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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third coronavirus

leading to a global health outbreak. Despite the high mortality rates from SARS-CoV-1

and Middle-East respiratory syndrome (MERS)-CoV infections, which both sparked

the interest of the scientific community, the underlying physiopathology of the

SARS-CoV-2 infection, remains partially unclear. SARS-CoV-2 shares similar features

with SARS-CoV-1, notably the use of the angiotensin conversion enzyme 2 (ACE2) as a

receptor to enter the host cells. However, some features of the SARS-CoV-2 pandemic

are unique. In this work, we focus on the association between obesity, metabolic

syndrome, and type 2 diabetes on the one hand, and the severity of COVID-19 infection

on the other, as it seems greater in these patients. We discuss how adipocyte dysfunction

leads to a specific immune environment that predisposes obese patients to respiratory

failure during COVID-19. We also hypothesize that an ACE2-cleaved protein, angiotensin

1-7, has a beneficial action on immune deregulation and that its low expression during the

SARS-CoV-2 infection could explain the severity of infection. This introduces angiotensin

1-7 as a potential candidate of interest in therapeutic research on CoV infections.
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INTRODUCTION

Coronavirus (CoV) is a single-stranded RNA virus involved in human and animal diseases. The
rare event of its transmission from avian and mammalian reservoirs (mostly bats) to the human
host has led to widespread epidemics in recent years (1). Indeed, over the last two decades, three
CoV outbreaks have forced human populations to change their perspectives regarding the control
of emerging diseases and the importance of public health in general.

The first outbreak caused by severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1)
occurred between November 2002 and July 2003, originating from China and then spreading
worldwide (2). Although the symptoms of SARS-CoV-1 infection were in most cases non-specific,
including lethargy, myalgia, and headache, the high mortality rate of 10% in case series was
mostly related to respiratory failure due to acute respiratory distress syndrome (ARDS) (3, 4).
The physiopathology underlying the severity of SARS-CoV-1 infection remained unclear after the
epidemic due to insufficient sampling. A second CoV epidemic occurred in 2012 with Middle East

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01714
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01714&domain=pdf&date_stamp=2020-07-21
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alegouellec@chu-grenoble.fr
https://doi.org/10.3389/fimmu.2020.01714
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01714/full
http://loop.frontiersin.org/people/935335/overview
http://loop.frontiersin.org/people/999781/overview


Méry et al. Metabolic Syndrome and Severity of COVID

respiratory syndrome (MERS)-CoV, which has mostly led to
small-size outbreaks in the years ever since (5). Although it did
not reach a pandemic status, MERS-CoV continues to infect
humans, and the World Health Organization identified more
than 850 patients who have died of related complications since its
discovery (6). Indeed, MERS-CoV has a higher mortality rate in
case series (case fatality rate of ∼30%), mostly from respiratory
failure, which has led to the identification of unique strategies
of CoV infections to escape the immune response. Due to the
ending of the SARS-CoV-1 epidemic and the somewhat limited
number of cases ofMERS-CoV in the recent years, understanding
the mechanisms of CoV infections in humans has proven to be
complex, and the conclusions drawn from in vitro experiments
and animal models remain difficult to extrapolate.

In November 2019, cases of a pneumonia with atypical
features were reported in Wuhan, China; in January 2020, SARS-
CoV-2 was identified as the cause of this new CoV-induced
disease (COVID-19), which became a worldwide pandemic in
the following months (7). Although the mortality rates of this
new COVID-19 are still being debated, ranging between 0.3 and
1.5%, it is still lower than those associated with SARS-CoV-1
and MERS-CoV infections. Patients suffering from severe SARS-
CoV-2 infection could be healthy or only havemild comorbidities
such as hypertension or diabetes (8). Most of all, severe cases due
to respiratory failure occur 7–12 days after the first symptoms (9).
Studies on COVID-19 have progressively stressed its similarities
with previous CoV infections, mostly SARS-CoV-1, with the
same unanswered questions regarding its physiopathology. One
notable feature of this disease, already observed in previous CoV
infections, is the high prevalence of obese patients among the
most severe cases.

Here we seek to explore what underlies the link between
immune response and respiratory failure in CoV infections on
the one hand, and the current observation of obesity as a risk
factor for severe outcome in COVID-19 on the other.

PHYSIOPATHOLOGY OF RESPIRATORY
FAILURE IN COVID-19

Most of the time, the need for intensive care during COVID-
19 is secondary to the onset of ARDS (9), as defined by the
Berlin criteria (bilateral shadowing on lung radiology, rapid
deterioration of symptoms, and objective hypoxemia on blood
samples). In the first published series, 30% of these ARDS cases
were accompanied by septic shock or other organ dysfunction
(8, 10).

The nature of COVID-19-induced ARDS is still under
discussion. Interleukin (IL) dosages are usually very high,
and hypoxemia is severe in COVID-19-induced ARDS, which
matches the hyperinflammatory profile described by Calfee
et al. (11). SARS-CoV-1-induced ARDS was associated with
vascular leakage and neutrophilic alveolitis (12), both of which
are compatible with a hyper-inflammatory profile. In COVID-
19, some experts observed ventilatory abnormalities suggestive
of microcirculatory involvement such as hypoxic pulmonary
vasoconstriction or distal thrombosis (13, 14). This points to the

contribution of several factors in respiratory failure, with experts
also citing the possible involvement of genuine viral pneumonia
as well as capillary thrombosis by neutrophil extracellular traps
(NETs) (15). The reason for this respiratory outcome is most
likely a complex interplay of multiple factors, which derive
directly from CoV virulence.

Role of the Viral Gateway
The membrane protein angiotensin-converting enzyme 2
(ACE2) is used as an entry receptor by SARS-CoV-1 and
SARS-CoV-2 (16, 17). It has been reported that SARS-CoV-2
has a greater affinity for ACE2 than SARS-CoV-1 due to the
specific amino-acid composition in the receptor-binding domain
of the spike protein (18). ACE2 is expressed at varying levels
by most cells in the body but primarily in the small intestine,
testis, kidney, heart, thyroid, and adipose tissue cells (19). The
expression of ACE2 in adipocytes seems to be promoted by high
fat diets (20). In the lungs, it is expressed by 2% of epithelial cells,
increasing with cell differentiation, and it is mainly located on
the apical (or luminal) pole, serving as an accessible anchor point
to airborne contaminants (19).

ACE2 is a key enzyme of the renin-angiotensin system,
converting angiotensin 2 (Ang2) into Ang1-7. Ang2 binds
to a receptor, the angiotensin type 1 receptor (AT1R), a
transmembrane G protein-coupled receptor, which is found
in a large variety of cells, ranging from smooth muscle cells,
endometrium, and myocardium to blood cells, renal interstitial,
and glomeruli. The activation of AT1R has several effects: for
example, vasoconstriction, vascular permeability, macrophage
maturation, and pro-inflammatory cytokine release. During the
resolution phase of the inflammation, Ang2 promotes tumor
growth factor beta production and fibroblast proliferation,
leading to fibrosis and inadequate healing of the wounded
tissue (21).

An antagonistic pathway of the Ang2-derived effects
results from the binding of Ang1-7 to the mitochondrial
assembly (MAS) receptor. MAS receptor is a ubiquitous
G-protein-coupled receptor, implicated, among others, in
retina development (22), muscle wasting (23), and benign
prostate hyperplasia (24). Activation of the MAS receptor by
Ang1-7 induces vasodilatation by a nitric-oxide-dependent
mechanism (25, 26) and reduces oxidative stress induced by
Ang2 in vascular injuries (27). In macrophages, it promotes
an anti-inflammatory profile (28), for example, by lowering
pro-inflammatory cytokine production, notably IL-6 and tumor
necrosis factor alpha (TNFα). Ang1-7 has also shown beneficial
effects in inflammation resolution and fibrosis, notably in kidney
and myocardial disease (21, 29). The binding of ACE2 by SARS-
CoV-2 prevents it from exerting its enzymatic activities, resulting
in decreased anti-inflammatory Ang1-7 production and the
accumulation of pro-inflammatory Ang2 (16, 17). This results
in high cytokine titers, neutrophil infiltration, and endothelial
dysfunction in the lungs, potentially predisposing for ARDS.

As early as 2004, ACE2 tampering was suggested to
be an important mechanism in SARS-CoV-1 infection (30,
31). It was only later discovered that CoV possesses very
specific mechanisms to escape the host’s immunity (32). These
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mechanisms, in addition to the pro-inflammatory response
secondary to ACE2 binding, might act as a trigger for a sustained
and uncontrolled inflammatory response, leading to ARDS.

Immune Polarization and Its
Consequences During CoV Infections
In general, an efficient antiviral response is driven by T-helper
lymphocytes (LTh) with a specific polarization such as LTh1
and LTh2. LTh1 refers to a polarization in which LTh primarily
promotes cytotoxic lymphocytes (CTL) and natural killers (NK)
for the control and destruction of infected cells as well as the
release of specific cytokines, such as type 1 interferon (INF-1) by
innate immune cells.

INF-1 is produced by infected cells and innate immune
cells after recognizing the viral pathogen-associated molecular
patterns (PAMPS), such as single-strained or uncapped RNA,
using cytoplasmic pattern-recognition receptors (PRR). In
particular, toll-like receptor 3 (TLR3) induces Toll/interleukin-
1 receptor domain-containing adapter-inducing interferon-β
(TRIF). Hosts deficient in either TLR3 or TRIF are more
susceptible to viral injuries and thus more at risk of developing
ARDS during CoV infections (33).

INF-1 activates the Janus kinase-signal transducers and
activators of transcription (JAK-STAT) pathway, resulting in
the modulation of hundreds of interferon-sensitive genes and
notably in the synthesis of specific cytokines, preferably oriented
toward viral control and clearance (34).

Most of these steps, involved in INF-1 signaling, are blocked
by CoV infections. This evolution trait is probably due to the
presence of a constitutive INF-1 production in bats (principal
reservoir of CoV). CoV infections are expert evaders of this
antiviral response (35). Their escape plan revolves around three
main mechanisms:

- First, hiding viral RNA from cytoplasmic PRR. After entering
the cell, SARS-CoV-1 shields its RNA by forming, inside
the host’s endoplasmic reticulum, a large network of double-
membrane vesicles isolated from the cytosol (36, 37). The
modified capping of the viral RNA 2′-O-methylation also
prevents the binding to an important cytosolic PRR (38).

- Next, direct tampering of the PRR-related enzymes. For
example, the papain-like protein in CoV can modify the
ubiquitinylation profile of TLR7 (39) or other antiviral-
related PRR (40). Moreover, S protein triggers IL-1R-
associated kinase and peroxisome proliferator-associated
receptor gamma, subsequently downregulating interferon
regulatory factor 7 activity (41). In addition, the jamming
of TLR3 phosphorylation reduces the PRR activity, while
blocking most of the INF-1 production pathways.

- Lastly, the non-structural protein 1 in both MERS and SARS-
CoV-1 can selectively degrade host RNA via endonucleolytic
activity against which the viral RNA is protected (42, 43).

The many mechanisms used by CoV probably leave the infected
cells in a defensive cul-de-sac where they are incapable of
developing an efficient antiviral response. On the one hand, viral
PAMPS do not result in INF-1 production. On the other hand,

non-viral PAMPS such as debris from cell lysis still stimulate
the immune response. This could lead to inappropriate cytokine
environments that lack INF-1 and are thus less effective against
viruses, as seen in COVID-19 (44).

Indeed, during COVID-19 infection, most patients exhibit
a specific cytokine profile, associating innate immunity
chemokines (such as monocyte chemoattractant protein 3
and interferon gamma-induced protein 10 (IP-10), which are
suggestive of macrophage activation and epithelial suffering), and
pro-inflammatory macrophage-produced cytokines such as IL-6
(45). Moreover, CoV infections can directly induce the activation
of nuclear factor kappa B (NFkB), notably by tampering with the
TNF receptor-associated factor 3 pathway (TRAF3) via its open
reading frame 3a. Activation by ubiquitination of TRAF3 also
promotes the de novo development of the NOD-like receptor
pyrin domain containing protein 3 (NLRP3) inflammasome and
the production of IL-1β and IL-18 (46). This cytokine production
promotes macrophage activation and INF-3, although it does not
salvage a deficient polarization of the adaptive immunity toward
LTh1 and its subsequent efficient antiviral response. High plasma
levels of IL-6 and the absence of INF-1 have been noted in severe
patients (47), illustrating a sustained innate response that fails to
achieve viral clearance and triggers ARDS.

However, this sustained inflammation without LTh
polarization might not be the only profile to bypass the
antiviral cul-de-sac. Some patients infected by MERS-CoV
demonstrated a polarization of the immune profile toward a
LTh17-mediated response. Faure et al. compared two cases
of MERS with different outcomes (48); the patient with a
fatal outcome had an early increase in IL-17 and IL-23 titers
(hallmarks of LTh17 polarization), whereas the surviving patient
had a spike in INF-1 but no indication of LTh17 polarization.
LTh17 are effective actors in the clearance of extracellular
microorganisms such as fungi and bacteria, but poorly effective
against viral pathogens (49). In general, viral PAMPS do not
usually polarize the immune response to LTh17.

The association of severe outcome and inappropriate cytokine
environment in CoV infection suggests a link with immune
polarization, as a result of the “cul-de-sac” of antiviral response
induced by the CoV escaping strategies. The resulting inefficient
immune profile leads to a sustained viral exposure and persistent
inflammatory state. In addition to the pro-inflammatory
signals mediated by ACE2 inhibition, this sustained and
inappropriate immune activation might be strongly involved in
the development of ARDS.

IMPLICATIONS OF COVID-19 IN OBESE
PATIENTS

Obesity is a common condition, affecting up to 30% of adults
in Western countries. It is defined by a body mass index (BMI)
>30 kg/m2, irrespective of the location of the adipose tissue.
However, all profiles of obesity are not equivalent in terms of their
consequences. Indeed, abdominal (or visceral) obesity (estimated
by the waist circumference or waist-to-hip ratio), in which
visceral fat predominates, is more associated with metabolic
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disorders such as type 2 diabetes or hypertension, compared
to “metabolically healthy” obesity, in which subcutaneous
fat predominates.

Early observations in the SARS-CoV-2 epidemics suggested
obesity to be a risk factor to COVD-19, or at least to
severe forms of the disease (50). In our retrospective
cohort, we observed more than 60% of patients with
overweight or obesity (n = 155) (Figure 1). In a retrospective
cohort, Simonnet et al. showed an increasing risk of
intensive care unit (ICU) admission in COVID-19 patients
as BMI increased, independently of other metabolic
disorders (51), which was subsequently confirmed by other
teams (52, 53).

Thus, obesity appears to be a risk factor for presenting a
severe form of COVID-19. It should be mentioned that once in
ICU, obesity is known to confer a survival advantage, termed
the “obesity paradox” (54). Patients with a BMI > 25 kg/m2

seem to survive mechanical ventilation and severe septic states
significantly better than patients with a normal or low BMI
(55, 56), presumably due to their elevated muscle mass, which
represents a metabolic reserve in the hypermetabolic state of ICU
patients (54, 57). It is not yet known whether once admitted to
ICU, obese COVID-19 patients also present a better prognosis
than patients of normal body weight.

Adipokines
The scientific observations of the last two decades have placed
obesity in a complex pathological framework centered around the
deregulation of adipocyte, which is far from the naive idea of a
simple diet-induced condition (58).

White adipose tissue (WAT) is now recognized as an
independent endocrine organ, whose main role is to regulate
and store the energy provided by food. However, the hormones
released by WAT, specific to the adipocyte and known as
adipokines, reach a large variety of organs and modulate
an extensive range of functions, from appetite control to
inflammatory response (29). Leptin is the leading adipokine,
whose anorexigen properties regulate satiety and food intake.
Leptin levels in blood are proportionate to the amount of
WAT and increase with BMI. Interestingly, the leptin receptor
(LEPR) on immune cells mostly activates JAK-STAT and
NFkB dependent pathways, except in neutrophils, macrophages,
and antigen presenting cells, which all express a particular
form of LEPR. Leptin promotes migration in the WAT of
resident macrophages and induces their polarization toward a
pro-inflammatory profile or a classical activated macrophage
(M1) profile, and unbalances the LTh profiles, by reducing
regulatory T-cells and promoting LTh17 polarization (59).
Adiponectin is another adipokine, whose levels increase in

FIGURE 1 | Histogram of the distribution of body mass index (BMI) (kg/m2 ) in 155 consecutive patients (female and male) admitted to Grenoble University Hospital for

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (retrospective cohort study). Histogram illustrating that a majority of COVID patients, more

precisely, 64% of COVID-19 patients were overweight or obese (BMI > 25 kg/m2 ). The median BMI of females (F ) and males (M) was 26.30 and 27.08 kg/m2,

respectively.
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proportion to subcutaneous fat but decrease with visceral fat
accumulation. It favors whole-body insulin sensitivity, fatty-acid
oxidation and diminishes the hepatic neo-glucogenesis pathways
(60). Adiponectin promotes primarily LTh1 polarization, hence
antiviral inflammation. Other adipokines, such as lipocalin-
2, down-regulate inflammatory LTh altogether by promoting
regulatory lymphocytes. Adipokines form a large family regularly
counting new members over the last few years, all of which
reveal complex and multiple implications in the regulation of
energy storage and release, adipose tissue regulation and rather
ubiquitous cellular metabolism (61).

Unlike subcutaneous fat, visceral fat accumulation, also
described as “abdominal obesity,” is characterized by a
dysfunctional profile of adipokines associated with a rise in
pro-inflammatory signals. The triggers of this dysfunction is
believed to be a metabolic stress in the presence of nutrient excess
and a hypoxic stress caused by hypertrophic visceral adipocytes,
due to an increase in cells’ size and low neovascularization,
via a mobilization of Hypoxia Inducible Factor 1 (62). Unlike
visceral fat, subcutaneous fat expansion is hyperplasic and is
not correlated with low-grade inflammation (63). In severe
abdominal obesity, the adipokine profile is unbalanced in favor
of leptin production and low-grade inflammation at the expense
of adiponectin, or lipocalin-2. This deregulation of the adipokine
profile links various disorders associated with metabolic diseases,
such as insulin-resistance, to inflammatory manifestations, as
described in rheumatoid arthritis (64).

Ang1-7 takes an active role in regulating the effects of
adipokines. Its involvement was reviewed by Lelis et al., with an
exhaustive approach and emphasis on other adipokines that will
not be described here, such as sirtuin and resistin (29). A strong
interest in Ang1-7 has already arisen from these observations,
particularly in the field of atherosclerosis and non-alcoholic fatty
liver disease, in which Ang1-7 seems beneficial. In a concise
article, Mori et al. hypothesized that the disruption of the renin-
angiontensin system by the virus could impair the energetic
functions of these pathways during SARS-CoV infections (65).
We suggest that the tampering with such pathways could also
lead to abnormalities in the inflammatory response observed
in severe CoV infections through their influence on immune
regulation and cytokine production.

Meta-Inflammation in Obese Patients and
Viral Response
Adipocyte dysfunction in visceral fat is correlated to low-
grade persistent inflammation, known as meta-inflammation,
which is suspected to be the starting point or an early
factor in metabolic disorders associated with severe obesity
(63). This meta-inflammation is mostly driven by the leptin-
activated M1 macrophages in WAT. WAT-resident macrophages
exhibit pro-inflammatory behavior, producing IL-1β, IL-6, and
TNFα. The precursor of IL-1β is cleaved into bioactive IL-
1β by the NLRP3 inflammasome, as a result of the NFkB
pathway activation, which is induced by both pro-inflammatory
and hypoxic signals originating from the adipocytes (58).
Adiponectin can inhibit NFkB activation, but as mentioned

above, depending on the obesity severity and profile, the
effects of adiponectin can easily be overwhelmed by those of
leptin (66).

Leptin also polarizes hematopoiesis directly in the bone
marrow, promoting granulocyte, and erythroblast lines (the latter
probably acts as a protective mechanism against hypoxia) at
the expense of lymphocytes (67). When neutrophils are mature
and circulating, leptin also promotes their survival on a dose-
dependent scale (68). Higher levels of neutrophils have thus
been observed in obese patients, possibly making the neutrophil
recruitment during an inflammatory process more potent than in
patients with a normal BMI (69).

Besides suffering from a pro-inflammatory environment,
which favors macrophage activation and neutrophil production,
obese patients exhibit abnormal responses to viral infection.
As summarized by Honce et al., during influenza infections,
obese patients tend to have greater neutrophil activation and
NET development, contributing to capillary damage and
thrombosis. Such phenomena have been extensively found
in COVID-19 patients (70). Their inflammatory response
is also characterized by a lack of INF-1 production as
well as a strong cytokine production, notably IL-6, IP-10,
and type 3 INF, which are elevated in severe COVID-
19. Interestingly, patients with visceral fat accumulation
also tend to have a lower TLR3 expression in adipocytes,
muscle cells, and adipose tissue-resident macrophages,
as well as a concomitant lower production of cytokines
following exposure to viral PAMPS (71–73). This suggests
that their baseline profile resembles that found in severe
CoV infections, in which the antiviral response is less
efficient, but the overall inflammation is higher than in
other viral infections.

Finally, both obesity and metabolic disorders are associated
with vascular dysfunction. At the acute phase of lung infection,
this could result in microcirculatory abnormalities, as suggested
by intensive care physicians, and increased lung edema.

DISCUSSION

Patients with visceral fat accumulation, type 2 diabetes (74),
and hypertension are not the only subjects at a higher risk
of severe SARS-CoV-2 infection. When considering metabolic
disorders separately, diabetes, non-alcoholic liver disease, and
obstructive sleep disorders have been recently reported as risk
factors for a severe outcome (74–76). This suggests that the
metabolic dysfunction associated with these disorders more than
obesity alone might be involved in the severity of the disease in
these patients.

When comparing the effects of Ang1-7 and the inflammatory
environment of patients with adipocyte dysregulation and
metabolic disorders, an interesting pattern emerges. All the
immunological features arising from the adipocyte dysfunction—
(i.e., M1 macrophage polarization with IL-6 and TNFα
production), and neutrophil promotion—may contribute to
the development of ARDS and thus be countered by the
activation of the Ang1-7/MAS receptor axis. Ang1-7 also favors
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FIGURE 2 | Impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on pathways promoting acute respiratory distress syndrome (ARDS). By

inactivating the angiotensin conversion enzyme 2 (ACE2), SARS-CoV-2 leads to an accumulation of angiotensin 2 and a lower dosage of angiotensin 1-7, respectively

resulting in the higher promotion and lower inhibition of pro-inflammatory signals.

a strong capillary barrier and a beneficial oxidative profile,
which are altered in patients with visceral fat activation and
could help to prevent ARDS. This leads us to two hypotheses:
either patients with metabolic disorders, primarily visceral
fat accumulation, have a constitutional lower titer of Ang1-
7, as suggested by some observations (77), and a resulting
higher inflammation; or the Ang1-7 levels in these patients
are preserved and restrain the baseline inflammation. In the
first case, the inappropriate inflammatory response, added to
the diminished activation of TLR3 in obese patients, leads
to unrestrained inflammation. However, if Ang1-7 is present
in these patients and limits the meta-inflammation, acting

as a guardrail, the antagonization of ACE2 by SARS-CoV-1
and 2 in addition to the lack of de novo Ang1-7 production
could exacerbate the meta-inflammation and contribute to
the severe septic states of obese patients with COVID-19,
as illustrated in Figure 2. In both cases, the supplementation
of Ang1-7 in these patients might improve fitness upon
SARS-CoV infection.

ACE2 deficiency has already been explored by some research
teams to better understand the potential metabolic benefits of
conversion enzyme inhibitors used in hypertension, among
others. Their studies highlighted the association between
ACE2 deficiency and higher titers of pro-inflammatory
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cytokines in obese mice, as well as in mice with glucose
intolerance (78), which is closely correlated with meta-
inflammation (79). Other studies correlate ACE2 deficiency
with epicardial inflammation (80). This suggests that the
Ang1-7/MAS axis allows a better control of inflammation in
obese patients.

TLR4 is a receptor to LPS and leads to NFkB activation
and (among others) hepatic inflammation. When administered
orally to rats fed with a high-fat diet, Ang1-7 lowered hepatic
inflammation, notably through a modulation of a metabolic
pathway involving TLR4 (81). Moreover, promoting the effects
of the Ang1-7/MAS receptor axis usingmedication also improves
the aforementioned cytokines and oxidative stress in obese mice,
with a protective effect against diabetic cardiomyopathy (82).

Ang1-7 is already in the spotlight of scientific research given
its beneficial effects in preventing the development of metabolic
disorders and obesity (83). We believe that our literature
review highlights the beneficial effects of Ang1-7 on meta-
inflammation in preexisting obesity and its potential involvement
in inflammatory response and viral clearance, notably against
SARS-CoV-2. Modulation of the renin-angiotensin system has
been mentioned by others to explain the severity of COVID-
19. A recent study found a lower mortality and intubation risk
during COVID-19 among elderly patients treated with nifedipine
or amlodipine (84), although the study sample was small and
most of the accessible data do not suggest a strong connection
(85, 86). However, these drugs interfere with AT1R and not with
the genuine production of Ang1-7.

In obese patients with COVID-19, this hypothesis should
be considered. Oral or parenteral Ang1-7 supplementation
could be a therapeutic option to diminish the low-grade
systemic inflammation due to adipocyte dysfunction and
attenuate the severity of ACE2-mediated injuries consecutive
to SARS infection. Parenteral Ang1-7 has already been used
in human research on account of its property to enhance
acetylcholine-mediated vasodilatation in endothelia, with safe
outcomes (87).

CONCLUSION

COVID-19 is a viral disease with remarkable characteristics given
its high severity in obese patients and its ability to tamper ACE2
metabolism. We believe that more than being just an incentive
to accelerate research on viral infection, COVID-19 also presents

an opportunity to respond to questions that were previously
considered to be too intricate or complex, such as non-septic
inflammation or the immune system communication underlying
metabolic disorders. Understanding themultiple and interrelated
factors linking SARS-CoV-2 infection, angiotensin metabolism,
global inflammation, and metabolic disorders such as type 2
diabetes and obesity should provide us with a better insight
into the way in which these conditions and physiological states
interact outside of an acute aggression.
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