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COVID-19 tissue atlases reveal SARS-CoV-2 
pathology and cellular targets

COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress 

syndrome and multiple organ failure1–4, but little is known about its pathophysiology. 

Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart 

autopsy tissue samples and spatial atlases of 14 lung samples from donors who died 

of COVID-19. Integrated computational analysis uncovered substantial remodelling in 

the lung epithelial, immune and stromal compartments, with evidence of multiple 

paths of failed tissue regeneration, including defective alveolar type 2 di�erentiation 

and expansion of �broblasts and putative TP63+ intrapulmonary basal-like progenitor 

cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, 

which induced speci�c host programs. Spatial analysis in lung distinguished 

in�ammatory host responses in lung regions with and without viral RNA. Analysis of 

the other tissue atlases showed transcriptional alterations in multiple cell types in 

heart tissue from donors with COVID-19, and mapped cell types and genes implicated 

with disease severity based on COVID-19 genome-wide association studies. Our 

foundational dataset elucidates the biological e�ect of severe SARS-CoV-2 infection 

across the body, a key step towards new treatments.

The host response to severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) infection ranges from asymptomatic infection to 

severe coronavirus disease 2019 (COVID-19) and death. The leading 

cause of mortality is acute lung injury and acute respiratory distress 

syndrome, or direct complications with multiple organ failure1–4. Clini-

cal deterioration in acute illness leads to ineffective viral clearance 

and collateral tissue damage1–5. Severe COVID-19 is also accompanied 

by an inappropriate pro-inflammatory host immune response and a 

diminished antiviral interferon response6–8.

Many molecular and cellular questions related to COVID-19 patho-

physiology remain unanswered, including how cell composition and 

gene programs shift, which cells are infected, and how associated 

genetic loci drive disease. Autopsies are crucial to understanding severe 

COVID-19 pathophysiology9–12, but comprehensive genomic studies 

are challenged by long post-mortem intervals (PMIs).

Here, we developed a large cross-body COVID-19 autopsy biobank of 

420 autopsy specimens, spanning 11 organs, and used it to generate a 

single-cell atlas of lung, kidney, liver and heart associated with COVID-19 

and a lung spatial atlas, in a subset of 14–18 donors per organ. Our atlases 

provide crucial insights into the pathogenesis of severe COVID-19.

A COVID-19 autopsy cohort and biobank

We assembled an autopsy cohort of 20 male and 12 female donors, of 

various ages (>30–>89 years), racial/ethnic backgrounds, intermit-

tent mandatory ventilation (IMV) periods (0–30 days) and days from 

symptom start to death (Fig. 1a, Supplementary Table 1). A biobank was 

created with a subset of 17 donors. From most donors, we collected at 

least lung, heart and liver tissue (Fig. 1a, Extended Data Fig. 1a, Sup-

plementary Methods), preserving specimens for single-cell and spatial 

analysis. We optimized single-cell and single-nucleus RNA sequencing 

(sc/snRNA-Seq) protocols for Biosafety Level 3 and NanoString GeoMx 

workflows to spatially profile RNA from different tissue compartments 

by cell composition or viral RNA (Supplementary Methods).

COVID-19 cell atlases

We generated sc/snRNA-Seq atlases of lung (n = 16 donors, k = 106,792 

cells/nuclei, m = 24 specimens; donors D1–8, 10–17), heart (n = 18, 

k = 40,880, m = 19; D1–8, 10–11, 14–17, 27–28, 31–32), liver (n = 15, 

k = 47,001, m = 16; D1–7, 10–17) and kidney (n = 16, k = 33,872, m = 16; 

D4–8, 10–12, 14–15, 17, 25–26, 28–30). Although initial tests showed 

some differences in proportions of cell types between snRNA-Seq and 

scRNA-Seq, snRNA-Seq performed better overall13 (Extended Data 

Fig. 1b–d and data not shown) and was used for the remaining samples.

We developed a computational pipeline (Fig. 1b) to tackle unique 

technical challenges. We used CellBender remove-background14 to 

remove ambient RNA, which enhanced cell distinction and marker 

specificity (Extended Data Fig. 1e–h; Supplementary Methods), we 

rapidly quality-controlled, pre-processed and batch-corrected the 

data with cloud-based Cumulus15 (Extended Data Fig. 2a–g, Supple-

mentary Methods) and we automatically annotated cells and nuclei 

by transferring labels from previous atlases (Fig. 2a, Extended Data 

Fig. 2h, Supplementary Methods). We refined these labels with man-

ual annotation of subclusters in each main lineage (Fig. 2b, Extended 

Data Fig. 2i–n, Supplementary Methods). The automated annotation 

approach allowed us to compare against other data resources (without 

clustering or batch correction), while the manual approach enabled us 

to refine cell identity assignments with detailed domain knowledge.

A cell census of the COVID-19 lung

Automatic annotation defined 28 subsets of parenchymal, endothelial 

and immune cells (Fig. 2a, Supplementary Table 2, Supplementary 
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Methods), with further manual annotation within subgroupings 

(Fig. 2b, Extended Data Figs. 2, 4, Supplementary Methods). Deconvolu-

tion of bulk RNA-Seq from the same samples largely agreed (Extended 

Data Fig. 3a, b, Supplementary Methods), and our two annotation strat-

egies had 94% agreement (Extended Data Fig. 3c–e).

Among immune cells we distinguished six cell myeloid subsets: 

CD14highCD16high inflammatory monocytes with antimicrobial proper-

ties and five macrophage subsets (Extended Data Figs. 2j, 4b) that were 

enriched for scavenger receptors, toll-like receptor ligands, inflam-

matory transcriptional regulators or metabolism genes; four B cell 

and plasma cell subsets: BLIMP1high plasma cells16,17, BLIMP1intermediate 

plasma cells, B cells and JCHAIN-expressing plasmablasts (Extended 

Data Figs. 2k, 4b); five T and natural killer (NK) cell subsets: two CD4+ 

subsets: regulatory T cells (Treg cells) and a metabolically active subset; 

one CD8+ subset; and two T or NK cell subsets (Extended Data Figs. 2l, 

4b), including one with cytotoxic effector genes. The dearth of neu-

trophils (Fig. 2a, 419 cells) is likely due to freezing or limitations of 

droplet-based sc/snRNA-Seq13.

We identified seven endothelial cell (EC) subsets18,19 (Extended Data 

Figs. 2m, 4b): arterial, venous and lymphatic, capillary aerocytes, capil-

lary EC-1 and capillary EC-2 and a mixed subset (Supplementary Meth-

ods), and three stromal subsets: fibroblasts, proliferative fibroblasts 

and myofibroblasts19 (Extended Data Fig. 2n, Supplementary Table 3).

There were eight epithelial subsets, including club/secretory cells, 

AT1 cells, AT2 cells, and proliferative AT2 cells (Fig. 2b). One subset 

corresponded to a previously described AT2 to AT1 transitional cell 

state (KRT8+ pre-alveolar type 1 transitional cell state (PATS); PATS/

ADI/DATP)20–22 (Fig. 2b).

Changes in lung cell composition

In comparison with normal lung from a matching region (Fig. 2c, 

Supplementary Methods), numbers of AT2 cells were significantly 

decreased (false discovery rate (FDR) = 2.8 × 10−15, Dirichlet multino-

mial regression; Supplementary Methods), possibly reflecting virally 

induced cell death23–25. Numbers of dendritic cells (FDR = 0.004), 

macrophages (FDR = 3.6 × 10−10), NK cells (FDR = 0.018), fibroblasts 

(FDR = 0.013), lymphatic endothelial cells (FDR = 0.00058) and vascular 

endothelial cells (FDR = 0.00011) all increased.

Cell proportions varied between donors (Extended Data Fig. 5a, b). 

Whereas variation was not significantly correlated with PMI, age or sex, 

IMV was positively correlated with epithelial cell fraction (FDR = 0.007; 

Spearman ρ = 0.765) and negatively correlated with T and NK cell frac-

tion (FDR = 0.041; ρ = −0.62). Fewer days on a ventilator may indicate a 

rapidly deteriorating condition. This is corroborated by the nominally 

significant positive correlation between epithelial cell fraction and days 

from symptom start to death (ρ = 0.671, P = 0.004, but FDR = 0.053).

Induced programs in epithelial cells

There were widespread, cell-type-specific transcriptional changes 

in lung cell types associated with COVID-19 (Extended Data Fig. 5c, 

Supplementary Methods), most notably in CD16+ monocytes (1,580 

upregulated genes), lymphatic endothelial (578), vascular endothelial 

(317), AT2 (309) and AT1 (307) cells. Within AT2 cells, there was higher 

expression (P < 0.0004) of genes associated with host viral response 

(Fig. 2d), including those for programmed cell death (STAT1), inflam-

mation and adaptive immune response (Supplementary Table 4). Lung 

surfactant genes were downregulated, consistent with reports from 

in vitro studies21.

Failed paths for AT1 cell regeneration

The PATS program signature was increased in COVID-19 pneumocytes 

(P < 2.2 × 10−16, one-sided Mann–Whitney U test) (Fig. 2e, Extended Data 

Fig. 5d). This progenitor program is induced during lung injury20–22 (for 

example, idiopathic pulmonary fibrosis), consistent with fibrosis in 

severe COVID-1926,27. These studies also highlight fibroblast expansion, 

which we also observed (Fig. 2c).

A subset of PATS program cells, distinct from KRT5+TP63+ airway basal 

cells, expressed canonical (KRT8/CLDN4/CDKN1A) and non-canonical 

(KRT5/TP63/KRT17) PATS markers (Fig. 2f, Extended Data Fig. 5d, Sup-

plementary Table 3). These may be TP63+ intrapulmonary basal-like 

progenitor (IPBLP) cells, which were identified in H1N1 influenza mouse 

models28 and act as an emergency cellular reserve for severely damaged 

alveoli29. The putative IPBLP cells express interferon virus defence 

and progenitor cell differentiation genes (Supplementary Table 3). 

Thus, multiple emergency pathways for alveolar cell regeneration are 

activated in lung (Fig. 2g, Discussion).

Changed cell composition with viral load

To determine viral load and associated host responses, we analysed 

donor- and cell-type-specific distribution of SARS-CoV-2 reads (Fig. 3a, 

b, Extended Data Fig. 6a–d, Supplementary Methods). Reads spanned 

the entire SARS-CoV-2 genome, with bias towards positive-sense align-

ments. A few cells had reads aligning to all viral segments, including the 

negative strand (Extended Data Fig. 6e), potentially indicating produc-

tive infection. Virus detection was not technically driven (Extended Data 

Fig. 6f–i), and inter-donor variation was consistent with SARS-CoV-2 

qRT–PCR on bulk RNA (Extended Data Fig. 6j–l, Supplementary Meth-

ods). Viral load was negatively correlated with days from symptom start 

to death (Fig. 3c), as previously reported30,31. Bulk RNA-Seq yielded 

nine unique complete viral genomes from nine donors with high viral 

loads (Extended Data Fig. 6m, Supplementary Methods); all genomes 

carried the D614G allele. We identified no other common respiratory 

viral co-infections (Extended Data Fig. 6n). Total viral burden per 

sample (including ambient RNA; Supplementary Methods) positively 

correlated with proportions of mast cells, specific macrophage sub-

sets, venular endothelial cells and capillary aerocyte endothelial cells 

(Extended Data Fig. 6o–u).

Genes upregulated in biopsy samples with high versus low or 

no viral load (Supplementary Methods) included viral response 

and innate immune processes (log2(fold change) > 1.4, Wald test, 
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Fig. 1 | Experimental and computational pipeline for a COVID-19 autopsy 

atlas. a, Sample processing pipeline. Up to 11 tissue types were collected from 

32 donors. b, sc/snRNA-Seq analysis pipeline. QC, quality control.
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FDR-corrected P < 0.05; Extended Data Fig. 6v, Supplementary 

Table 4) and significantly overlapped with those in bulk RNA-Seq of 

post-mortem COVID-19 lungs in another study32 (FDR = 3.12 × 10−6, 

Kolmogorov–Smirnov test). Downregulated genes (log2(fold change) 

< 1.4, Wald test, FDR-corrected P < 0.05) were involved in surfactant 

metabolism dysfunction and lamellar bodies (secretory vesicles in AT2  

cells33).

Lung cells enriched for SARS-CoV-2 RNA

Myeloid cells were the cell category most enriched for SARS-CoV-2 

RNA (158 cells after correction for ambient RNA, FDR < 0.013; Fig. 3a, 

Extended Data Fig. 6w–y, Supplementary Methods), with particular 

enrichment in CD14highCD16high inflammatory monocytes (FDR < 0.005) 

and LDB2highOSMRhighYAP1high macrophages (FDR < 0.02; Extended Data 

Figs. 6x, 7a, b), although enrichment scores in individual donors var-

ied. There was elevated, but non-significantly enriched, viral RNA in 

endothelial cells, with the capillary EC-2 (cluster 3, FDR < 0.017) and 

lymphatic endothelial cells (cluster 7, FDR < 0.006) enriched com-

pared with other endothelial subsets (Fig. 3a, Extended Data Figs. 6w, 

y, 7c, d). There were also SARS-CoV-2 RNA+ cells among mast cells, and 

B and plasma cells, and viral RNA reads in multiple other cell types 

(Fig. 3a, Extended Data Fig. 6w). Notably, SARS-CoV-2 RNA+ cells did not 

co-express the entry factors ACE2 and TMPRSS2, or other hypothesized 

entry cofactors (Fig. 3b, Extended Data Fig. 7e–h).

Immune programs in SARS-CoV-2 RNA+ cells

SARS-CoV-2 RNA+ cells had distinct transcriptional programs compared 

with SARS-CoV-2 RNA− counterparts, with differentially expressed 

genes (FDR < 0.05; Supplementary Methods) in epithelial and myeloid 

cells, including PPARGhighCD15Lhigh macrophages and CD14highCD16high 

inflammatory monocytes (Supplementary Table 5). Genes upregulated 

in epithelial SARS-CoV-2 RNA+ cells were enriched for TNF, AP1 and 

chemokine and cytokine signalling, SARS-CoV-2-driven cell responses 

in vitro32, and keratinization pathways, which may reflect an injury 

response (Extended Data Fig. 7i). Genes upregulated in myeloid 

SARS-CoV-2 RNA+ cells were those associated with chemokine and 

cytokine signalling, and responses to interferon, TNF, intracellular 

pathogens and viruses (Fig. 3d, Extended Data Fig. 7j–m, Supplemen-

tary Table 5), as previously described34,35. Cytokines and viral host 

response genes were upregulated in both CD14highCD16high inflamma-

tory monocytes and PPARGhighCD15Lhigh macrophages (Extended Data 

Fig. 7m, Supplementary Table 5), including CXCL10 and CXCL11, which 

were upregulated in nasopharyngeal swabs35 and bronchoalveolar 

lavages34.
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Fig. 2 | A single-cell and single-nucleus atlas of COVID-19 lung. a, Automatic 

prediction identifies 28 cell subsets across compartments. UMAP embedding 

of 106,792 harmonized sc/snRNA-Seq profiles (dots) from 24 tissue samples of 

16 lung donors with COVID-19, coloured by automatic annotations (legend).  

b, Epithelial cell subsets. UMAP embedding of 21,661 epithelial cell or nucleus 

profiles, coloured by manual annotations, with highly expressed marker genes 

(boxes). c, d, Cell composition and expression differences between COVID-19 

and healthy lung. c, Cell proportions (x axis: mean, bar; 95% confidence 

intervals, line) in each automatically annotated subset (y axis) in COVID-19 

snRNA-Seq (red, n = 16), healthy snRNA-Seq (grey, n = 3) and healthy scRNA-Seq 

(n = 8, blue). Cell types shown have a COVID-19 versus healthy snRNA-Seq  

false discovery rate (FDR) of <0.05 (Dirichlet multinomial regression).  

d, Significance (−log10(P), y axis) versus magnitude (log2(fold change), x axis) of 

differential expression of each gene (dots; horizontal dashed line, FDR < 0.05) 

between COVID-19 and healthy lung from a total of 2,000 AT2 cells and  

14 studies (two-sided test; Supplementary Methods). e, f, An increased 

pre-alveolar type 1 transitional cell state (PATS)20–22 program in pneumocytes in 

COVID-19 versus healthy lung. e, Distribution of PATS signature scores (y axis) 

for 17,655 cells from COVID-19 and 24,000 cells from healthy lung pneumocytes 

(x axis). P < 2.2 × 10−16 (one-sided Mann–Whitney U test). f, UMAP embedding of 

21,661 epithelial cell profiles (dots) coloured by signature level (colour legend, 

lower right) for the PATS (top) or intrapulmonary basal-like progenitor (IPBLP) 

cell (bottom) programs. g, Model of epithelial cell regeneration in healthy and 

COVID-19 lung. In healthy alveoli (top), AT2 cells self-renew (1) and differentiate 

into AT1 cells (2). In COVID-19 alveoli (bottom), AT2 cell self-renewal (1) and AT1 

differentiation (2) are inhibited, resulting in PATS accumulation (3) and 

recruitment of airway-derived IPBLP cells to alveoli (4).
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A spatial atlas of COVID-19 lung

To provide tissue context, we used Nanostring GeoMx Digital Spa-

tial Profiling (DSP) for transcriptomic profiling from regions of 

interest (Supplementary Methods) in 14 donors, including three 

deceased healthy donors (‘healthy’) (Extended Data Fig. 1a). Regions 

of interest spanned a range of anatomical structures and viral abun-

dance on the basis of SARS-CoV-2 RNA hybridization signals; when 

possible, we segmented them to PanCK+ and PanCK−, and inflamed 

and normal-appearing alveoli areas of illumination (AOIs) to capture 

RNA (Fig. 4a, Extended Data Figs. 8a, 9a, Supplementary Methods). We 

acquired high-quality profiles (Extended Data Fig. 8b) from matched 

AOIs on the basis of distance to morphological landmarks (Supple-

mentary Methods). SARS-CoV-2 RNA expression varied by donor, with 

elevated levels in four donors (Extended Data Fig. 8c, d, Supplementary 

Methods), consistent with viral qRT–PCR and sc/snRNA-Seq. Given 

the good agreement between a targeted 1,811-gene panel and a whole 

transcriptome (WTA) panel (18,335 genes) (Extended Data Fig. 8e–g, 

Supplementary Table 6), we focused our analyses on WTA data. For 

D8–12, 18–24, we contrasted donors with COVID-19 and healthy donors 

and COVID-19 epithelial and non-epithelial AOIs; for D13–17, we focused 

on distinct anatomical regions and inflamed versus normal-appearing 

regions within donors.

Inflammatory activation in alveoli

Deconvolution of major cell type composition (Fig. 4b, Extended Data 

Fig. 8h, Supplementary Table 7, 8, Supplementary Methods) showed 

inferred AT1 and AT2 cells dominating the PanCK+ compartments and 

greater cellular diversity in the PanCK− compartment. COVID-19 PanCK− 

AOIs had increased fibroblast and myofibroblast scores compared with 

controls, in line with parallel spatial studies36,37.

Comparing COVID-19 alveolar AOIs with control lungs from deceased 

healthy donors, there was upregulation of IFNα and IFNγ response 

genes and oxidative phosphorylation pathways (Fig. 4c, Extended Data 

Fig. 8i–k, Supplementary Table 6), similar to bulk RNA-Seq of highly 

infected tissue (IFIT1, IFIT3, IDO1, GZMB, LAG3, NKG7 and PRF1) and to 

SARS-CoV-2+ myeloid cells (TNFAIP6, CXCL11, CCL8, ISG1 and GBP5) and 

consistent with PANoptosis in a COVID-19 model38. Conversely, TNF, 

IL2–STAT5 and TGFβ signalling as well as apical junction and hypoxia 

were downregulated. Decreased TNF signalling expression in PanCK+ 

alveoli contrasts with its increase in SARS-CoV-2+ epithelial cells in 

snRNA-Seq and with reported38 synergy between TNF and IFNγ in mouse 

models of COVID-19.

Comparison of inflamed and normal-appearing AOIs within the same 

alveolar biopsy samples of COVID-19 lungs (Extended Data Fig. 9, Sup-

plementary Table 9, D13–D17), showed that upregulated genes were 
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(Supplementary Methods, red: stronger enrichment) and by SARS-CoV-2 RNA+ 

cells (black points), and marked by annotation and FDR of enrichment (legend) 

or b, all 106,792 cells/nuclei, coloured by expression of SARS-CoV-2 entry 

factors (co-expression combinations with at least 10 cells are shown). Dashed 

lines, major cell types. c, Reduction in SARS-CoV-2 RNA with prolonged 

symptom onset to death interval (Spearman ρ = −0.68, P < 0.005, two-sided 

test). Symptom onset to death (x axis, days) and lung SARS-CoV-2 copies per 

nanogram input RNA (y axis) for each donor (n = 16). d, Expression changes in 

SARS-CoV-2 RNA+ myeloid cells. Significantly differentially expressed (DE) host 

genes (log-normalized and scaled digital gene expression, rows; cutoff:  

FDR < 0.05 and log2(fold change) > 0.5) across SARS-CoV-2 RNA+ (n = 158) and 
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enriched for innate immune and inflammatory pathways39,40, including 

neutrophil degranulation (FDR = 5.2 × 10−17) and IFNγ (FDR = 3.4 × 10−15) 

and interleukin (FDR = 1.4 × 10−13) signalling. TNF pathway expression 

was elevated in inflamed tissue, albeit not significantly (FDR = 0.097). 

Claudins and tight junction pathways were downregulated, corrobo-

rating a disrupted alveolar barrier, as in influenza41,42. Cilium assembly 

genes were enriched when comparing bronchial epithelial AOIs and 

matched normal-appearing alveoli (Extended Data Fig. 9d, Supple-

mentary Table 9).

Comparison of SARS-CoV-2 high and low AOIs (Fig. 4d, e, Extended 

Data Fig. 8l, m, Supplementary Methods) revealed induction of the viral 

ORF1ab and S genes and upregulation of chemokine genes (CXCL2 and 

CXCL3) and immediate early genes in the PanCK+ compartment, consist-

ent with snRNA-Seq (Supplementary Table 9, Extended Data Fig. 7i). 

NT5C, which encodes a nucleotidase with a preference for 5′-dNTPs, is 

consistently upregulated in SARS-CoV-2-high AOIs (Fig. 4e, Extended 

Data Fig. 8m, Supplementary Table 9). This gene is not known to have 

a role in lung injury and should be further studied.
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COVID-19 effect on heart, kidney and liver

We next profiled liver, heart and kidney by snRNA-Seq with automated 

and manual annotation of parenchymal, endothelial and immune cells 

(Supplementary Methods, Extended Data Figs. 10, 11). Although other 

studies have reported viral reads in COVID-19 non-lung tissues43, we 

detected very few viral RNA reads in all three tissues, most of which 

could not be assigned to nuclei (Extended Data Fig. 11l); this absence 

was confirmed by NanoString DSP and RNAscope (data not shown).

Focusing on heart, both cell composition and gene programs changed 

between COVID-19 and healthy heart. There was a significant reduction 

in the proportion of cardiomyocytes and pericytes, and an increase in 

vascular endothelial cells (Extended Data Fig. 11e). Genes upregulated 

(FDR < 0.01) in cardiomyocytes, pericytes or fibroblasts (Extended Data 

Fig. 11g–i, Supplementary Table 10) included PLCG2, the cardiac role of 

which is unknown but which was induced in all major heart cell subtypes 

(Extended Data Fig. 11j), and AFDN, which is upregulated in endothelial 

cells (Extended Data Fig. 11k), and which encodes a junction adherens 

complex component44 that is necessary for endothelial barrier function. 

Upregulated pathways include oxidative-stress-induced apoptosis in 

pericytes, cell adhesion and immune pathways in cardiomyocytes, and 

cell differentiation processes in fibroblasts (Supplementary Table 10).

COVID-19 cell types related through GWAS

Finally, we aimed to identify genes and cell types associated with COVID-

19 risk by integrating our atlas data with genome-wide association 

studies (GWAS)45 for common46 variants associated with COVID-19 

(Supplementary Methods). Among 26 genes proximal to six COVID-19 

GWAS regions (Supplementary Table 11, Supplementary Methods), 

14 genes had higher average expression in the lung (P < 0.05, t-test; 

Extended Data Fig. 12a–d), 21 had significant (FDR < 0.05) expression 

specificity in at least one lung cell type, including FOXP4 (chromosome 

(chr.) 6, AT1 and AT2 cells), and CCR1 and CCRL2 (chr. 3, macrophages) 

(Extended Data Fig. 12e, Supplementary Table 11), and 18 were differ-

entially expressed (FDR < 0.05) in COVID-19 compared with healthy 

lung (for example, SLC6A20 in goblet cells, CCR5 in CD8+ T cells and 

Treg cells, and CCR1 in macrophage and CD16+ monocytes (Extended 

Data Fig. 12f, Supplementary Table 11).

We related heritability from GWAS of COVID-19 severity traits to either 

cell type programs (genes enriched in a cell type in each tissue) or disease 

progression programs (genes differentially expressed between COVID-19 

and controls in a cell type) in each tissue using sc-linker47 (Supplementary 

Methods). AT2 (4.8× heritability enrichment, P = 0.04), CD8+ T cells (4.4×, 

P = 0.009) and ciliated cell programs in the lung, proximal convoluted 

tubule and connecting tubule programs in kidney, and cholangiocyte 

programs in liver attained nominal (but not Bonferroni-corrected) sig-

nificance (Extended Data Fig. 12g, h, Supplementary Table 11). Of all dis-

ease progression programs, only the club cell program (single-cell level 

model) had nominally significant heritability enrichment (10.5×, P = 0.04 

for severe COVID-19) (Extended Fig. 12g, Supplementary Table 11).

The highest number of driving genes was observed for lung AT2 cells 

and spanned several loci, hinting at a polygenic architecture linking 

AT2 cells with severe COVID-19 (Supplementary Methods, Supplemen-

tary Table 11). Implicated GWAS proximity genes include OAS3 in lung 

AT2 and club cells, and SLC4A7 in lung CD8+ T cells (Supplementary 

Table 11), as well as genes at unresolved significantly associated GWAS 

loci (Extended Data Fig. 12i), such as FYCO1 (AT2, ciliated, club; chr. 3p), 

NFKBIZ (AT2; chr. 3q) and DPP9 (AT2; chr. 19) (Supplementary Table 11).

Discussion

We built a biobank of severe COVID-19 autopsy tissue and atlases of 

COVID-19 lung, heart, liver and kidney (Extended Data Fig. 12j), com-

plementing a sister lung atlas48.

Among the changes in lung cell composition in COVID-19, is a reduc-

tion in AT2 cells and the presence of PATS and IPBLP-like cells, indicating 

that multiple regenerative strategies are invoked to re-establish alveolar 

epithelial cells lost to infection. A serial failure of epithelial progenitors 

to regenerate at a sufficient rate, first by secretory progenitor cells in 

the nasal passages and large and small airways, followed by alveolar 

AT2 cells, PATS and IPBLP cells, may eventually lead to lung failure.

Viral RNA in the lung varied, was negatively correlated with time from 

symptom start to death, and was primarily detected in myeloid and 

endothelial cells (as in nonhuman primates49); spatial analysis supports 

high virus levels at the earlier stages of infection36,37,50. Epithelial cells 

were not enriched in high viral RNA samples or in SARS-CoV-2+ cells, con-

sistent with their excessive death. Cell-associated SARS-CoV-2 unique 

molecular identifiers may represent a mixture of replicating virus, 

immune cell engulfment and virions or virally infected cells attached to 

the cell surface. We did not detect viral RNA in the heart, liver or kidney, 

but observed other changes, including broad upregulation of PLCG2, 

a target of Bruton’s tyrosine kinase (BTK), in the heart51.

Combining our profiles with GWAS of COVID-19, we related specific 

cell types to heritable risk, especially AT2, ciliated and CD8+ T cells 

and macrophages, as well as genes in multi-gene regions underlying 

the association. This analysis can improve as GWAS grows and atlases 

expand.

Our study was limited by a modest number of donors without 

pre-selection of features, the terminal time point, limited distinction 

between viral RNA and true infection, and technical confounders such 

as PMIs. Nevertheless, our methods would enable studies in diverse 

diseased or damaged tissues. Future meta-analyses will further enhance 

its power and provide crucial resources for the community studying 

host–SARS-CoV-2 biology.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | A COVID-19 autopsy cohort, data quality and ambient 

RNA removal for a single-cell/nucleus lung atlas. a, COVID-19 cohort 

overview. IMV, intermittent mandatory ventilation days; PMI, post-mortem 

interval; S/s, time from symptom start to death in days. b–d, Comparison of cell 

composition by scRNA-Seq and snRNA-Seq in matched samples. Proportion of 

cells (x axis) of each type (colour code) in sc/snRNA-Seq samples from the same 

three donors (D3, D8, D12). e–h, Cellbender remove-background on a single 

sample (D1). e, CellBender improves cell clustering and expression specificity 

by removing ambient RNA and empty (non-cell) droplets. UMAP plot of snRNA-

Seq profiles (dots) either before (left) or after (right) CellBender processing, 

coloured by clusters, with CellBender-determined empty droplets in black 

(k = 2,508 droplets removed, k = 10,687 cells remaining). f, g, CellBender 

improves specificity of individual genes and cell type signatures. UMAP 

embedding of single nucleus profiles before CellBender (left) and after 

CellBender (right) processing, coloured by expression of the surfactant 

protein gene SFTPA1 (f) or signature score (SCANPY52 score_genes function, 

colour bar) for gene sets specific to lung AT2 (g) cells. Colour bar saturation 

chosen to emphasize low expression. h, Improved specificity of surfactant 

gene expression with CellBender (same sample). Expression level (log (average 

unique molecular identifier (UMI) count per cell), colour) and percentage of 

cells with non-zero expression (dot size) of surfactant genes (columns) across 

cell clusters (rows) before (left) and after (right) CellBender processing. Also 

shown, for comparison, are the results of an alternative method, DecontX 

(middle).



Article

Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Quality control and annotation in the COVID-19 lung 

cell atlas. a–d, Quality-control metrics for 24 lung samples (n = 16 donors). 

Number of cells or nuclei (a, y axis) and distributions (median and first and third 

quartiles) of number of UMIs per cell or nucleus (b, y axis), number of genes per 

cell/nucleus (c, y axis) and fraction of mitochondrial genes per cell/nucleus  

(d, y axis) across the samples (x axis) in the lung atlas. ScRNA-Seq samples are 

labelled by a grey circle. e–g, Cross-sample integration corrects batch effects. 

e, UMAP (as in Fig. 2a) of 106,792 sc/snRNA-Seq profiles after Harmony53 

correction (Supplementary Methods) coloured by sample ID. f, g, Donors and 

processing protocols across clusters. Number of cells (y axis) from different 

donors (f) or processing protocols (g) in each Leiden cluster (x axis). h, Cross 

validation of automatic annotation. Percentage of cells (colour bar) annotated 

in a class by Schiller et al.54 that we predict for each class (columns).  

i, Identification of main lineage annotations by manual annotation. UMAP of 

106,792 sc/snRNA-Seq profiles after Harmony53 correction (as in Fig. 2a) 

coloured by manual annotation done in subclustering of each lineage. Dashed 

lines: chosen compartments for subclustering. j–n, Refined annotation of cell 

subsets within lineages. UMAP embeddings of each selected cell lineage with 

cells coloured by manually annotated subclusters. Colour legends highlight 

highly expressed marker genes for select subsets. j, myeloid cells (k = 24,417 

cells/nuclei); k, B and plasma cells (k = 1,693); l, T and NK cells (k = 9,950);  

m, endothelial cells (k = 20,366); and n, fibroblast (k = 20,925).
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Bulk RNA-Seq deconvolution and comparison of 

automatic and manual annotations in the COVID-19 lung cell atlas.  

a, b, Deconvolution of bulk RNA-Seq libraries from adjacent lung tissue.  

a, Mean proportion (y axis, error bars = s.d. estimates from bulk RNA-Seq 

deconvolution (hatched bars; from MuSiC55) and from sc/snRNA-Seq (filled 

bars) for each of 11 cell subsets (x axis) in each of 16 bulk RNA-Seq lung samples 

(panels) from 10 random samples of 10,000 cells each. b, Robustness of cell 

proportion estimates to the number of single cells sampled for the reference 

data. Mean proportion (y axis, from MuSiC) estimates for each of 11 cell subsets 

(colour dots) in each of 16 bulk RNA-Seq lung samples (panels) when using three 

independent samples of 1,000–10,000 cells from the single-cell reference  

(x axis). c–e, Agreement between automated and manual annotations. c. High 

consistency between automatic and manual annotations. The proportion 

(colour intensity) and number (dot size) of cells with a given predicted 

annotation (rows) in each manual annotation category (columns). d, e, UMAP 

embedding of myeloid (k = 24,417 cells or nuclei) (d) and T and NK (k = 9,950 

cells); (e) cell profiles coloured by manually annotated subclusters (left) or 

automated predictions (right).
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Extended Data Fig. 4 | Manual annotation in the COVID-19 lung cell atlas.  

a, b, Identification of main immune lineage annotations. a, UMAP of 106,792 sc/

snRNA-Seq profiles after Harmony correction (as in Fig. 2a) coloured by 

expression of genes (colour bar, genes listed below) used to separate immune 

cell sub-lineages (Supplementary Methods). b, Differentially expressed (DE) 

genes between subclusters within each lineage. Expression (colour bar) of 

genes (rows) that are differentially expressed (Supplementary Methods) across 

the subclusters (columns) within each compartment. DE genes shown are a 

union of the following: (i) top 10 DE genes between clusters, (ii) DE genes above 

an AUC of 0.8 and 0.75 for B/Plasma cells, (iii) pseudo-bulk DE genes above a 

log(fold change) threshold (thresholds: endothelial = 4.2, T/NK = 3, myeloid = 4, 

B/plasma = 2) (label on top). c, Batch correction within lineage. Fraction of 

cells/nuclei (y axis) from different processing protocols (left) or different 

donors (right, n = 17) in each subcluster (x axis) after batch correction with 

Harmony53 within each lineage.



Extended Data Fig. 5 | Cell-intrinsic programs and epithelial regenerative 

cell states in the COVID-19 lung cell atlas. a, b, Differences in cell composition 

across donors. Percentage of cells (y axis) from each myeloid subset (legend) in 

each donor (x axis). b, Percentage of cells (y axis) from each main lineage 

(legend) in each donor (x axis), rank ordered by proportion of epithelial cells 

(blue). c, Myeloid, endothelial and pneumocyte cells show substantial changes 

in cell intrinsic expression profiles in COVID-19 lung. log2(fold change) (y axis) 

between COVID-19 and healthy lung for each elevated gene (dot) in each cell 

subset (x axis, by automatic annotation). Black bars, number of genes with 

significantly increased expression (adjusted P < 7.5 × 10−6). Computed using a 

single cell-based differential expression model applied to a meta-differential 

expression analysis between COVID-19 and healthy samples across 14 studies 

(see Supplementary Methods). d, PATS and IBPLP cells in COVID-19 lung. UMAP 

embeddings of 1,550 KRT8+ PATS-expressing cells (top) or of 1,394 airway 

epithelial cells (bottom) coloured by IPBLP cells or basal cells (orange, leftmost 

panels) or characteristic markers (purple, remaining panels).
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | SARS-CoV-2-RNA+ cells distinguished by sc/snRNA-

Seq. a, Detection of SARS-CoV-2 UMIs from sc/snRNA-Seq data. SARS-CoV-2 

UMIs from all cell barcodes (top) and after ambient correction (second from 

top). Number (second from bottom) and percentage (bottom) of SARS-CoV-2 

RNA+ cells after ambient correction (m = 24 specimens). b, c, Effect of ambient 

RNA on SARS-CoV-2 RNA+ detection. Number of SARS-CoV-2 aligning UMI per 

cell barcode (CB) (y axis) in healthy lung (b, black), in vitro SARS-CoV-2 infected 

human bronchial epithelial cells (HBEC)56 (b, blue) or lung samples from 

COVID-19 donors at autopsy either with CB with high-quality capture of human 

mRNA (b, red) or after removal of cells whose viral alignments were attributed 

to ambient contamination (c, Supplementary Methods). d, Variation in SARS-

CoV-RNA+ cells across donors. Percentage of cells (y axis) assigned as SARS-

CoV-2 RNA− (white), SARS-CoV-2 RNA+ (red) or SARS-CoV-2 ambient (grey, 

Supplementary Methods) across the donors (x axis), sorted by proportion of 

SARS-CoV-RNA+ cells. e–i, Viral RNA detection does not correlate with cell 

quality metrics. e–h, Number of SARS-CoV-2 UMIs (before ambient viral 

correction) for each cell (y axis) versus either number of SARS-CoV-2 genes for 

that cell (e, x axis), number of human (GRCh38) genes per cell (f, x axis), number 

of human (GRCh38) UMI per cell (g, x axis) or percentage of human (GRCh38) 

mitochondrial UMIs per cell (h, x axis). i, Number of retained high-quality cells 

(x axis) and number of SARS-CoV-2 RNA+ cells (y axis) in each sample (dots) after 

correction for ambient viral reads. Pearson’s r = 0.07, two-sided P = 0.73.  

j–l, Agreement in viral RNA detection between qPCR and sn/scRNA-Seq. 

Number of SARS-CoV-2 copies measured by CDC N1 qPCR on bulk RNA 

extracted from matched tissue samples (x axis) and the number of SARS-CoV-2 

aligning UMI (y axis) for each sample (dot) from all reads ( j, P < 0.0001, two-

sided), all reads from high-quality cell barcodes (k, P < 0.0001), and after viral 

ambient RNA correction (l, P = 0.0042). Spearman’s ρ reported, two-sided test. 

m, Genetic diversity of SARS-CoV-2. Maximum likelihood phylogenetic tree of 

772 SARS-CoV-2 genomes from cases in Massachusetts between January and 

May 2020. Orange points, donors in this cohort. n, Specificity of SARS-CoV-2 

infection. log10(1+ reads) in each donor (columns) assigned to different viruses 

(rows) by metagenomic classification using Kraken2 from bulk RNA-Seq. 

Asterisks denote targeted capture. o–u, Relation between SARS-CoV-2 RNA 

and different cell types. Number of SARS-CoV-2 aligning UMIs in each 

(including all CB) and the proportion of epithelial (o), mast (p), macrophage 

VCANhighFCN1high (q), macrophages CD163highMERTKhigh (r), macrophages 

LDB2highOSMRhighYAP1high (s), venular endothelial (t) or capillary aerocytes (u) 

cells in these samples (x axes). Pearson’s r denoted in the upper left corner with 

significance after Bonferroni correction (P). v, Effect of viral load on bulk RNA 

profiles. Significance (−log10(P), y axis) and magnitude (log2(fold change),  

x axis) of differential expression of each gene (dots) between three donors with 

highest viral load and six donors with lowest or undetectable viral load profiled 

by bulk RNA-Seq. Red points, FDR < 0.05. w–y, Distribution of SARS-CoV-2 RNA+ 

cells across cell types and subsets. Number of SARS-CoV-2 RNA+ cells (y axis) 

from each donor (colour) across major categories (w, x axis), myeloid subsets 

(x, inflammatory monocytes: 40 cells, five donors; LDB2highOSMRhighYAP1high 

macrophages: 27 cells, five donors; x axis), or endothelial subsets (y, capillary 

endothelial cells: 16 cells, four donors; lymphatic endothelial cells: nine cells, 

three donors; x axis).
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Donor-specific enrichment of SARS-CoV-2 RNA+ cells 

and host responses to viral RNA. a–d, SARS-CoV-2 RNA+ cells are enriched  

in specific lineages and subtypes. a, c, UMAP embeddings of either myeloid 

cells (a), or endothelial cells (c) from seven donors containing any SARS-CoV-2 

RNA+ cell, and coloured by viral enrichment score (colour bar; red, stronger 

enrichment) and by SARS-CoV-2 RNA+ cells (black points). b, d, Number of 

SARS-CoV-2 RNA+ cells (y axis) per cell type/subset (x axis) in myeloid (b) or 

endothelial (d) subsets. Bar colour, FDR (dark blue, higher significance, 

Supplementary Methods; *FDR < 0.05). e–h, Variation across donors.  

e–g, UMAP embeddings of sc/snRNA-Seq profiles from each of seven donors 

containing any SARS-CoV-2 RNA+ cell (columns), coloured by major cell 

categories (e), expression of SARS-CoV-2 entry factors (f) or SARS-CoV-2 RNA 

enrichment per cluster (g, red/blue colour bar; red, high enrichment; black 

points, SARS-CoV-2 RNA+ cells). h, Number of SARS-CoV-2 RNA+ cells (y axis) 

across major cell types (x axis) from each of seven donors containing any SARS-

CoV-2 RNA+ cell (columns). Bar colour, FDR (dark blue, higher significance). 

*FDR < 0.05. i, j, Normalized enrichment score (bars, right y axis) and 

significance (points, FDR, left y axis) (by GSEA39,40, Supplementary Methods) of 

different functional gene sets (x axis) in genes upregulated in SARS-CoV-2 RNA+ 

epithelial (i) or myeloid ( j) cells. k, Expression of SARS-CoV-2 genomic features 

(log-normalized UMI counts; rows) across SARS-CoV-2 RNA+ (k = 158 cells) and 

SARS-CoV-2 RNA− (k = 790) myeloid cells (columns). l, m, Distribution of 

normalized expression levels (y axis) for select significantly differentially 

expressed genes between SARS-CoV-2 RNA− and SARS-CoV-2 RNA+ cells from all 

myeloid cells or CD14highCD16high inflammatory monocytes. DGE, differential 

gene expression.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | NanoString GeoMx experiment design and analysis. 

a, Overview of spatial profiling experiments. b, Distribution of sequencing 

saturation (y axis, %) for WTA and CTA AOIs (x axis). c, d, SARS-CoV-2 signature 

score (y axis) for each WTA (c) and CTA (d) AOI (dots) from each donor (x axis). 

e, Overlap of WTA and CTA genes. f, g, Agreement between WTA and CTA.  

f, Distribution (box, interquartile range; white point, median; violin range, 

min–max) of Pearson correlation coefficients (y axis) between WTA and CTA 

profiles (for common genes across 296 AOIs). g, Pearson correlation 

coefficient (y axis) of WTA and CTA common genes for each AOI pair (dot) from 

each donor (x axis), sorted by distance between WTA and CTA sections (blue,  

10 mm; orange, 20 mm; green, 40 mm). h, Cell composition differences 

between PanCK+ and PanCK− alveolar AOIs and between AOIs from COVID-19 

(n = 9, 161 AOIs) and healthy (D22–24, 40 AOIs) lungs. Expression scores (colour 

bar) of cell type signatures (rows) in PanCK+ (left) and PanCK− (right) alveolar 

AOIs (columns) in CTA data from different donors (top colour bar). 

 i–k, Differential gene expression in COVID-19 versus healthy lung. Left: 

significance (−log10(P), y axis) and magnitude (log2(fold change), x axis) of 

differential expression of each gene (dots) in WTA for PanCK− (i, 112 COVID-19 

versus 20 healthy), and in CTA for PanCK+ ( j, 69 COVID-19 versus 18 healthy) and 

PanCK− (k, 92 COVID-19 versus 22 healthy) alveoli. Horizontal dashed line, 

FDR = 0.05; vertical dashed lines, |log2(fold change)| = 2. Right: significance  

(−log10(q)) of enrichment (permutation test) of different pathways (rows).  

l, m, Changes in gene expression in SARS-CoV-2 high versus low AOIs within 

COVID-19 lungs in WTA data. l, PanCK− alveolar AOIs (dots) rank ordered by 

their SARS-CoV-2 signature score (y axis) in WTA data, and partitioned to high 

(red), medium (grey) and low (blue) SARS-CoV-2 AOIs. m. Significance  

(−log10(P), y axis) and magnitude (log2(fold change), x axis) of differential 

expression of each gene (dots) in WTA data between SARS-CoV-2 high and low 

AOIs for PanCK− alveoli (ROIs: 11 high, six medium, 95 low). Horizontal dashed 

line, FDR = 0.05.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | GeoMx WTA DSP analysis of lung biopsy samples 

reveals region- and inflammation-specific expression programs. a, Region 

selection. Serial sections of lung biopsy samples (five donors, D13–17; image 

depicts serial sections of D14) processed with GeoMx WTA DSP with four-

colour staining (DNA, CD45, CD68, PanCK), RNAscope with probes against 

(SARS-CoV-2 S gene (used to derive semiquantitative viral load scores), ACE2, 

TMPRSS2), H&E staining and immunohistochemistry (IHC) with anti-SARS-

CoV-2 S-protein. Scale bar, 100 µm. b–d, Region- and inflammation-specific 

expression programs. b, The first two principal components (PCs, x and y axes) 

from lung ROI gene expression profiles from donors D13–17, spanning normal-

appearing alveoli (green; D14 = 6 AOIs, D15 = 2 AOIs, D16 = 5 AOIs, D17 = 4 AOIs); 

inflamed alveoli (magenta; D13 = 14 AOIs, D14 = 18 AOIs, D15 = 7 AOIs, D16 = 3 

AOIs, D17 = 8 AOIs); bronchial epithelium (blue; D14 = 2 AOIs, D15 = 1 AOI, D16 = 2 

AOIs, D17 = 3 AOIs) and arterial blood vessels (black; D13 = 2 AOIs, D15 = 3 AOIs). 

c, GSEA score (circle size, legend) of the enrichment of the IFNγ pathway in each 

normal-appearing (green; 6 AOIs) and inflamed (magenta; 18 AOIs) alveolar 

AOIs (dot) from the section of donor D14 (in a), placed in their respective 

physical coordinates on the tissue section (as in a). d, Expression (colour bar, 

log2(counts per million)) of IFNγ pathway genes (rows) from normal-appearing 

(green, n = 6) and inflamed (magenta, n = 18) alveoli AOIs (columns) from D14 

lung biopsy.
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Extended Data Fig. 10 | A single-nucleus atlas of heart, kidney and liver 

COVID-19 tissues. a–c, COVID-19 heart cell atlas. UMAP embedding of 40,880 

heart nuclei (dots) (n = 18 donors, m = 19 specimens) coloured by Leiden 

resolution 1.5 clustering with manual post hoc annotations (a) or donors (c).  

b. Proportions of cell types (y axis) in each sample. d–f, COVID-19 kidney cell 

atlas. UMAP embedding of 33,872 kidney nuclei (dots) (n = 16, m = 16) coloured 

by clustering with manual post hoc annotations (d) or donors (f). e, Proportion 

of cells (y axis) in each sample. g–i, COVID-19 liver cell atlas. g, i, UMAP 

embedding of 47,001 liver nuclei (dots) (n = 15, m = 16), coloured by clustering 

with manual post hoc annotations (g) or donors (i). h, Proportions of cell types 

(y axis) in each sample. j–l, Automatic annotations. UMAP embeddings, 

coloured by predicted cell type labels by automatic annotation for heart ( j), 

kidney (k) and liver (l).



Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Entry factors in heart, kidney and liver COVID-19 

tissues and differential gene expression in heart cell atlas. a–c, SARS-CoV-2 

entry factors are expressed in kidney, liver and heart cells. Average expression 

(dot colour) and fraction of expressing cells (colour, size) of SARS-CoV-2 entry 

factors (rows) across cell subsets (columns) in the kidney (a), liver (b) and heart (c). 

 d–k, Genes and pathways differentially expressed between COVID-19 and 

healthy heart cells. d, log mean expression per cell (dot colour) and fraction of 

expressing cells (dot size) across cell types from healthy or COVID-19 heart 

(rows) for select genes (columns) that are differentially expressed between 

COVID-19 and healthy cells. e, Proportions of each cell type for COVID-19 

(n = 15) and healthy (n = 28, two studies) samples (boxplots: middle line, mean; 

box bounds, first and third quartiles; whiskers, 1.5× the interquartile range; 

minima, smallest observed proportion; maxima, highest observed 

proportion). f, UMAP embedding of integrated COVID-19 and healthy snRNA-

Seq profiles (dots) coloured by major cell types. Plot limited to a subset of 

151,373 high-quality cells for visualization purposes. g–i, Cell-type-specific 

differentially expressed genes in COVID-19 versus healthy nuclei. Differential 

expression (log2(fold change), x axis), and associated significance (−log10(P),  

y axis; Supplementary Methods) for each gene (dot) between COVID-19 and 

healthy nuclei of cardiomyocytes (g), pericytes (h) and fibroblasts (i). Dashed 

line, FDR = 0.01. j, k, UMAP embedding of the meta-analysis atlas (as in f) but 

showing only COVID-19 (top) or healthy (bottom) nuclei profiles (dots) 

coloured by expression of PLCG2 ( j) or AFDN (k). l, Low levels of viral UMIs in 

heart, liver and kidney, compared with lung. Cumulative viral read counts as a 

function of droplet UMI count. In lung (red) most virus-positive droplets are 

empty droplets (total UMI count approximately 100) with some virus-positive 

droplets that contain nuclei (UMI count > approximately 1,000), but in heart 

(green), liver (blue) and kidney (orange), most of the ‘virus-positive’ droplets 

have fewer than ten total UMI counts, indicating that these reads are not 

trustworthy.
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Extended Data Fig. 12 | Expression of GWAS curated genes across lung, 

heart, liver and kidney atlases. a–d, Mean expression (dot colour, log(TP10K 

+ 1)) and proportion of expressing cells (dot size) for each of 26 curated GWAS 

implicated genes (columns) in each cell subset (rows) for lung (a), heart (b), 

liver (c) and kidney (d) COVID-19 autopsy atlases. Results only reported for 

genes with expression in at least one cell subset in the underlying tissue.  

Some GWAS genes have higher expression in the lung compared with the other 

three tissues. e, f, Mean expression (e, z-score relative to all other cell types, 

colour bar) or differential expression (f, z-score of DE analysis of expression in 

COVID-19 versus healthy cells of the same type) of 25 out of 26 GWAS implicated 

genes (rows) from six genomic loci associated with COVID-19 (based on 

summary statistics data from COVID-19 HGI meta analysis45 across lung cell 

types (columns). ABO was not considered as it was not reliably recovered in 

scRNA-Seq data. g, h, Cell type and disease progression gene programs in the 

lung (g), liver and kidney (h) that contribute to heritability of COVID-19 

severity. Magnitude (circle size, E score) and significance (colour, −log10(P)) of 

the enrichment of cell type programs and cell-type-specific disease programs 

(columns) that were significantly enriched for COVID-19 or severe COVID-19 

phenotypes (rows). All results are conditional on 86 baseline-LDv2.1 model 

annotations. i, Nomination of single best candidate genes at unresolved GWAS 

significant loci by aggregating gene level information across program classes 

and cell types. Significance (−log10(P), y axis) of GWAS association signal at 

locus (x axis). Blue boxes, significantly associated loci45 at a genome-wide 

significance level (purple horizontal bar). j, Schematic summarizing the key 

findings and contributions of this study.
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