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Abstract (124/125w): Policy decisions on COVID-19 interventions should be informed by a 

local, regional and national understanding of SARS-CoV-2 transmission. Epidemic waves may 

result when restrictions are lifted or poorly adhered to, variants with new phenotypic properties 

successfully invade, or when infection spreads to susceptible sub-populations. Three COVID-19 

epidemic waves have been observed in Kenya. Using a mechanistic mathematical model we 

explain the first two distinct waves by differences in contact rates in high and low social-

economic groups, and the third wave by the introduction of a new higher-transmissibility variant. 

Reopening schools led to a minor increase in transmission between the second and third waves. 

Our predictions of current population exposure in Kenya (~75% June 1st) have implications for a 

fourth wave and future control strategies. 

 

Main text 

 

Following the first PCR confirmed case of COVID-19 in Kenya on 13th March 2020, the Kenyan 

government rapidly introduced measures aimed at suppressing SARS-CoV-2 transmission in the 

country.  These measures included: the closure of international borders, with the exception of 

cargo movement; closing of schools and other learning institutions; a ban on social gatherings 

and meetings; closure of places of worship, bars and restaurants; a dawn to dusk curfew; 

mandatory wearing of masks in public places; physical distancing guidelines including on public 

transportation; and restrictions on movement into or out of counties with high infection rates 

including the two main Kenyan cities, Nairobi and Mombasa (1)(Fig. 1). Despite these measures 

the rate of new COVID-19 cases grew in Kenya indicating that measures had not been enough to 

consistently push the effective reproduction number R(t) < 1. Moreover, serological surveillance 

indicated that a higher than expected fraction of the Kenyan population had been exposed to 

SARS-CoV-2 given the case reports at the time: June 2020 adjusted seroprevalences, based on 

blood donor samples from the Kenya National Blood Transfusion Services (KNBTS), were 5.6% 

for Kenya, 8% for Mombasa, and 7.3% for Nairobi (2). 

 

Detected COVID-19 incidence in Kenya first peaked in early August 2020 during a period of 

relaxation of measures: the end of the Nairobi and Coastal counties (including Mombasa) 

lockdown (7th June 2020), and the resumption of international air travel (1st August 2020). A 

single-wave epidemic in Kenya peaking within 100-200 days after SARS-CoV-2 introduction 
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into the country was initially predicted, based on assumptions that included a single population 

group, and the development of immunity to reinfection (3-6). However, second and third waves 

occurred in mid-November 2020 and in March 2021, respectively. Multiple waves of COVID-19 

incidence in High Income Country (HIC) settings have usually been associated either with a 

relaxation of previous restrictions, or establishment of the epidemic in a new geographical area. 

More recently, the emergence of new variants has been associated with further waves of 

infection (7). In Kenya, and other countries in Africa, a temporal association between relaxation 

of restrictions and subsequent waves is implausible. Understanding the causation of such 

multiple waves is critical for forecasting hospitalization demand and the likely effectiveness of 

interventions including vaccination strategy.  

 

There are multiple potential explanations for sequential wave dynamics in COVID-19 incidence, 

which might be acting singly or in concert: social clustering (8), changing adherence to measures 

over time (9), seasonal effects on transmission (10), re-opening of places of learning (11), lower 

transmission rates in rural settings leading to later peaks in those areas (4), waning immunity 

after an infection episode, as well as the introduction of new SARS-CoV-2 variants which are 

more transmissible than previous strains, or/and, evade prior immunity acquired by natural 

infection (12). In this work, we present evidence that the most plausible explanation for the 

pattern of cases and seroprevalence observed in Kenya is a combination of differential adherence 

to measures between sub-populations which we identify with lower and higher socio-economic 

status (SES) in 2020 followed by a sharp increase in virus transmissibility in 2021, consistent 

with that observed in other countries affected by variants of concern, e.g. the United Kingdom 

(13) and India (14). 

 

We developed a county-specific, two-socio-economic status (SES) group, SEIRS-type 

transmission model, using a waning immunity rate derived from recent studies on the 

protectiveness of a natural infection to future reinfection (15-18), which was parametrised using 

PCR test data derived from the Kenyan national COVID-19 database, Google data on 

smartphone mobility and serological test data from the on-going longitudinal serosurveillance 

using samples from KNBTS donors (2). We used a hierarchical approach to inferring the 

underlying epidemic trajectories in each of the 47 Kenyan semi-autonomous counties by the 

following three steps: a) grouping counties by similarity over a range of sociological and 

epidemiological metrics using machine learning; b) for the 11 counties with a relatively high 

density of serology tests we jointly inferred epidemiological model parameters e.g. i) baseline R0 

for the county, ii) the effect of schools being open on R(t), iii) the increase in transmissibility in 

February 2021 when B.1.1.7 lineage (alpha variant) SARS-CoV-2 was first detected in Kenya 

(19),  iv) the fraction of the population in the higher SES group in each county and their 

assortative mixing rate, and v) the fraction of cases reported for the county using Hamiltonian 

Markov chain Monte Carlo (20) with mildly informative priors, and c) we inferred model 

parameters for the remaining 36 counties using informative priors for reporting fractions derived 

from a synthesis of the posterior distributions of counties grouped as similar to that county (see 

Supporting information for details). 

  

The two-SES group transmission model was able to capture the timing and intensity of all three 

waves of Kenyan COVID case incidence and the trend of increasing proportion seropositive 

among KNBTS donors (Fig. 2). The model fits estimate that the high SES group, which we 
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characterized by higher likelihood of smartphone ownership, had a reduction in movement after 

initial restrictions were announced with delayed reversion to pre-pandemic movement patterns 

and a higher likelihood of being tested and being admitted to hospital. The lower SES group, 

who were unlikely to own smartphones, did not reduce movement with initial restrictions to the 

same degree and reverted to baseline rates sooner, relative to the higher SES group, and were 

less likely to be tested or admitted to hospital (see Supporting information for predicted mixing 

rates for the upper SES group). We also validated the fitted model by comparing forecasts of 

seropositivity rates with those from data not used to infer model parameters. We used rounds 1 

and 2 of the seropositivity survey using KNBTS donors for model parameter inference, collected 

during May – September 2020. Estimated seroprevalence among the Kenyan population, derived 

from the fitted two-SES group transmission model, was in good agreement with the out-of-

sample round 3 of KNBTS seroprevalence data, collected January – March 2021 (Fig. 2). The 

Nairobi-specific epidemic trajectory inferred in this study agrees with seroprevalence estimates 

from a randomised survey from Nairobi, and, is congruent with the observation that it was public 

hospitals in Nairobi (favoured by lower SES groups) that came under pressure in the first wave, 

whereas the second wave showed increased admission to private health facilities (Fig. S7-8). As 

well as capturing the past trends of case reporting and seropositivity in Kenya, the fitted two-SES 

group transmission model accurately predicts the daily rate of new confirmed COVID-19 cases 

reported by the Kenyan Ministry of Health for the month after the censoring date of the PCR test 

data used to infer model parameters (Fig. 2). This contrasts the one-group model which provided 

no plausible explanation of the second wave (see supporting information).    

 

The two-SES group transmission model reconciled the apparent paradox between evidence of the 

effectiveness of the rapidly introduced Kenyan measures in reducing mobility out of the home 

among Kenyan smartphone users, which was close to that observed in European and North 

American countries (Fig. S1), and that case rates and fatality rates display two distinct waves in 

Kenya in 2020. In some Kenyan counties (e.g. the urban counties Nairobi and Mombasa, and 

some of the semi-urban counties) we infer that a substantial group of people belong to the higher 

SES group whose mobility is well-represented by Google smartphone data; a combination of 

school closures and reduction in mobility (by 44.5% see supporting information) reduced the 

effective reproductive number sufficiently that newly infected people among the higher SES 

group were on average generating less than 1 secondary infection by April 2020 (Fig. 3). The 

growth rate in cases, and relatively high levels of seroprevalence among KNBTS donors, are 

explained by the rest of the population in the lower SES group having R(t) > 1 into May and 

June 2020 (Fig. 3). The model inferred that the reduction in mobility among the lower SES group 

was substantially less than among the higher SES group: the posterior mean estimate for 

reduction in mobility among the lower SES group in Nairobi was 13.8% (CI 11.3-17.5%), in 

Kenya’s second city Mombasa was 18.9% (CI 17.4-20.4%), and posterior mean estimates for 

lower SES group mobility reduction across all 47 Kenyan counties had a median of 15.7% (IQR 

10.9-19.6%). We assumed that school closures reduced R(t) for both SES groups equally. The 

inferred reduction in R(t) due to schools closing varied from county to county, the median 

reduction in R(t) over counties was 13.5% (IQR 4.3-23.7%; Nairobi estimate for school closure 

effect was 23.8% CI 16.5-31.6%, Mombasa estimate for school closure effect was 20.2% CI 

15.2-25.2%; Fig. 3). 
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The second wave in Kenya in 2020 was triggered by the higher SES group returning to pre-

COVID-19 mobility patterns by early November 2020 (Fig. S1), and, therefore, R(t) going above 

1 for the higher SES group (Fig. 3). Low rates of mobility somewhat shielded the higher SES 

group from infection in the first wave among the lower SES group. Therefore, the lower SES 

group suffered two waves in 2020, whereas the higher SES group effectively suffered one wave 

peaking in late 2020 (Fig. 4). The overall detection rate was determined in part by the number of 

PCR tests performed each day, and this rate dropped in September 2020 (Fig. S4). A 

consequence of the drop in the testing rate was that the case reporting shows a much sharper 

delineation between the first two waves (Fig. 2) than the underlying inferred infection rates (Fig. 

4), which reveal that there was only a moderate dip in infections in August/September 2020. By 

accounting for the delay between infection and COVID-19 fatality, and fitting SES group 

specific infection-fatality-detection ratios (IFR-detection, see methods and supporting 

information) to each county, we found reasonable agreement between the predicted and observed 

timings of peak fatality rates in Kenya (Fig. 4). Overall, our model-based estimate was that only 

11% of the total Kenyan population were in the higher SES group, whose mobility was well-

described by Google mobility data, with the highest concentration of higher SES group 

individuals in the two main cities: 43.4% of the Nairobi population (CI 35.4-49.2%) and 40.3% 

of the Mombasa population (CI 35.0-45.4%). Additionally, we estimate that infections among 

the higher SES group were substantially more likely to be detected than among the lower SES 

group: odds ratio for Nairobi 4.5 (CI 1.5-17.9), for Mombasa 4.8 (CI 3.2-6.8). The odds ratio 

between detection per infection in the two SES groups was inferred to be even more extreme 

across Kenya as a whole, with substantial variation from county to county: median odds ratio 

estimate over counties was 18.5 (counties estimate IQR 2.5-27.9), although most counties had a 

small number of people in the higher SES group.  

 

Fully reopening schools in January 2021 was associated with a slight increase in cases and 

deaths in Kenya, with a peak in January and early February 2021 (Figs. 3,4). However, school 

reopening does not explain the third wave in Kenya observed in March and April 2021, which 

was considerably larger than the increase in January/February 2021. The two SES group model 

was not a sufficient explanation for a third wave, neither was loss of immunity or any detectable 

trend in mobility. The first cases of the more transmissible Alpha variant B.1.1.7 were identified 

in Kenya from mid-January 2021(19). We investigated if the data supported an increase in 

transmissibility per infected person starting at the beginning of February 2021 as well as an 

influx of new exposed individuals representing domination of wildtype strains of SARS-CoV-2 

by a fitter new variant. In the Kenyan urban counties, we found credible range of increase in 

transmissibility of 15.0-46.6% (Nairobi 32.5% CI 18.1-46.6%; Mombasa 22.8% CI 15.0-31.2%), 

and this was reflected in increased transmissibility estimates across Kenyan counties: median 

over county estimates 46.1% (IQR 31.6-72.9%). The fitted model predicted that this large 

increase in transmissibility will push the overall exposure to SARS-CoV-2 in Kenya from a 

back-calculated estimate of 53.5% in February 2021 to 78.1% by June 2021 (Fig. 2). The rate of 

seroreversion, that is the loss of detectable antibodies rather than necessarily loss of protective 

immunity, has been identified as an important quantity for estimating population exposure 

prevalence from serological data (21). Because the serological data used for parameter inference 

was collected within 7 months of the first identified case in Kenya, we assumed that 

seroreversion was negligible over this period. However, we note that assuming no future 

seroreversion led to closer agreement between model back-calculation and round 3 KNBTS data 
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than assuming a median 1 year between infection and seroreversion (Fig. 2); that is that our 

modelling doesn’t support the need to incorporate seroreversion to capture the true population 

exposure over the time scale of a year, unlike for Buss et al (21). This finding highlights that 

seroreversion rate depends on the serological assay used (22) and cannot necessarily be 

extrapolated between settings. A negligible seroreversion rate may be more applicable for the 

ELISA used in Kenya where the cut-offs prioritize specificity over sensitivity (2, 23). 

 

Our modelling exercise provides a credible mechanistic interpretation of the three waves of 

COVID-19 in Kenya. To do this, we invoke two key underlying assumptions. First, a stratified 

population differing in mobility (associated with lower and higher SES), and second, increased 

virus transmissibility compatible with competitive succession of a SARS-CoV-2 variant of 

concern in wave 3. A key simplifying assumption in this modelling study is that we assumed that 

the diversity of behaviours across the population in each Kenyan county can be reduced to 

stratifying into two groups with assortative mixing favouring transmission within group, and 

identifying these groups into lower and higher SES groups based on similarity to mobility trends 

among smart phone users. We believe that this is a well-evidenced hypothesis for Kenya. 

Marked social and economic structuring has been described in Kenya; 36% of the population live 

below the national poverty line (24) and 55% live in informal settlements (25). Further, 83% of 

Kenya’s labour market is informal, characterized by unstable and unpredictable daily wages (26). 

Lower socio-economic groups have been identified as vulnerable to SARS-CoV-2 in the global 

South due to residence in informal settlements at high population density, reduced access to 

sanitation, and dependence on informal employment requiring daily mobility (27, 28). In 

contrast, the higher SES group with job security can work from home, socially distance and 

readily access water and sanitation, thereby decreasing transmission. In Kenya, Google mobility 

data from smartphone users indicates a sharp decline in movement to settings outside of the 

home (Fig. S1). We found that the two SES group model used in this paper was able to capture 

pattern of cases and seroprevalence in Kenya over the first three waves, despite radically 

simplifying the underlying social structure.  

 

We predict the proportion of the Kenya population exposed to SARS-CoV-2 to be greater than 

75% by the beginning of June 2021 (Fig.2), corresponding to around 39 million people. 

However, less than 4,000 confirmed COVID-19 deaths and 180,000 confirmed SARS-CoV-2 

infections have been identified as of the 1st June 2021. We found that people among the lower 

SES group were likely to be even more under-sampled than people among the upper SES group, 

as well as identifying wide regional variation in the detection rate. These results emphasize the 

necessity of community surveys of SARS-CoV-2 prevalence, exposure, and an investigation into 

the under-reporting of mortality and severe disease due to COVID-19.  

 

The high population exposure suggests that a fourth COVID-19 wave in Kenya before the end of 

2021 would only be likely if (i) a variant arises with substantial further enhancement in 

transmissibility or immune escape, such as the B.1.617.2 Delta variant (29), or (ii) significant 

waning of immunity in those previously exposed. Nevertheless, the predicted geographical (i.e. 

county) variation in the proportion exposed will likely result in an extended tail to the current 

epidemic wave. We conclude that our analysis which triangulates PCR test, seroprevalence, 
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mobility and genomic data to develop a coherent explanation of the transmission dynamics of 

COVID-19, provides insight of public health importance in Kenya, including targeting health 

care capacity and pharmaceutical and non-pharmaceutical interventions.  
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Figures 

 

 
Figure 1: 7day moving average of daily positive PCR tests from the Kenyan national linelist and a timeline of the main 

mitigation events applied by the Kenyan government representing tightening (down-arrow) and relaxation (up-arrow) of 

measures, with: (a) curfew from 7pm to 5am; (b) curfew from 11pm to 4am; (c) curfew from 10pm to 4am; (d) front line workers 

and individuals older than 58 years (approximately 1.2m doses); (e) the region includes Nairobi, Kajiado, Machakos, Kiambu, 

Nakuru; (f) this restricted movement into and out of the block of counties in (e) but not between these counties; (g) curfew from 

8pm to 4am. 
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Figure 2: Daily PCR confirmed COVID-19 cases (top) and weekly serology estimates from KNBTS donors with overall attack 

rate estimates (bottom). Shown are daily numbers of PCR test positives from the Kenyan national linelist (top; grey dots are daily 

reports used for fitting the model, curves are 7-day moving averages). The model prediction for the 7-day moving average of 

daily case incidence (top; green dash curve, shading shows 3-sigma intervals) were derived from inference on the county-specific 

linelist PCR data and rounds 1 and 2 of the KNBTS serology survey (bottom; blue dots). Predictions before mid-April 2021 are 

back-calculations using known numbers of PCR tests per day, whereas, after mid-April 2021 model predictions are forecasts 

which also estimate the number of PCR tests that will occur per day in each county. We show the next month of PCR test 

positive data, not used in fitting, as a validation of the model short-term predictive accuracy (top; red curve).  Back-calculated 

model estimates of seropositivity (bottom; green solid curve) are shown with round 3 of the KNBTS serology survey data 

(bottom; red dots, not used in model inference). We also show back-calculated estimates of seropositivity under the assumption 

that median time to seroreversion (loss of detectable antibodies rather than loss of immunity) from infection was one year. Model 

estimates of overall Kenyan seropositivity are adjusted from county-specific estimates by weighting by number of serology tests 

in each county (over KNBTS rounds 1 and 2). The overall estimated Kenyan attack rate (population exposure) is shown as 

unadjusted (bottom; red curve).   
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Figure 3: Effective reproductive number over time (R(t)) for lower and higher SES groups in four representative counties: 

Nairobi (top left), Mombasa (top right), Kiambu (bottom left), and, Mandera (bottom right). Nairobi and Mombasa are Kenya’s 
two largest cities and form fully urban counties, Mandera county has a largely rural population and is remote from the main urban 

conurbations, Kiambu county borders Nairobi and has a ~60% urban population. The transmission model infers the proportion of 

the population in each SES group in each county. The highest proportion of higher SES group individuals are inferred to be in 

Nairobi and Mombasa out of all counties, whereas for Mandera county very close to all individuals are inferred as being in the 

lower SES group and the model effectively defaults to one group SEIRS transmission. The model inference for R(t) in Kiambu 

represents a county between these two extremes. In each county, the first discontinuous increase in R(t) is due to schools 

reopening, and the second is due to more transmissible variants becoming dominant in transmission. 
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Figure 4: Model inferred underlying true incidence rates by SES group relative to the whole Kenyan population size (top) and 

reported PCR-confirmed deaths due to COVID-19 disease (bottom). The size of the upper SES group was estimated to be 11% of 

the Kenyan population, explaining the lower absolute rate of incidence (red curve) compared to the lower SES group (blue 

curve). We inferred that the lower SES group have experienced three waves of SARS-CoV-2 transmission, whereas the upper 

SES group has experienced two. The model fit for seven day moving average (green dashed curve, with shading as 95% PIs) is 

shown against the seven-day moving average for deaths reported in the Kenyan linelist (black curve). Cumulative observed and 

fitted deaths are shown in the top-right inset. 
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