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Abstract—The number of confirmed cases of COVID-19 has 

been ever increasing worldwide since its outbreak in Wuhan, 

China. As such, many researchers have sought to predict the 

dynamics of the virus spread in different parts of the globe. In this 

paper, a novel systematic platform for prediction of the future 

number of confirmed cases of COVID-19 is proposed, based on 

several factors such as transmission rate, temperature, and humidi-

ty. The proposed strategy derives systematically a set of appropri-

ate features for training Recurrent Neural Networks (RNN). To 

that end, the number of confirmed cases (CC) of COVID-19 in 

three states of India (Maharashtra, Tamil Nadu and Gujarat) is 

taken as a case study. It has been noted that stationary and non-

stationary parts of the features improved the prediction of the sta-

tionary and non-stationary trends of the number of confirmed 

cases, respectively. The new platform has general application and 

can be used for pandemic time series forecasting.
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I. Introduction

T
he novel coronavirus (SARS-CoV-2) 

has plunged the world into severe 

disaster recently. The virus made its 

way to many countries around the 

globe soon after the first case was reported in 

Wuhan, Hubei Province, People’s Republic of China (PRC) 

in late December [1]. As such, the World Health Organiza-

tion (WHO) declared the situation as a public health emer-

gency of international concern on 30 January, 2020 [2]. 

WHO officially named the disease COVID-19 when PRC 

Center for Disease Control and Prevention (CDC) recog-

nized the virus as a new type of coronavirus. Ever since, 

many countries have experienced disasters due to the wide-

spreading infectious virus. This has put a huge burden on 

medical centers in different countries and many different 

measures have been put in place by jurisdictions to control 

the spread of the virus in different countries. These measures 

are mainly in the form of lockdowns enforced in several 

stages, where people are banned from congregating en messe. 

Physical distancing measures can have a huge impact on the 

virus transmission rate [3], and in one such study the time 

taken for the daily number of new cases to double was 

reported to increase from 2 to 4 days [4]. The optimal lock-

down policy depends on the fraction of infected and suscep-

tible in the population. As a result, a severe lockdown 

beginning two weeks after the outbreak was prescribed 

where it can be gradually relaxed to cover 60% of the popu-

lation after a month, and 20% of the population after three 

months [5]. It was also recommended that the intensity of 

the lockdown should depend on the gradient of the fatality 

rate as a proportion of the infected, and on the assumed 

value of a statistical life [5].

The effect of the Meteorological parameters on the spread 

of the COVID-19 disease has also been investigated [6], [7]. It 

has been reported that the virus favors low temperature and 

low humidity [8]–[11]. Mortality is also shown to be affected 

by temperature and humidity variation [12]: one unit increase 

of temperature and absolute humidity was associated with a 

decreased COVID-19 death rate. Accordingly, temperature and 

humidity are suggested as important factors to be considered in 

modelling of rates.

Some studies have focused on prediction of the number of 

future cases with different lockdown policies in different coun-

tries [13]–[15]. This will facilitate the investigation of the effect 

of different measures on the future spread of the virus by 

administrators and health officials.

This paper uses both transmission rate and meteorologi-

cal parameters (temperature and humidity) as features for 

training a set of Recurrent Neural Networks (RNN) to 

forecast the number of future cases of COVID-19. A sys-

tematic procedure is proposed in this paper which decom-

poses each signal (all features as well as the signal to be 

predicted) into its stationary and non-stationary modes. All 

the stationary modes that are similar in center frequency are 

used to train a separate RNN. Similarly, all the non-station-

ary modes are used to train another RNN. The results of all 

of the predictions are summed as the final forecast number 

of COVID-19 cases.

India is one of the highly impacted countries, and has been 

severely hit by the spread of the COVID-19 virus in many of 

its states. Some researchers have sought to predict the effect of 

lockdown measures on the spread of the virus in India and 

have suggested some policies to be followed by the jurisdic-

tions to fight further spread of the virus in the country [16]–

[18]. In [16], [17], an evolutionary data analytical method called 

genetic programming was used to predict the possible impact 

of COVID-19 in India. Here only two parameters, namely 

confirmed cases and total death count, were taken into consid-

eration to analyze and predict the total rise in the coming ten 

days. The present work extends the former basic parametric 

analysis, adding transmission rate from outbreak and the local 

meteorological temperature and humidity data. In this paper, 

the data from the outbreak in different parts of India have been 

taken as the case study. The source of dataset for comparison is 

available at [19].

II. Calculation of the Transmission Rate

The number of the confirmed cases has continually increased

since 24 March 2020 when an outbreak was declared in differ-

ent states of India. Figure 1 shows the number of daily new

confirmed cases in two of the severely affected states, namely

Maharashtra (Figure 1(a)) and Tamil Nadu (Figure 1(b)), since

24 of March. These two states are taken as the case studies in

this paper.

There have been overall, five lockdown periods in India as 

of 24 March, 2020, followed by an unlock phase. The informa-

tion about each lockdown phase is outlined in the Table I. 

Using the number of confirmed cases corresponding to each 

lockdown phase, the value of the transmission rate in that phase 

has been calculated through the following formula [20],

log
T

I
I S

1
1

1 1
Nb =- - +` ` jj (1)

where b  is the mean estimated transmission rate for each lock-

down phase, IN  is the number of new infections since the 

previous lockdown, I and S represent respectively the num-

ber of infected and susceptible individuals, and T is the sam-

pling interval.

The transmission rates corresponding to the outbreak in 

Maharashtra and Tamil Nadu have been calculated using (1) for 

all lockdown phases of Table I. Note that the number of sus-

ceptible cases S in each state has been considered to be the 

entire population of that state. Figures 2(a) and 2(b) show 

respectively the calculated transmission rates in Maharashtra 

... in this section we propose a novel framework 

for optimum training of an RNN using time series 

analysis of the signals used in training.

NOVEMBER 2020 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    35



36    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2020

and Tamil Nadu per day. As can be seen from the figures, the 

transmission rate graphs resemble step functions. It is hypothe-

sised that the effect of lockdown does not have immediate 

effects on the transmission rate as it takes time for the entire 

population to adapt their behaviour to the new set of rules. A 

robust spline based smoothing technique is exploited to slightly 

smooth these graphs. The so-called smoothing technique aims 

at balancing the fidelity in the data by minimising the follow-

ing goal function [21],

,F S t S t S t rP S t
2

= - +t t t^ ^ ^ ^^ ^h h h hh h (2)

where S(t) and ( )S tt  represent respectively the original and 

smoothed signals, and ( ( ))P S tt  is a penalty term that reflects the 

roughness of the obtained smoothed signal ( )).(S tt  The real pos-

itive scalar parameter r is the smoothing factor that controls the 

degree of smoothness in ( ).S tt  A smoothing factor of r 10=  

has been used to this end. Figures 2(c) and 2(d) show the 

smoothed graphs of transmission rates for Maharashtra and 

Tamil Nadu, respectively.

III. Signal Pre-Processing

This section presents the procedure of the proposed method,

aiming to obtain a computational model that can forecast the

number of confirmed cases of the COVID-19 in Maharashtra

and Tamil Nadu. RNN has been widely used for time series

forecasting; in this section we propose a novel framework for

optimum training of an RNN using time 

series analysis of the signals used in training.

To train a supervised Artificial Neural Net-

work (ANN), one needs to decide the features 

and labels to be used for training. Here we dis-

cuss how these features and labels can be 

selected systematically. As stated earlier, we 

hypothesise that the number of confirmed cases of COVID-19 

is a function of the variability of environmental conditions 

(temperature and humidity), and the measures put in place by 

the jurisdictions to control the spread of the virus (transmission 

rates). The effectiveness of such measures is usually reflected by 

the transmission rates varying with different lockdown phases. 

As a result, there are four different time series introduced to the 

training process in this paper: (1) temperature (T), (2) humidity 

(H), (3) the number of confirmed cases (CC), and (4) the trans-

mission rates (TR). Restated, this paper aims to construct an 

RNN to predict the future number of CC signal based on its 

previous observed numbers and the other aforementioned sig-

nals (T, H, and TR).

A. Time Series Analysis of Features

Before constructing an RNN, we propose to pre-analyse the

data to explore the nature of the signals used for training. Since

the signals used in this paper have a stochastic nature, their sta-

tionary or non-stationary behaviour is first processed in this

section. This will result in more accurate training and ensure

much better prediction results. First, a brief definition of the

stationary and non-stationary time series is presented.

The first order autoregressive process AR(1) of a signal S(t) 

is shown as

s st t t1z e= +- (3)

where te  is a stationary white Gaussian noise process. Three 

different scenarios can occur for the above AR(1) model: 1) 
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FIGURE 1 The number of daily new confirmed cases of COVID-19 in Maharashtra and Tamil Nadu as of 24 March, 2020. (a) Maharashtra. 
(b) Tamil Nadu.

Before constructing an RNN, we propose to 

pre-analyse the data to explore the nature of the 

signals used for training.



11; ;z  implies the signal is stationary, 2) 12; ;z  shows that 

the signal is non-stationary, and 3) ,1; ;z =  represents a random 

walk model [22], [23].

In this paper, the Kwiatkowski–Phillips–Schmidt–Shin 

(KPSS) test is run on each signal to explore the stationary 

and non-stationary nature of the signal. The KPSS test is 

used for testing a null hypothesis of stationary time series 

(no unit root) around a deterministic trend (i.e. trend-sta-

tionary) against the alternative of non-stationary (unit 

root) [24]. The null hypothesis of trend stationary of the 

signal is tested against the alternative hypothesis of trend 

non-stationary. The test can be conducted on several auto-

covariance lags in the Newey-West estimator [25] of the 

long-run variance, each conducted at 0.1 significance level 

using Matlab.

However, before running a KPSS test, one needs to 

select an appropriate lag length for the time series. Care 

must be taken to ensure that an appropriate lag length is 

chosen. For instance, if the lag length is too short, the test 

will be biased; if the lag length is too large, the power of 

the test will suffer. A common rule of thumb for determining 

the maximum lag ( )Lmax  can be obtained from the follow-

ing equation [24],

L
n

12
100

max
4
1

#= ` j; E (4)

where n is the sample size and [ ]$  indicates the integer part of a 

number. Regarding the examples of this paper n = 80, a maxi-

mum lag ( )Lmax  11 is obtained. Three different values of 7, 9, 

and 11 for lags are considered for the KPSS test.
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FIGURE 2 Calculated rough (a, b) and smoothed (c, d) transmission rates of COVID-19 corresponding to Maharashtra and Tamil Nadu for differ-
ent lockdown phases as of 24 March, 2020. (a) Maharashtra. (b) Tamil Nadu. (c) Maharashtra, smoothed. (d) Tamil Nadu, smoothed.

TABLE I The date of the start and end of lockdown phases 
in India as of 24 March, 2020.

LOCKDOWN PHASE TIME PERIOD 

I 24/03/2020–13/04/2020 

II 14/04/2020–3/05/2020 

III 3/05/2020–17/05/2020 

IV 17/05/2020–31/05/2020 

V 31/05/2020–8/06/2020 

UNLOCK 8/06/2020–21/06/2020 (ONGOING)
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Figures 3 and 4 show the temperature (T) and humidity 

(H) for Maharashtra and Tamil Nadu, respectively. Table II

shows the results of the KPSS test run on CC, TR, T and H

signals of Maharashtra.

As can be seen from the results, the KPSS test rejects the 

null hypothesis in favor of the alternative for the signals CC 

and the TR with a relatively small P-value (compared to the 

significance level 0.1) in all forms of the signals associated with 

the specified auto-covariance lags 7, 9, and 11. These signals 

therefore are considered non-stationary. The opposite results are 

obtained for the signals T and H, as can be seen from the table.

Likewise, Table III shows the results of the KPSS test run 

on each signal CC, TR, T, and H of Tamil Nadu. The KPSS 

test rejects the null hypothesis in favor of the alternative for the 

signals CC, TR, and H with a relatively small P-value (com-

pared to the significance level 0.1) in all forms of the signals 

associated with the specified auto-covariance lags 7, 9, and 11. 

These signals are thus considered non-stationary. The opposite 

results are obtained for the signal T as seen from the table.

In the next section, more complicated signals, i.e. all signals 

except TR, are decomposed into some stationary and non-sta-

tionary modes using an advanced signal decomposition tech-

nique. This will further help in using features with low level of 

irregularities in the training process, which can further improve 

training results.

B. Signal Decomposition Using VMD

This section proposes to decompose complex signals (CC, T,

and H) into their stationary and non-stationary oscillatory

modes using an advanced decomposition technique called

Variational Mode Decomposition (VMD). We further use the

non-stationary part of the signals along with the signal TR
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FIGURE 4 (a) Temperature, and (b) humidity time series corresponding to Tamil Nadu as of 24/3/2020 to 21/06/2020.
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FIGURE 3 (a) Temperature, and (b) humidity time series corresponding to Maharashtra as of 24/3/2020 to 21/06/2020. 



(non-stationary feature) for training. Similarly, the stationary 

modes are used to train another set of RNNs (Figure 5).

VMD is an adaptive decomposition algorithm that aims to 

decompose a non-linear non-stationary signal into its con-

structive modes [26]. These modes, which are known as Intrin-

sic Mode Functions (IMF), are frequency and/or amplitude 

modulated signals. The sum of which constructs the original 

signal (minus some noise, depending on settings).

VMD is an adaptive algorithm which solves a variational 

optimisation problem for a given signal S(t) on k IMFs 

{ } { , , , }.u u u uk k1 2 f=  It is assumed that each IMF is narrow-

band and, therefore, has a center frequency { }i~  where 

{ , , , }.i k1 2 f!  The aforementioned variational optimisation 

problem follows,

min t
t

j
u t e

{ }&{ }u
t k

j t

k

2

k k

k
)2 d

r
+

~

~-^ ^c h hm/ (5)

where in the above equation, ) is the convolution operator. 

The proposers of VMD argue that the solution to the minimi-

zation problem of (5) is the saddle point of the augmented 

Lagrangian in a sequence of iterative sub-optimizations called 

alternate direction method of multipliers (ADMM) [26]. The 

readers are referred to the original paper for further details.

There are some critical parameters that need to be deter-

mined when using VMD for signal decomposition:

1) The number of modes (k) into which the signal is chosen

to be decomposed.

2) The weight of the quadratic penalty term ,a  which is a

denoising factor, a larger value of which admits less noise

into the decomposition process. Note that in this paper,

a  is set to a relatively small value of 10 since denoising is

not a concern [27].

TABLE II KPSS test results run on the signals corresponding 
to Maharashtra. Note that ST stands for stationary.

SIGNAL LAG P-VALUE H ST 

CC 7, 9, 11 0.02, 0.03, 0.04 1, 1, 1 ✕

TR 7, 9, 11 0.01, 0.01, 0.02 1, 1, 1 ✕

T 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

H 7, 9, 11 0.07 0.10 0.10 0, 0, 0 

TABLE III KPSS test results run on the signals corresponding 
to Tamil Nadu.

SIGNAL LAG P-VALUE H ST 

CC 7, 9, 11 0.01, 0.01, 0.02 1, 1, 1 ✕

TR 7, 9, 11 0.01, 0.02, 0.03 1, 1, 1 ✕

T 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

H 7, 9, 11 0.05, 0.03, 0.02 1, 1, 1 ✕
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FIGURE 5 Flowchart of the proposed methodology.
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3) The tolerance parameter ,e  which controls the con-

vergence of the algorithm. This value is set to 10 7-  in

this paper.

All signals have been decomposed into three modes. Fig-

ures 6 and 7 show respectively the IMFs corresponding to the 

CC signals of Maharashtra and Tamil Nadu along with their 

corresponding center frequencies.

We further run the KPSS test on IMFs corresponding to 

the VMD decomposition of the CC signals for both states 

using the same lags used in Section III-A, i.e. 7, 9, and 11. As is 
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FIGURE 6 IMFs corresponding to the decomposition of CC time 
series of Maharashtra along with their center frequencies,  
(a) CC-IMF1, . .0 00151~ =  (b) CC-IMF2, . .0 14232~ =  (c) CC-IMF3,

. .0 34803~ =
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FIGURE 7 IMFs corresponding to the decomposition of CC time 
series of Tamil Nadu along with their center frequencies,  
(a) CC-IMF1, . .0 00251~ =  (b) CC-IMF2, . .0 12642~ =  (c) CC-IMF3,

. .0 38663~ =



evident from the KPSS test results, the first 

IMF of this decomposition in both cases is 

non-stationary while the remainder are sta-

tionary (Tables IV and V).

The same procedure is followed for signals 

T and H corresponding to Maharashtra (Fig-

ures 8 and 9) and Tamil Nadu (Figures 10 

and 11). These signals are first decomposed into three IMFs, 

then the KPSS test is run on each IMF.

Tables VI and VII show respectively the results of KPSS tests 

run on IMFs of signals T and H corresponding to Maharashtra. 

There is no non-stationary trend in the IMFs of these signals. 

Likewise, Tables VIII and IX show respectively the results of 

KPSS tests run on IMFs of signals T and H corresponding to 

Tamil Nadu. As expected, regarding the H signal, H-IMF1 has a 

non-stationary trend whereas other IMFs are stationary. As for 

the T signal, all IMFs show stationary trends again as expected.

The following conclusions can be made from the decom-

position and KPSS test results. Regarding the decomposition of 

signals corresponding to Maharashtra:

1) Signals CC-IMF1 (Figure 6(a)) and TR (Figure 2(c)) are

trend non-stationary and, therefore, are used to train a

separate RNN.

2) Signals CC-IMF2 (Figure 6(b)), T-IMF2 (Figure 8(b))

and H-IMF2 (Figure 9(b)) are stationary and have sim-

ilar center frequencies of 0.1423, 0.1507, and 0.1858

respectively and, therefore, are used to train a separate

RNN.

3) Signals CC-IMF3 (Figure 6(c)), T-IMF3 (Figure 8(c)) and

H-IMF3 (Figure 9(c)) are stationary and have similar cen-

ter frequencies of 0.3480, 0.3986, and 0.3860 respectively

and, therefore, are used to train a separate RNN.

4) Signals T-IMF1 (Figure 8(a)) and H-IMF1 (Figure 9(a))

are stationary but are excluded from training process as

they have no similarity to any other stationary IMFs in

terms of center frequency.

Regarding decomposition of signals corresponding to

Tamil Nadu:

TABLE IV KPSS test for the IMFs corresponding to the signal 
CC of Maharashtra.

SIGNAL LAG P-VALUE H ST 

CC-IMF1 7, 9, 11 0.02, 0.03, 0.04 1, 1, 1 ✕

CC-IMF2 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

CC-IMF3 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

TABLE V KPSS test for the IMFs corresponding to the signal 
CC of Tamil Nadu.

SIGNAL LAG P-VALUE H ST 

CC-IMF1 7, 9, 11 0.01, 0.01, 0.02 1, 1, 1 ✕

CC-IMF2 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

CC-IMF3 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 
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FIGURE 8 IMFs corresponding to the decomposition of temperature 
(T) time series of Maharashtra along with their center frequencies,
(a) T-IMF1, .101

5~ = - (b) T-IMF2, . .0 15072~ =  (c) T-IMF3,
. .0 39863~ =

A set of multivariate stacked RNNs is developed to 

forecast the future values of each CC-IMF signals 

using the results of the previous section.
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1) Signals CC-IMF1 (Figure 7(a)), TR (Figure 2(d)), and

H-IMF1 (Figure 11(a)) are trend non-stationary and, there-

fore, are used to train a separate RNN.

2) Signals CC-IMF2 (Figure 7(b)), T-IMF2 (Figure 10(b))

and H-IMF2 (Figure 11(b)) are stationary and have rela-

tively similar center frequencies of 0.1264, 0.1312, and 

0.0887 respectively and, therefore, are used to train a sep-

arate RNN.

3) Signals CC-IMF3 (Figure 7(c)), T-IMF3 (Figure 10(c)) and

H-IMF3 (Figure 11(c)) are stationary and have similar
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center frequencies of 0.3866, 0.3804, and 0.3525 

respectively and, therefore, are used to train a sepa-

rate RNN.

4) Signal  T-IMF1 (F igu re 10(a)) is stationary but i s

excluded from training process as it has no similar-

ity to any other stationary IMFs in terms of center 

frequency.1

IV. Training Sequence Models

A set of multivariate stacked RNNs is developed to forecast

the future values of each CC-IMF signals using the results of

the previous section. The results of all predicted values of CC-

IMFs are summed to obtain the forecast value of the CC signal

one step forward in the future (Figure 5). A set of Recurrent

Neural Networks (RNNs) with Long Short Term Memory

(LSTM) cells is used because RNNs have been proven to be

effective for forecasting time series [28], [29].

LSTM cells were initially designed to deal with vanish-

ing and exploding gradient problems in sequence models 

[30]. The structure of LSTM is briefly explained in the 

next section.
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TABLE VI KPSS test for the IMFs corresponding to the signal 
T of Maharashtra.

SIGNAL LAG P-VALUE H ST 

T-IMF1 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

T-IMF2 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

T-IMF3 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

TABLE VII KPSS test for the IMFs corresponding to the 
signal H of Maharashtra.

SIGNAL LAG P-VALUE H ST 

H-IMF1 7, 9, 11 0.05, 0.09, 0.10 0, 0, 0 

H-IMF2 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

H-IMF3 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

TABLE IX KPSS test for the IMFs corresponding to the signal 
H of Tamil Nadu.

SIGNAL LAG P-VALUE H ST 

H-IMF1 7, 9, 11 0.01, 0.01, 0.02 1, 1, 1 û

H-IMF2 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

H-IMF3 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

TABLE VIII KPSS test for the IMFs corresponding to the 
signal T of Tamil Nadu.

SIGNAL LAG P-VALUE H ST 

T-IMF1 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

T-IMF2 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

T-IMF3 7, 9, 11 0.10, 0.10, 0.10 0, 0, 0 

1Note that one may argue that the first IMF of the temperature and humidity signals 
in any cases has a non-stationary trend in the long run and, therefore, suggest to con-
sider them as features for training CC-IMF1. The authors decided to ignore them to 
avoid masking the effect of non-stationary features which are believed to have more 
impact on CC-IMF1.
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A. Long Short Term Memory (LSTM) Cells

An LSTM unit consists of three gates (i.e., update, forget, and

output gates) and three cells (i.e., input, memory, and update

cells). The memory cell at time t is updated using a candidate

value ,c t1 2
u  which is calculated using the output value at time

,t 1-  i.e., ,a t 11 2-  and input value at time t, i.e., ,x t1 2  through

the equation

,tanhc W a x bt
c

t t
c

1
= +

1 2 1 2 1 2-
u ^ h6 @ (6)

where (.)tanh  is the hyperbolic tangent activation function, 

and Wc  and bc  represent the matrix of parameters and biased 

vector of the memory cell, respectively. The value of the mem-

ory cell c t1 2  is then updated using the candidate value c t1 2
u  

and the previous value c t 11 2-  through

c c ct
u

t
f

t 1
9 9C C= +

1 2 1 2 1 2-
u (7)

where 9 indicates element-wise multiplication. uC  and fC  are 

the values of the update and forget gates which are obtained from

,W a x bu u
t t

u
1

vC = +
1 2 1 2-^ h6 @ (8)

and

,W a x bf f
t t

f
1

vC = +
1 2 1 2-^ h6 @ (9)

in which (.)v  is the sigmoid activation function, Wu  and bu  

are respectively the matrix of parameters and the bias vector 

corresponding to the update gate, and W f  and b f  are respec-

tively the matrix of parameters and the bias vector correspond-

ing to the forget gate.

The output value of the LSTM unit at time t is

tanha ct
o

t
9C=

1 2 1 2^ h (10)

where oC  is the value of the output gate which itself is

,W a x bo
t t

o
1

vC = +
1 2 1 2

q

-^ h6 @ (11)

in which Wo  and bo  are respectively the matrix of parameters 

and the bias vector corresponding to the output gate. Fig-

ure 12 shows an LSTM unit.

A multivariate RNN architecture is used in this paper, 

which takes multiple features as input, and outputs the predict-

ed value. Two different architectures are used, one for training 

CC-IMF1, and another for training CC-IMF2 and CC-IMF3

separately. The architecture of the stacked RNN corresponding

to the forecasting future value of CC-IMF1 is as follows:

1) a sequence input layer which accepts the number of

inputs equal to the number of features. Regarding Maha-

rashtra, there are two features for training CC-IMF1: the

signals CC-IMF1 and TR at time .t 1-  For Tamil Nadu

there are three features for training CC-IMF1: the signals

CC-IMF1, H-IMF1 and TR at time .t 1-  The value of

the CC-IMF1 at time t is the target value which needs to

be predicted in both cases.

2) an LSTM layer with 50 units.

3) a dropout layer with the factor 0.6.

4) a fully connected layer with one output unit.

The architecture used for training CC-IMF2 and CC-IMF3

is as follows:

Forget Gate Update Gate tanh Output Gate

tanh

c<t –1>
c<t >

c<t >

y <t >

x <t >

a<t >

a<t –1> c<t >∼

softmax

f

<t> <t> <t>

u o

FIGURE 12 Visualisation of an LSTM unit. y t1 2  is the final output of an LSTM unit at time t which is computed by a softmax activation function.



1) a sequence input layer which accepts the number of

inputs equal to the number of features. Note that there

are three features for training CC-IMF2 in both cases: the

signals CC-IMF2, T-IMF2 and H-IMF2 at time .t 1-  The 

target for the network in this case is the value of the sig-

nal CC-IMF2 at time t. Similarly, there are three features

for training CC-IMF3 in both cases: the signals CC-IMF3, 

T-IMF3 and H-IMF3 at time t – 1. The target for the net-

work is then the value of CC-IMF3 at time t.

2) an LSTM layer with 200 units.

3) a fully connected layer with 200 units.

4) a dropout layer with the factor 0.6.
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FIGURE 13 The value of the signal CC-IMF1 at time t ( )ct  is predicted 
using its value at time t 1-  )(ct 1-  and the value of the signal TR at 
time t 1-  )(rt 1-  as features.
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FIGURE 14 Predicted value and root mean square error (RMSE) of the number of COVID-19 cases forecast corresponding to each IMF of Maha-
rashtra CC signal conducted on the test set. (a) CC; (b) CC-IMF1; (c) CC-IMF2; and (d) CC-IMF3.
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5) an LSTM layer with 50 units.

6) a fully connected layer with one output unit.

The dropout layers were adapted to prevent over-fitting on

the training set. In fact, the dropout hyper-parameter indicates 

the probability of training a given node in a layer. It has the regu-

larisation effect and prevents over-fitting on the training set [31].

B. Construction of the Training Set and the Test Set

Consider signals CC-IMF1 and TR corresponding to Maha-

rashtra. The proportion of 80% of data in both signals is used 

in the training set and the remainder (20%) is considered as 

the test set for validation purpose. To construct the training set, 

the value of the signal CC-IMF1 and TR at time t 1-  are 

considered as features to be fed into the constructed RNN, 

and the value of the signal CC-IMF1 at time t is considered as 

the label or expected output of the RNN (Figure 13). The 

size of the training set is equal to 80% of the number of ele-

ments of signal CC-IMF1, rounded to an integer (or equiva-

lently the integer part of 80% of the number of elements of 

signal TR). The same procedure is followed in all other cases.

C. Setting the Options for the RNNs

Adam optimisation has been set in options as the optimisa-

tion method to update network weights in each iteration,

1,000

1,500

2,000

2,500

N
o
. 
o
f 
C

a
s
e
s

Forecast

–400

–200

0

400

200

E
rr

o
r

RMSE = 176.8302

1,400

1,600

1,800

2,000

Forecast

–200

–100

0

100
RMSE = 88.2194

N
o
. 
o
f 
C

a
s
e
s

Forecast

Observed Forecast

–200

–100

0

100

200

–200

–100

0

100

200

–200

–100

0

100

200

–200

–100

0

100

200

E
rr

o
r

N
o
. 
o
f 
C

a
s
e
s

E
rr

o
r

N
o
. 
o
f 
C

a
s
e
s

E
rr

o
r

RMSE = 97.7989

0 2 4 6 8 10 12 14 16 18

Day

(c)

0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

Day

(d)

0 2 4 6 8 10 12 14 16 18

Day

(a)

0 2 4 6 8 10 12 14 16 18

Day

(b)

Forecast

RMSE = 101.7246

FIGURE 15 Predicted value and Root mean square error (RMSE) of the number of COVID-19 cases forecast corresponding to each IMF of Tamil 
Nadu CC signal conducted on the test set. (a) CC; (b) CC-IMF1; (c) CC-IMF2; and (d) CC-IMF3.



as it is known to be an adaptive learning 

rate optimization algorithm designed spe-

cifically for training deep neural networks 

[32]. The learning rate was set initially at 

0.005 and was decreased by a factor of 0.2 at 

every 200 epochs. The number of maximum 

epochs was chosen to be 1000. In order to 

avoid exploding gradients effect, a threshold 

1 was set as the gradient threshold.

V. Results and Discussion

Figure 14 shows the predicted number of cases of COVID-19

for CC-IMF1 (Figure 14(b)), CC-IMF2 (Figure 14(c)) and CC-

IMF3 (Figure 14(d)) and the sum of all of them (Figure 14(a))

for the state of Maharashtra conducted on the test set. The fig-

ures show the Root Mean Square Error (RMSE) correspond-

ing to each case. The results show that the model can predict

the future number of cases within an acceptable range of error. 

However, Figure 14(b) shows that the predicted value of the 

signal deviates from its expected value at the right end of the 

signal. This is likely due to the end effect arising from the spline 

method used in the smoothing procedure to smooth the fea-

ture TR. This effect is also evident in Figure 2(c). As can be 

seen in the figure, the right end of the signal is slightly tilted 

downward whereas this is not the case in the original signal 

of Figure 2(a). Therefore, one may argue that smoothing the 
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FIGURE 16 Unwraped phase corresponding to the IMFs of CC, T and H signals of states Maharashtra and Tamil Nadu. (a) Maharashtra (IMF2). 
(b) Maharashtra (IMF3). (c) Tamil Nadu (IMF2). (d) Tamil Nadu (IMF3).

... the decomposed IMFs with similar center 

frequencies are used to train separate RNNs. Here 

we further work out the phase of each decomposed 

IMF corresponding to the CC, T, and H signals for both 

states using Gabor’s complex analytical signal.
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signal TR is not beneficial. However, the prediction results have 

been boosted when the TR signal was smoothed.

The same procedure has been followed to train RNNs to 

predict the CC signal corresponding to Tamil Nadu. The results 

of the trained RNN on the test set is presented in Figure 15. 

The same effect of smoothing the TR signal is evident in Fig-

ure 15(a). The second and third modes of the CC signal are not 

as accurate as those of Maharashtra. The reason is that we con-

formed to the same architecture which was developed initially 

for Maharashtra. In the following we discuss this in more details.

We first look into the mean absolute percentage error 

(MAPE) corresponding to predictions for both cases, in order 

to compare the precision of the two different forecast problems 

with one another. The MAPE is calculated as

y

p y
100MAPE mean

t

t t
#=

-e o (12)

where p t  and y t  represent respectively the predicted and 

observed values of the time series. The MAPEs for Maharashtra 

and Tamil Nadu are 6.23% and 7.77%, respectively.

As explained in Section III-B, the decomposed IMFs with 

similar center frequencies are used to train separate RNNs. 

Here we further work out the phase of each decomposed IMF 

corresponding to the CC, T, and H signals for both states using 

Gabor’s complex analytical signal ( )X ta  [33] which is defined as

( ) ( ) ( ),X t X t jX ta = + t (13)

where X(t) and ( )X tt  are respectively the original signal and its 

Hilbert transform. One can obtain the instantaneous phase of 

each band IMF as follows,

( )
( )

( )
.tant

X t

X t1
z =

-
te o (14)

Figure 16 shows the obtained unwrapped phase of the IMFs 

corresponding to the aforementioned signals for both states 

(cf. unwrap() in Matlab). From Figures 16(a) and 16(b), the 

phase of the IMFs corresponding to the CC, H, and T signals 

of Maharashtra are more synchronised compared to those of 
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FIGURE 17 Signals (a) CC; (b) TR; (c) T; and (d) H corresponding to the state Gujarat.



Tamil Nadu (Figures 16(c) and 16(d)). This suggests a more com-

plex dependency among IMFs of these signals corresponding 

to Tamil Nadu compared with Maharashtra. One way of 

achieving more accuracy in prediction in the case of Tamil 

Nadu is to use a deeper RNN architecture. However, in order 

to avoid over-fitting, either more data or a more severe regular-

isation strategy has to be exploited.

A further example is now investigated, corresponding to 

the state Gujarat in India where the number of cases is small-

er. The data from this state is of interest particularly due to an 

outlier presenting at around day 54 (Figure 17(a)). The trans-

mission rate TR of Figure 17(b) has been smoothed using 

the technique proposed in Section II. Also, all the signals CC, 

T, and H are decomposed using VMD (Section III-B), and 

their stationary and non-stationary parts are grouped and 

used for training the RNNs as discussed respectively in Sec-

tions III-B and IV. Figure 18 shows the final results of the 

prediction process. A satisfactory value of MAPE = 4.68% is 

obtained, which further confirms the applicability of the 

proposed technique.

VI. Conclusion

A systematic procedure to derive features for training RNNs

to forecast the future number of confirmed cases of COVID-19
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FIGURE 18 Predicted value and Root mean square error (RMSE) of the number of COVID-19 cases forecast corresponding to each IMF of 
Gujarat CC signal conducted on the test set (MAPE = 4.68%). (a) CC; (b) CC-IMF1; (c) CC-IMF2; and (d) CC-IMF3.
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in three states of India is proposed. Based on the literature 

review, the number of confirmed cases of COVID-19 is cor-

related with both temperature and humidity [8]–[11]. There-

fore, both of these meteorological parameters are considered 

as features in training RNNs. Also, an equation proposed in 

[20] is used to calculate the transmission rates corresponding

to each lockdown phase. As such, temperature, humidity and

transmission rate have been used as features in this paper.

We conclude that specifying a soft transmission rate by 

smoothing the obtained step function can improve the predic-

tion results. Moreover, compatible modes of signals were system-

atically derived, and it was found that training those with similar 

center frequency in separate RNNs improved the predictions. 

We collected the information from both outbreaks and available 

meteorological parameters to construct a model for predicting 

the future number of confirmed cases of COVID-19. However, 

one needs to take the following into account when predicting 

the future occurrence of COVID-19 using the proposed model:

1) The future value for transmission rates corresponding to a

set of plausible lockdown phases may be approximated as

those obtained from the previous lockdown stages.

2) The forecast value of temperature and humidity are usu-

ally available for some successive following days and can

be used as features in the trained RNNs.

We have also shown through decomposing CC, T, and H sig-

nals into their modes using VMD that there are similar modes 

with close center frequencies in all of these signals. Although 

this confirms the effect of the temperature and humidity on 

the number of confirmed cases, one needs to look more care-

fully into the phase of the similar modes to unfold these 

dependencies more systematically. This issue contains sufficient 

merit to warrant independent research and can be a subject of 

future work.

Finally, the proposed procedure can provide insight into 

systematically forecasting the future number of COVID-19 

cases, considering other factors affecting its spread in the 

community, which may include health policy, mask usage rate, 

and wind speed. As the method has been shown to be suc-

cessful when applied to different Indian states that have quite 

different meteorological dynamics, it could be applied to 

other countries, especially if extended to additional relevant 

factors. The method proposed in this paper can also be used 

for other time series forecasting problems when complex sig-

nals are used as features.
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