coronavirus infection COVID-19, the task of predicting the dynamics
of the spread of infection and the question of when to implement quarantine measures at the
regional level remains urgent. Since the start of the pandemic, the development of methods
for predicting indicators characterizing the spread of coronavirus infection has remained ac-
tive. The most widely used model of logistic growth [1–4] is the coplanar model, susceptible-
infectious-recovered (SIR), and its various variations: susceptible-infectious-recovered-
susceptible (SIRS), susceptible-exposed-infectious-recovered (SEIR), susceptible-infectious,
recovered-deceased (SIRD), susceptible-infectious-recovered-vaccinated (SIRV) [5–14], and
others [15–18]. However, as the complexity of the model grows, there is a concomitant
increase in the number of unknown parameters, which are often difficult to estimate. Copla-
nar models of the type SIR, SIRS, SEIR, etc., can be used in long-term forecasting, but only
for inhomogeneous isolated systems in which the law of mass action is fulfilled and good
mixing of the population is observed. Real large systems cannot be considered isolated due
to many factors. For example, Moscow and the Moscow agglomeration are characterized
by commuting (more than 2 million people per day), including migration from neighboring
regions (Tula, Vladimir, and Kaluga regions), and a large number of departures and arrivals
per day (more than 100 thousand people per day). In addition, the listed methods allow
simulating only one wave of a pandemic and do not take into account the possibility that
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during one wave, there may be many “peaks” of the incidence. At the same time, machine
learning methods are more versatile since a trained neural network is capable of making
predictions on a variety of systems, given the possibility of multimodal patterns in the past.

Models using the discrete logistic Feigenbaum equation also show good results [19,20].
However, the vast majority of mathematical models cannot predict with acceptable accu-
racy for more than two weeks. This is due to the same fact: real systems, such as cities,
separate regions, or countries, are open and heterogeneous. As a result, many new sources
of infection accidentally appear in systems, launching new chains of transmission of coron-
avirus from infected to susceptible. It should also be noted that statistical data from official
sources contains large errors, ranging from 15% to 75% [19,21].

It is also worth noting the existence of several synthetic models, including the combina-
tion of methods of mathematical epidemiological modeling and machine learning methods,
for example, the combination of neural networks and ensembles of neural networks with
modified spatio-temporal disease models [22–24]. Such models show very accurate results
in predicting the spread of new coronavirus infection, making it possible to compensate for
the shortcomings of each method separately.

This article examines the time series of the number of cases of new coronavirus
infection and the number of hospitalizations in one-day increments. By the type of behavior,
they are classified as a non-stationary time series since the statistical properties of the series
change over time (since different “waves” of incidence have different characteristics) and
as a regular time series (since data are received at regular intervals—1 day). There are many
classical methods for analyzing and forecasting time series, for example, various types of
regression analysis, e.g., linear, polynomial, exponential, ridge regression, least absolute
shrinkage, and selection operator (LASSO) regression. For predicting time series, singular
spectrum analysis (SSA), interpolation by matching pursuit (MIMAP), least-squares spectral
analysis (LSSA), antileakage least-squares spectral nalysis (ALLSSA) [25], in addition
to models of Fourier series methods, autoregressive models of the form autoregressive
integrated moving average (ARIMA), trend and seasonal components (TBATS), and locally
estimated scatterplot smoothing (LESS) models [26] are employed. Among the machine
learning methods for predicting the spread of COVID-19, fairly accurate results are obtained
by methods based on support vector machine (SVM), wavelet neural network (WNN), and
bidirectional long short-term memory (Bi-LSTM) [26,27].

At the first stage of the study, modeling was carried out using an exponential regression
equation suitable for describing the onset of an epidemic or the beginning of the next “wave”
based on the statistics of cases of infection and hospitalization in the city of Moscow. This
method has shown good results in terms of prediction accuracy for a period of up to
two weeks. For the second stage of the study, prediction methods based on machine
learning algorithms were used on a sample of cases of COVID-19 infection from 21 systems,
including data from the city of Moscow. The study built neural networks based on LSTM
and convolutional neural network (CNN) architectures to predict the spread of coronavirus
infection over a longer period of 48 days. This paper presents the results of predicting the
number of cases of infection with a new coronavirus infection in the city of Moscow.

The structure of the article is as follows. Section 2 describes how to find critical param-
eters for making a decision regarding the introduction of restrictive measures, constructing
an exponential regression model and forecasting based on it, the principles of sampling a
dataset for training a neural network, as well as the architecture of the proposed neural
networks. Section 3 describes the results of the training and validation of the proposed
sample-based neural network architectures, comparing the prediction accuracy of classical
mathematical methods and machine learning methods using the example of the obtained
predictions, and comparing the prediction accuracy of the proposed neural network archi-
tectures. Section 4 summarizes the study’s findings on the use of mathematical methods for
modeling the long term incidence of COVID-19 infections and machine learning methods.
Section 5 formulates the main conclusion of this work.
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2. Materials and Methods
2.1. Determination of Predicted Parameters

To begin the study, it is necessary to identify the possible factors influencing the
adoption of measures. As for Moscow, the decrees of the mayor of Moscow do not in-
dicate specific indicators used to make decisions on restrictions on the movement of the
population [28,29]. However, the features of COVID-19 are already well known, which is
characterized by high contagiousness, a long incubation period, and a rather high probabil-
ity of serious complications requiring inpatient treatment. All of these factors combine to
quickly overwhelm the healthcare system. Therefore, it is natural to take the number of
infections per day and the number of hospitalized patients with COVID-19 per day as the
baseline indicators of the study. The first parameter reflects the spread of new coronavirus
infection, and the second parameter (the number of hospitalized) reflects the load on the
bed fund and the healthcare system as a whole. The achievement of a certain critical level
by these parameters becomes a significant reason for deciding to impose restrictions.

We conducted a study using the example of Moscow. We considered the time series of
cases of coronavirus infection and the number of hospitalized patients in the city of Moscow
from 12 March 2020 to 15 October 2021 (Figure 1) [30]. At the same time, there are no data
for the period from 31 December 2020 to 10 January 2021, since the Moscow operational
headquarters did not publish statistics on the number of hospitalized individuals with a
new coronavirus infection during this period.

Figure 1. Statistics of cases of infection and hospitalizations of patients with COVID-19, Source:
Headquarters of Moscow.

Denote the number of cases of COVID-19 infection per day by the function f (t), and
the number of hospitalized by the function ϕ(t), where t is a step in time (day). To check
whether it is necessary to simultaneously use both indicators, we calculated the Pearson
correlation coefficient:

rFΦ =
cov(F, Φ)

σFσΦ
=

∑n
i=1
[(

Fi − F
)(

Φi −Φ
)]√

∑n
i=1
(

Fi − F
)2

∑n
i=1
(
Φi −Φ

)2
, (1)

where: F = f (t)—number of cases per day t, Φ = ϕ(t)—number of hospitalized per day t,
F and Φ—the arithmetic mean of the sample. To eliminate the difference in sample size
associated with the lack of data on hospitalizations from 31 December 2020 to 10 December
2020, the corresponding values for the number of infections were removed.
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The correlation coefficient for the entire sample size is 0.866735, which characterizes
the level of linear relationship as high. However, considering the periods of “waves”, we
note that the number of hospitalized people grows in proportion to the number of infected
individuals. Therefore, in the period from 1 October 2020 to 31 December 2020 (main stage
“second” wave of coronavirus), the coefficient rFΦ was only 0.627 (weak—moderate on the
scale of E.P. Golubkov), and during the period of active growth of the third wave (from
9 June 2021 to 22 July 2021), the coefficient was 0.636 (moderate).

This discrepancy is explained by the following: in periods between waves of morbidity,
the healthcare system can hospitalize a larger number of patients (including those with
mild and moderate disease), and during a period of active growth, the healthcare system is
forced to refuse hospitalization for patients with mild and moderately mild disease due to
insufficient bed capacity, hospitalizing only moderately and seriously ill patients. Due to
this fact, during periods of “waves”, the correlation between the number of hospitalized
and sick people is noticeably weak, as a result of which it is necessary to consider both
factors as influencing the decision to introduce measures aimed at improving the sanitary
and epidemiological situation.

Since the time series above (Figure 1) is characterized by strong daily changes, we
applied a seven-day moving average, simple moving average (SMA7):

SMAt =
1
7

6

∑
i=0

pt−i, (2)

where: pt−i is the number of cases of hospitalizations at the point t− i. As a result, we
obtained a smoothed time series (Figure 2).

Figure 2. Smoothed time series of cases and hospitalizations per day.

We determined the “critical” values of the parameters based on the dates of the
introduction of measures aimed at stabilizing the epidemiological situation: 13 November
2020 to 13 June 2021. It is known that the duration of the disease from the moment of
onset of symptoms in the case of moderate to severe averages 28 days [31]. Taking this into
account, we determined the cumulative number of patients in the period up to the moment
t1 = 13.11.2020 at F1, in the period before t2 = 13.06.2021 at F2:

F1 =
27

∑
i=0

f (t1 − i) = 143596 (person) (3)

F2 =
27

∑
i=0

f (t2 − i) = 92705 (person) (4)
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Similarly, we determines the cumulative number of hospitalized individuals in the
period up to the moments t1—for Φ1 and t2—for Φ2:

Φ1 =
27

∑
i=0

ϕ(t1 − i) = 34848 (person) (5)

Φ2 =
27

∑
i=0

ϕ(t2 − i) = 32610 (person) (6)

At the time of making decisions on the introduction of new restrictive measures, the
indicators of the cumulative number of hospitalized Φ1 and Φ2 are approximately similar.
However, the difference between F1 and F2 is significant. From the smoothed time series of
the number of cases (Figure 2), it can be seen that the growth of incidence rates in the first
case is more uniform than in the second, which was more “explosive”.

For a more detailed analysis, we used the Rt Coronavirus Spread Index, also known as
the effective reproductive number. This indicator reflected the rate of growth of new cases
of new coronavirus infection, calculated using the “4 by 4” method:

Rt =
∑3

i=0 f (i)

∑7
i=4 f (i)

=
F0 + F1 + F2 + F3

F4 + F5 + F6 + F7
, (7)

where F0 is the current day. In other words, the number of people infected in the last 4 days
(including the current one) is divided by the number of people infected in the previous 4 days.

This indicator, used by Rospotrebnadzor as a metric for deciding whether to soften
or strengthen restrictive measures, shows how many people manage to infect one infected
person before they are isolated. If Rt < 1, Rospotrebnadzor recommends starting to mit-
igate restrictive measures. The calculation according to the “4 by 4” formula makes it
possible to smooth out daily fluctuations in the number of detected cases of COVID-19
infection, occurring due to the different number of tests taken and processed to detect a new
coronavirus infection.

The spread of coronavirus was also considered in conjunction with the baseline re-
production rate R0 (baseline reproductive number). R0 is the average number of people
who are infected by one carrier in a naive population, that is, a population whose citizens
do not have immunity to this disease at all and do not take any measures to protect them-
selves from it. We can say that at the beginning of the epidemic, Rt coincided with R0.
The baseline reproduction rate cannot be measured directly, and its value depends on the
chosen model of the infection mechanism and, at the same time, remains constant. Several
studies also indicate that the basic reproductive number R0 does not take into account the
presence of “super-spreaders” and individual differences in infectivity and is often highly
distorted [32–34]. Therefore, for research purposes, the R0 level is not of interest.

We considered the dynamics of the index in the first and second moments during the
three days before and after the introduction of measures to reduce the incidence (Table 1).

Table 1. Dynamics of the Rt index before and before the introduction of restrictions.

Date Cases of
COVID-19 per Day Rt Date Cases of

COVID-19 per Day Rt

10 November 2020 6897 1.176 10 June 2021 4124 1.237

11 November 2020 5902 1.084 11 June 2021 5245 1.427

12 November 2020 4477 0.994 12 June 2021 5853 1.598

13 November 2020 5997 1.008 13 June 2021 6701 1.697

14 November 2020 5974 0.904 14 June 2021 7704 1.803

15 November 2020 6427 0.938 15 June 2021 6590 1.632

16 November 2020 6271 1.071 16 June 2021 6805 1.460
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With the introduction of restrictive measures in November 2020, the average value
of the index was 1.02. When the restrictive measures were introduced in June 2021, the
average value of the index was 1.54. Moreover, in June 2021, there was a significant increase
in the number of cases of the disease, which had an additional impact on the decision to
introduce restrictive measures.

2.2. Forecasting Based on the Exponential Model

For further analysis and prognosis, it is required to approximate the values of the
number of cases of the disease and the number of hospitalizations. Note that during the
period of increasing incidence, the growth is exponential. Thus, the function of the number
of cases of the disease can be represented as:

f (t) = β× exp(αt), (8)

where α, β—some ratios. Whence, after taking the logarithm, we obtain:

ln( f (t)) = ln(β) + α× t (9)

Suppose Y = ln( f (t)), B = ln(β), A = α, then the function can be represented as:

Y = A× t + B (10)

In this case, the problem is reduced to estimating the parameters of the paired linear
regression model using the least-squares method:

F =
n

∑
i=1

[Yi − (A× ti + B)]2 → min, (11)

Then the estimates of the coefficients can be found by the formula:

A =
n ∑n

i=1(ti ×Yi)−∑n
i=1 ti ∑n

i=1 Yi

n ∑n
i=1 t2

i − (∑n
i=1 ti)

2 (12)

B =
∑n

i=1 Yi − A ∑n
i=1 ti

n
(13)

Approximating the data on the smoothed time series from 1 September 2021 to 16
October 2021, we obtain:

f (t) = 1151.9× e0.033t (14)

We compared the data of the time series of smoothed values of infection cases and the
resulting function (Figure 3).

In this case, the coefficient of determination R2 was 0.9918, which characterizes the
model on the segment as satisfactory. Note that forecasting based on the exponential model
allows us to very accurately simulate the initial growth period occurring in real-time.

In Figure 3, it can be seen that f (t) is lagging from the real number of cases per day,
but it is the lag of the function f (t) « from the actual current indicators that will increase
the forecast accuracy over a short time interval since the values of f (t) will be higher than
the increase in morbidity in the long run. Since, at the moment, the average value of the Rt
index in the period over the past 7 days is 1.1, it is logical to assume that the critical value
of the number of cases of the disease, further denoted as F3, is more likely to impact the
value of F1 (143,496 people) than the value of F2, since in June, there was a rapid increase in
cases, which is currently not observed. Similarly, we assumed that the critical value of the
number of hospitalized individuals, hereinafter denoted as Φ3, was more likely to impact
the value of Φ1 (34,848 people).
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Figure 3. Time series of smoothed infection cases and exponential function of approximation.

We apply the same approximation method for the values of the function of the number
of hospitalized patients ϕ(t), as a result of which:

ϕ(t) = 390.39× e0.026t (15)

We compared the data of the time series of smoothed values of the number of hospital-
ized people and the resulting function (Figure 4).

Figure 4. Time series of the smoothed number of the hospitalized and exponential function
of approximation.

In this case, the coefficient of determination R2 was 0.9869, which also characterized
the model on the segment as quite good.

For forecasting, we defined the confidence interval estimates of the coefficients a1 = α,
a0 = ln(β) for the period from 1 September 2021 to 17 October 2021 from the exponential
model of the approximation functions f (t) and ϕ(t), corresponding to the reliability of 95%
according to the formulas:

ξ0.05;45
sELR√

∑47
i=1
(
ti − t

)2
< a1 < â1 + ξ0.05;45

sELR√
∑47

i=1
(
ti − t

)2
(16)

â0 − ξ0.05;45
sELR

√
∑47

i=1 t2
i√

47 ∑47
i=1
(
ti − t

)2
< a0 < â0 + ξ0.05;45

sELR

√
∑47

i=1 t2
i√

47 ∑47
i=1
(
ti − t

)2
(17)
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where ξ0.05;45 is a two-sided critical point of the student distribution with 45 degrees of
freedom, corresponding to a probability of 0.05, sELR is an unbiased estimate of the standard
deviation of the regression equation.

We denoted the values of the point estimates of the coefficients a1 and a0 for the base
forecast, the positive forecast, the lower limit of the confidence interval, the negative, and
the upper limit confidence interval (Table 2).

Table 2. Coefficients of paired linear regression for predictions.

Forecast
Index

α f(t) β f(t) α ϕ(t) β ϕ(t)

Positive 0.03133 1151.85544 0.02451 390.32033
Base 0.033 1151.9 0.026 390.36

Negative 0.03466 1151.94455 0.02748 390.39966

Based on the factors listed above, we considered the forecast of a seven-day moving
average of cases of COVID-19 infection from 17 October 2021 to 10 November 2021 based
on the values of the function f (t) (Figure 5).

Figure 5. Seven-day moving average projections of COVID-19 cases.

In this period, we considered the cumulative number of infections over the last 28 days
and defined it as the “critical” value F3 = 150,000 people:

1. With the baseline forecast, the first date of reaching the critical value: 29 October 2021.
2. In case of a negative forecast, the first date of reaching the critical value: 28 October 2021.
3. With a positive forecast, the first date of reaching the critical value: 31 October 2021.

Similarly, we considered the forecast of a seven-day moving average number of
hospitalizations based on the values of the function ϕ(t) for the same period (Figure 6).

Figure 6. Seven-day moving average projections of hospitalizations.
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In this period, we considered the cumulative number of hospitalizations for the last
28 days and defined it as the “critical” value Φ3 = 36,000 people:

1. With the baseline forecast, the first date of reaching the critical value: 29 October 2021.
2. In case of a negative forecast, the first date of reaching the critical value: 27 October 2021.
3. With a positive forecast, the first date of reaching the critical value: 30 October 2021.

Thus, based on the forecasts made, it is most likely that measures aimed at stabilizing
the epidemiological situation will be taken in the period from 27 October to 31 October.

At the time of 30 October 2021, the constructed forecast was confirmed. By the decree
of the mayor of Moscow, restrictions were introduced on 28 October (negative scenario
according to the forecast). We then considered the seven-day rolling COVID-19 case and
forecast options for the period from 17 October 2021 to 31 October 2021 (Figure 7).

Figure 7. Number of infections: real and predicted values.

We evaluated the forecast accuracy for 15 days (from 17 October 2021 to 31 October
2021) of three scenarios with real data on the number of smoothed cases of COVID-19
infection using two metrics: root mean square error (RMSE) and mean absolute percentage
error (MAPE) (Table 3).

Table 3. Estimates of various exponential regression predictions.

Forecast RMSE MAPE, %

Negative 994.942 10.171
Base 655.951 8.596

Positive 802.835 10.937

The table values concerning a baseline forecast with MAPE 8.596% and RMSE 655.951
showed more accurate forecast results. It can be seen that, until 23 October, the situation
developed according to a negative forecast, and the introduction of restrictive measures
was announced on 21 October. At the same time, it was reported that the situation was
developing according to a negative forecast. However, from 24 October, the real number
of cases of infection deviated from the predicted values. Here, the disadvantages of using
exponential regression models for the long term are fully manifested: the number of
infection cases has a “wavy” appearance, which the exponential model cannot display, as a
result of which it becomes necessary to use other forecasting methods.
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2.3. Determination of the Dataset and Neural Network Architectures

For further research, we turned to machine learning methods. In this case, the task
of forecasting time series belongs to the supervised learning class. To form the sample,
the data on the number of cases of COVID-19 infection were used from 20 countries:
Austria, Belgium, Great Britain, Hungary, Germany, Israel, Iran, Spain, Italy, Canada, the
Netherlands, Poland, Russia, Romania, Serbia, USA, France, Czech Republic, Switzerland,
Japan, and data from the city of Moscow in the period from 18 March 2020 to 3 December
2021 [28,35,36]. These countries were selected according to two criteria: a population of
more than 8 million people and a developed healthcare system. Together, these criteria
made it possible to obtain sufficiently accurate and objective data on the number of cases of
coronavirus infection.

To reduce the influence of daily fluctuations, a seven-day simple moving average
(SMA7) was applied to the entire sample size. For the adequate operation of the neural
network to all the values of these systems from the dataset separately, we applied the
normalization function f : R→ [0, 1] :

f (x) =
x− xmin

xmax − xmin
, (18)

where x is SMA7 infections per day, xmax and xmin are the the maximum and a minimum
number of cases of COVID-19 infection in the system, respectively. To normalize the data,
the MinMaxScaler class from the scikit-learn library was used. Thus, all values were in
the range from 0 to 1 in the corresponding scale. Figure 8 show examples of data from
several systems.

Figure 8. Examples from the dataset.

The dataset length was 626 values, of which 67% (419 values from each system) were
intended for the training sample, and the remaining 33% (207 values from each system)
were intended for the validation sample. The entire amount of data was 13,146 values.

For training, the networks received batches: 144 days before the forecast period
as data based on which the forecast was made, and 48 days for the forecast. From the
original dataset, 5775 batches were generated for training and 315 batches for validation.
For efficiency, the batchhes were shuffled using the shuffle method from the TensorFlow
framework. Examples of the batches are shown in Figure 9.
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Figure 9. Examples of batches from the training sample.

To predict the time series of the number of cases of COVID-19 infection, we used two
types of neural networks: long short-time memory (LSTM) and a convolutional neural
network. We considered in more detail the architecture of the LSTM recurrent neural
network, which is one of the most suitable ML-models for forecasting time series. The
main advantage of this architecture is its good adaptability to learning and forecasting in a
situation where key events (in our case, the “waves” of the coronavirus) are separated by
indefinite time intervals, and their time boundaries are different. The architecture of the
LSTM RNN network can be represented as:

ft = σg

(
W f × [xt, ht−1] + b f

)
it = σg(Wi × [xt, ht−1] + bi)

C̃t = σg(WC × [xt, ht−1] + bc)

Ct = ft × Ct−1 + it × C̃t
ot = σg(Wo × [xt, ht−1] + b0)

ht = ot × σg(ct)

(19)

where, xt is the input vector, ft is the loss layer, it is the input gate layer, C̃t and Ct are the
state vectors, ot is the output gate layer, ht is the target (output) vector, W, b are the vectors
of parameters (weights) [37].
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In this case, the neural network was trained to predict 48 days based on data from the
previous 144 days. Thus, the input vector xt is:

xt =


at−1
at−2

...
at−144

 (20)

where, ai is the number of cases of COVID-19, SMA7. Since the number of neurons in the
output layer is determined by the number of forecast days, this value is 48 pieces. LSTM
RNNs work with sequences and require data of the following form as input: [observations,
time interval, number of signs]. In our case, the time interval was equal to one (the step is
equal to one day). Therefore, we took a closer look at the two hidden layers.

The first hidden layer consisted of 144 LSTM blocks with the activation function in the
form of a hyperbolic tangent. The second hidden layer consisted of 48 LSTM blocks and
used the rectified linear unit (ReLU) as the activation function. Between the two hidden
layers was dropout with a factor of 0.3 to combat overfitting. The total number of parameters
for training in this network model was 123,504. In more detail, the proposed architecture
with the names of layers from the TensorFlow framework can be seen in Table 4.

Table 4. The architecture of the LSTM RNN.

Layer’s Type Quantity Output Shape Activation Params

LSTM 144 (None; 144; 144) Tanh 84,096

Dropout 0.3

LSTM 48 (None, 48) ReLU 37,056

Dense 48 (None, 48) None 2352

Total parameters: 123,504

We also took a closer look at the architecture of the second neural network for pre-
dicting cases of COVID-19 infection—the convolutional neural network. The principle
of operation of this network is to alternate convolutional layers and subsampling layers
(pooling layers).

In this model, the first convolution layer formed 64 output filters in convolution; the
size of the one-dimensional convolution window was two. Then there was a downsampling
layer with a window size equal to the convolution window size, that is, 2, and a flattened
layer. This was followed by two fully connected layers of 50 neurons and 48 output neurons.
The total number of trained parameters was 229890. In more detail, the network architecture
with the names of the layers from the TensorFlow framework is given in Table 5.

Table 5. The architecture of the CNN.

Layer’s Type Quantity Output Shape Activation Params

Conv1D - (None; 143; 64) ReLU 192

MaxPooling1D - (None; 71; 64) - 0

Flatten - (None; 4544) - 0

Dense 50 (None; 50) ReLU 227,250

Dense 48 (None; 48) None 2448

Total params: 229,890
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The classical indicator was used as the loss functions for training both networks of
mean squared error (MSE):

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2, (21)

where, yi is the true meaning, ŷi is the estimated value.
We considered in more detail the choice of the optimization algorithm. There are many

different methods, but the most preferable is the method of adaptive estimation of the
moment, Adam, due to the combination of the accumulation of the motion of the gradient
of the loss function and the relatively weak update of weights for typical features.

We considered its work in more detail. First, the algorithm updates the exponential
moving averages of the gradient mt, which is the estimate of the 1st moment (mean):

mt = β1mt−1 + (1 + β1)∇W ft(W) (22)

where β1 is a hyperparameter that controls the exponential decay rates of the sliding, while
0� β1 < 1. ∇W ft(W) is the objective function gradient (vector of partial derivatives ft).
On the recommendation of the authors for machine learning problems β1 = 0.9 [38]. To es-
timate the frequency of the gradient change, the average non-centered variance is used) vt:

vt = β2mt−1 + (1 + β2)[∇W ft(W)]2 (23)

where, β2—similar β1 the hyperparameter that controls the exponential decay rates of
the sliding, and is taken as 0.999 as the most appropriate value for machine learning
problems [39,40]. However, these slides are initialized as vectors close to zero (and the
values will accumulate for a long time). To correct this problem, the first and second
moments mt and vt are calculated, corrected for displacement:

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(24)

As a result, the weights are updated according to the rule:

Wt+1 = Wt −
η√

v̂t + ε
m̂t (25)

where, η—learning rate, ε = 10−8smoothing parameter.

3. Results
3.1. Training and Validation of Neural Network Models

The implementation of the neural network was carried out in the Python programming
language in a Jupyter Notebook development environment using the open TensorFlow
machine learning framework from Google as a basis (mainly a Keras add-on) with the
involvement of the matplotlib libraries (for drawing graphs), scikit-learns (for normalization
and network validation), and Pandas (for data structuring).

For LSTM RNN training, we determined an epoch size of 100 steps with 64 batches
processing at each step and determined the number of epochs to be 24. We also considered
the dynamics of the loss function on the training and test samples (Figure 10).

To validate the trained neural network, we used the mean absolute percentage
error (MAPE):

MAPE(y, ŷ) =
100
n

n−1

∑
i=0

|yi − ŷi|
|yi|

(26)

where, n is the sample size, yi and ŷi are the true and predicted value for the day i. On the
training sample, the MAPE indicator was 7.294%; on the validation sample, it was 8.861%.

An example of LSTM RNN operation can be seen in Figure 11.
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Figure 10. Values of the loss function in the learning process of the LSTM RNN.

Figure 11. Examples of forecasts of the LSTM RNN.

To train CNN, we determined an epoch size of 100 steps by processing 256 batches at
each step and determining the number of epochs to be 100. We considered the dynamics of
the loss function on the training and test samples (Figure 12).

For the trained model, we also used the MAPE metric as a validation: on the training
set, this indicator was 6.203%, on the validation set, it was 7.637%. An example of how
CNN works can be seen is represented in Figure 13.
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Figure 12. Values of the loss function in the learning process of the CNN.

Figure 13. Examples of forecasts of CNN.

3.2. Comparison of Forecast Accuracy

We compared the accuracy of the forecasts of all the constructed models on the same
time interval that was considered for the exponential model (from 17 October 2021), extend-
ing it to 48 days (until 3 December 2021). To generate the forecast, the LSTM RNN and CNN
networks were given data approximately 144 days before the start of the forecast period, i.e.,
from 26 May 2021 to 16 October 2021. The results of the models can be seen in Figure 14.

To assess the accuracy, we used two previously applied metrics: RMSE and MAPE, for
each model separately (Table 6).

From the data in the table, it can be seen that machine learning models cope with
forecasting on an equal time interval much better than the exponential regression model.
Among machine learning methods, the CNN model performed more than three times
worse on the MAPE score than the RNN LSTM.
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Figure 14. Forecasts of exponential regression models, LSTM RNN, and CNN.

Table 6. RMSE and MAPE metrics for assessing the quality of forecasts using LSTM RNN, CNN and
exponential regression model.

Forecast by RMSE MAPE, %

LSTM RNN 329.157 5.391

CNN 938.013 16.909

Exponential regression model 10,275.571 207.811

We made an additional comparison of CNN and LSTM RNN models. To do this, we
developed two models using input data on the cases of COVID-19 infection in Moscow
during the period from 7 June 2021 to 28 October 2021 and obtained a forecast from
29 October 2021 to 15 December 2021 (Figure 15).

Similarly, we compared the forecasts for two metrics: RMSE and MAPE (Table 7).

Figure 15. Forecasts of LSTM RNN and CNN.
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Table 7. RMSE and MAPE metrics for assessing the quality of forecasts using LSTM RNN and CNN.

Forecast by RMSE MAPE, %

LSTM RNN 410.779 7.974
CNN 995.177 20.094

From the data in the table, it can be seen that the forecasts obtained using the LSTM
RNN are more accurate (MAPE indicator 7.974% versus 20.094% for CNN). Consequently,
long short-term memory models perform significantly better at predicting time-series
COVID-19 infections than convolutional neural network models.

4. Discussion

The results of the study indicate the sufficient accuracy of analytical methods of
regression analysis for the short-term forecasting of the spread of coronavirus infection
by the example of the number of cases of COVID-19 infection in the city of Moscow over
14 days. In this case, the MAPE indicator was 8.596%. However, in the case of long-term
forecasts with a duration of 48 days, the MAPE error rose to an unacceptable 207.811%.
Other methods, indicated in the introduction, also make it possible to obtain a forecast with
sufficient accuracy for a period of up to two weeks, such as models using the Feigenbaum
logistic equation [19,20]. Using coplanar models for the logistic growth of COVID-19 cases
would presumably yield more acceptable results than an exponential growth model but
would also fail to account for the possibility of a multimodal view of the time series of
COVID-19 cases. The lack of classical mathematical models, including coplanar ones, is
because real systems, such as large cities, regions, or countries, are open and heterogeneous,
and it is virtually impossible to take into account a large number of stochastic factors
and processes in such models. However, one area for future research may be to compare
coplanar and spectral analysis models (such as the season-trend fit model and others
mentioned in the introduction) with neural network models.

To solve the problem of a drop in the forecast accuracy of models based on classical
mathematical methods, the paper proposes two models of neural networks with different
architectures: a recurrent one based on LSTM blocks and a convolutional network based on
the application of the convolution operation to a one-dimensional vector over the kernel
with a window size of 2. According to the training results on a sample of sufficient size
(5775 different batches with the minimum recommended for LSTM RNN 1000 different
batches), both models show a sufficiently accurate result on their samples. When comparing
the forecasts of all the models proposed in the work, neural networks showed a MAPE
error of 16.9% for CNN and 5.391% for LSTM RNN, which is much better than the error
indicators of the model based on exponential regression. With an additional comparison
of artificial neural network models for the period from 29 October 2021 to 15 December
on data from the city of Moscow, the LSTM-based model gave a much more accurate
result with a MAPE error rate of 7.974% versus 20.094% for CNN. At the same time, the
LSTM-based model took into account a faster decline in incidence and a plateau at the level
of 3000 SMA7 cases of COVID-19 infection. However, it is worth noting the drawback of
such models in the form of a significantly greater need for computing resources. When
training the network for one epoch step of 64 different batches of the LSTM model, an
average of 594 ms/step was required, while one epoch step of 256 different batches of
the CNN model required an average of only 59 ms/step. Thus, on average, processing
one batch of an LSTM network requires 38 times more time (8.81 ms/batch) than CNN
(0.23 ms/batch). However, since accuracy is the main metric in this study, LSTM RNNs
have a significant advantage over CNN and the exponential regression model. Further
improvement of the forecast accuracy and optimization of the LSTM-based model requires
additional research. It should be noted that with an increase in the sample size in the future
and the “study” of new patterns by neural networks, the accuracy of models based on
machine learning methods will only grow, which will increase the accuracy of long-term
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forecasts. A question for future research remains the possibility of augmentation of time
series data to artificially increase the sample size.

5. Conclusions

This paper compares the prediction accuracy between mathematical methods for
predicting the number of COVID-19 cases using machine learning methods. To estimate the
exponential regression parameters, the least-squares method was used. Two architectures
are proposed as machine learning methods: one based on LSTM blocks and one based
on CNN. To train the networks, the data on the number of cases of infection with a new
coronavirus infection in 20 countries and the city of Moscow was used. The classical MSE
indicator was used as a loss function, and the Adam method was used as an optimization
algorithm. According to our research, standard mathematical models such as exponential
regression can provide reasonably accurate results within two weeks. Machine learning
models can predict the spread of a new coronavirus infection with acceptable accuracy for
48 days, which is more than 3.4 times longer than the forecasting period using classical
mathematical methods. The best results were shown by the model of recurrent neural
networks with long-term, short-term memory LSTM RNN, the forecasts of which were
distinguished by the smallest average absolute percentage error (5–8%); however, such
models require much higher computing power. For future work, it is of interest to conduct
studies with the improvement of our proposed neural network architectures to obtain more
accurate forecasting results and to also study the possibility of obtaining forecasts for more
than 48 days.
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