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Abstract 

Background: Underreporting cases of infectious diseases poses a major challenge in the analysis of their epidemio-

logical characteristics and dynamical aspects. Without accurate numerical estimates it is difficult to precisely quantify 

the proportions of severe and critical cases, as well as the mortality rate. Such estimates can be provided for instance 

by testing the presence of the virus. However, during an ongoing epidemic, such tests’ implementation is a daunt-

ing task. This work addresses this issue by presenting a methodology to estimate underreported infections based on 

approximations of the stable rates of hospitalization and death.

Methods: We present a novel methodology for the stable rate estimation of hospitalization and death related to the 

Corona Virus Disease 2019 (COVID-19) using publicly available reports from various distinct communities. These rates 

are then used to estimate underreported infections on the corresponding areas by making use of reported daily hos-

pitalizations and deaths. The impact of underreporting infections on vaccination strategies is estimated under differ-

ent disease-transmission scenarios using a Susceptible-Exposed-Infective-Removed-like (SEIR) epidemiological model.

Results: For the considered locations, during the period of study, the estimations suggest that the number of 

infected individuals could reach 30% of the population of these places, representing, in some cases, more than six 

times the observed numbers. These results are in close agreement with estimates from independent seroprevalence 

studies, thus providing a strong validation of the proposed methodology. Moreover, the presence of large numbers of 

underreported infections can reduce the perceived impact of vaccination strategies in reducing rates of mortality and 

hospitalization.

Conclusions: pBy using the proposed methodology and employing a judiciously chosen data analysis implementa-

tion, we estimate COVID-19 underreporting from publicly available data. This leads to a powerful way of quantifying 

underreporting impact on the efficacy of vaccination strategies. As a byproduct, we evaluate the impact of underre-

porting in the designing of vaccination strategies.

Keywords: Underreported infections, Underreporting estimation, Vaccination strategies, Epidemiological models, 

Stable rates of hospitalization and death, Numerical simulation
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Background
Surveillance and notification systems in Public Health are 

subject to uncertainties that cause difficulties to estimate 

the morbidity and mortality rates affecting populations. 

Among the diverse causes of uncertainty two distinct 

levels of surveillance in Public Health should deserve 

special attention, under-ascertainment, when not all 

cases seek healthcare; and underreporting, a failure to 

adequately report symptomatic cases that have sought 

medical advice [1]. In the context of mortality, it is pos-

sible to identify the concepts of under-ascertainment and 

underreporting since both events are expected to happen 

in real systems of Public Health. �us, in what follows, 
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we unify under-ascertainment and underreporting as 

“underreporting”.

Underreporting cases of infectious diseases poses a 

major challenge in the analysis of their epidemiological 

characteristics and dynamical aspects. Without accu-

rate numerical estimates it is difficult to precisely quan-

tify the proportions of severe and critical cases, as well 

as the mortality rate [1]. Such estimates can be provided, 

e.g., by testing the presence of the virus. However, dur-

ing an ongoing epidemic, such testing implementation is 

a daunting task.

Different strategies were proposed to estimate the true 

amount of COVID-19 cases. Some of these strategies are 

based on seroprevalence studies [2–6] that found sero-

prevalence proportions much larger than the reported 

accumulated cases in different periods of 2020 in Chicago 

and NYC, as well as across Denmark, Mexico, and the 

United States, respectively. Other works estimate under-

reported infections and deaths from the official reports 

in combination with different techniques. For example, 

in [7, 8] the authors consider the excess of deaths caused 

by respiratory infections in 2020 and found significant 

underreporting proportions in Brazil. �e number of 

excess deaths is also estimated for England and Wales in 

[9]. Based on data provided by the World Heath Organi-

zation (WHO), the article [10] compares case-fatality risk 

measures for different countries to estimate underreport-

ing. By using the data from South Korea as a benchmark, 

the authors in [11] built an underreporting estima-

tion technique based on the predictions of a suscepti-

ble-infected-removed-type (SIR-type) model, that are 

adjusted using demographic data from different places. 

�e work [12] proposes a Bayesian framework based on 

an SIR-type model to estimate the true case fatality ratio 

(CFR) and the corresponding underreporting using offi-

cial reports from the Brazilian health authority. Similarly, 

in [13], the authors use a Susceptible-Exposed-Infected-

Removed-type (SEIR-type) model to estimate the CFR 

and the underreported cases in Iran, based on data from 

WHO and the Iranian Health authority. Another appli-

cation of an SIR-type model to estimate underreport-

ing was performed in [14], using data from California 

and Florida. In [15], the authors estimate underreported 

deaths in Italy by comparing mortality data and mak-

ing use of regression techniques, as well as demographic 

information. �e work [16] proposes a machine learn-

ing algorithm to predict underreported infections for all 

the 50 states in the US and other countries, using official 

reports and the infection-fatality-rate estimated in [17] as 

the training dataset.

COVID-19 control is dependent, in complex non-linear 

ways, on several variables that include the incidence of 

infection, on non-pharmaceutical interventions like the 

use of masks and social distancing, the speed with which 

the vaccination can be implemented, and the efficacy of 

the available vaccines. �e uncertainties and interactions 

between these variables make the use of mathematical 

models to quantify and optimise the effects of vaccina-

tion on the COVID-19 pandemic urgently needed [18]. 

Mathematical models, therefore, have played a key role 

in helping the understanding of COVID-19 dynamics as 

well as in determining the best decisions of mitigation 

strategies [19]. In this sense, models remain essential 

tools for evidence synthesis, planning and forecasting, 

decision analysis for COVID-9 control, as well as policy-

making [20].

�is work presents a methodology to estimate under-

reported infections based on approximations of the sta-

ble rates of hospitalization and death found using daily 

reports of infections, hospitalizations, and deaths, as well 

as testing data. As an important byproduct, we evaluate 

the impact of underreporting in the designing of vacci-

nation strategies because the larger the number of unac-

counted infections, the larger the chances of vaccinating 

an already immune individual. �is can restrict the capa-

bility of vaccination in reducing hospitalizations and 

deaths, as simulated scenarios using an SEIR-like model 

[21] show. It is worth mentioning that, understanding 

such limitations is particularly important to help scien-

tists and authorities addressing the politicization of the 

vaccination, the polemic around safety and efficacy of the 

vaccines, and the anti-vaccination campaigns that con-

tribute to vaccination hesitancy and vaccination delay 

[22, 23].

Methods
�is section starts by presenting how the stable rates 

of hospitalization and death are obtained. �en, the 

technique to estimate the potential underreporting 

of COVID-19 infections is introduced. Finally, a Sus-

ceptible-Exposed-Infected-Removed-like (SEIR-like) 

epidemiological model is proposed to quantify how 

underreporting may affect vaccination strategies. �e 

schematic description for this methodology is shown in 

Fig. 1.

In order to find stable rates of hospitalization and 

death, we seek specific time periods when the daily rate 

of testing is sufficiently large with respect to the popu-

lation size, and the number of positive tests is small 

enough. During such periods we evaluate daily empiri-

cal rates of hospitalization and death, looking for those 

whose rates fluctuate around some mean value. �is is 

performed by means of an accurate data analysis produc-

ing different statistical indicators leading to the necessary 

correction. A schematic representation that summarizes 

the proposed methodology can be found in Fig.  1. We 
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use time series of seven-day moving averaged reports 

from Chicago and New York City (NYC), in the US, the 

province of Buenos Aires (BA), in Argentina, and Mexico 

City (MC), in Mexico. Since COVID-19 severity strongly 

depends on age and gender [17, 24–27], we evaluate 

the above-mentioned rates accounting for demography 

to improve the estimation accuracy of the number of 

infections. �e latter will be called corrections. �ese 

corrections are evaluated using the empirical rates of 

hospitalization and death as follows: For an observed rate 

of hospitalization or death, and a given day in the time 

series, we evaluate the corresponding infection number. 

For example, if for this day the reported hospitalization 

rate is one and the projected rate is one half, then, the 

correction is twice the reported infections.

Rates of hospitalization and death

�e procedure used to obtain stable rates of hospitaliza-

tion and death is presented. For this, we firstly use daily 

total numbers of new infections, hospitalizations and 

deaths associated to COVID-19 in Chicago, then the 

reports for eight age ranges. �e gender rates are also 

obtained, but the procedure is omitted, since it is similar 

to the case of age range.

Stable Rates of Hospitalization and Death Let us 

consider the time series of daily numbers of COVID-

19 infections, hospitalizations, and deaths, as well as 

the performed and positive tests in Chicago, during 

the period 01-Mar-2020 to 24-Dec-2020, available at 

https:// www. chica go. gov/ city/ en/ sites/ covid- 19/ home. 

html, and accessed on 28-Dec-2020. Accordingly to the 

aforementioned website, COVID-19 testing is focused on 

those individuals who have COVID-19 symptoms or who 

had contact with suspected or confirmed cases.

Since we are looking for the stable distribution of the 

hospitalization and death rates related to COVID-19 

infections, to estimate underreporting we must find a 

period when the disease spread is stable and accurately 

observed. In other words, we consider the period when 

the number of tests performed daily is large, with respect 

to the population size, and the number of observed cases 

is small, with respect to the number of tests.

Figure  2 presents the daily number of performed and 

positive tests, as well as the rate of positive tests for 

01-Mar-2020 to 23-Dec-2020. From 02-Jun-2020 to 

05-Oct-2020, the percentage of positive tests stayed 

below 10%, which may indicate that the number of tests 

performed during this period is much larger than the 

number of COVID-19 infections. In addition, during that 

period, the daily number of tests was above 3000, repre-

senting more than 0.1% of the population of Chicago esti-

mated for 2020. �us, we assume that during that period, 

the dataset from Chicago meets the necessary conditions 

to find the stable rates of hospitalization and death men-

tioned above.

Let us define the daily rates of hospitalizations and 

deaths. Firstly, let I  , H and D denote, respectively, the 

time series of daily reports of COVID-19 infections, hos-

pitalizations, and deaths. �en, the rates of hospitaliza-

tions and death amongst infective individuals, as well 

as the death rate of hospitalized individuals are defined, 

respectively, as

Fig. 1 Methodological workflow for the underreporting quantification

https://www.chicago.gov/city/en/sites/covid-19/home.html
https://www.chicago.gov/city/en/sites/covid-19/home.html
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In [28], the mean time from onset to hospitalization is 

1.2 day, so, we set τH = 1 . �e mean time from hospital 

admission to death is given by the sum of the mean times 

from hospitalization to admission to an intensive care 

unit (ICU), and from ICU admission to death were taken 

from References [29] and [30], respectively. �us, we set 

τD = 12 and τDH = 11.

Figure  3 presents the daily rates obtained using the 

formulas in Eq. 1 for the data from Chicago. During the 

period 01-Aug-2020 to 05-Oct-2020, all the three rates 

apparently stabilized around their mean values. In this 

period the series of tests performed daily is large enough 

and the number of positive tests is small enough, accord-

ingly to our assumptions. Moreover, the outbreaks of 

March to May and October to December seem to not 

affect the reports on these dates. �erefore, we assume 

that the daily rate values obtained during such period are 

indeed observations of the stable rates of hospitalization, 

death, and death amongst hospitalized individuals. �e 

median value and 90% confidence interval (90% CI) can 

be found in Table 1, in the Citywide row.

(1)

rH (t) =

H(t)

I(t − τH )
, rD(t) =

D(t)

I(t − τD)
, and

rDH (t) =

D(t)

H(t − τDH )
.

We also estimate the rates of hospitalization, death, and 

death in hospital for age ranges and genders. �e results 

can also be found in Table  1. As observed in previous 

works [17, 24–27, 31–33], the observed rates are larger 

amongst older than in younger individuals. Moreover, 

the male population has a higher death rate, although 

presenting a lower rate of hospitalization than the female 

population.

When the deaths in hospital reach values above 100% 

it indicates that the number of daily registered deaths 

is larger than the number of daily hospitalizations. �is 

may indicate that there are individuals dying before being 

hospitalized.

During the outbreak of October to December, the hos-

pitalization rate presented lower values than the ones 

observed during the period 01-Aug-2020 to 05-Oct-2020, 

whereas the observed death rate remained stable dur-

ing both periods. Consequently, death rates in hospital 

increased considerably during the outbreak, which may 

indicate that only individuals with more severe symp-

toms are looking for hospital care, decreasing the hospi-

talization rate.

During the outbreaks of March to May and Octo-

ber to December, the death rate in hospital reached 

values higher than 40%, which is more than twice the 

median value obtained during the period 01-Aug-2020 

to 05-Oct-2020. �is may indicate, as above, that only 

Fig. 2 Left: Daily numbers of performed and positive tests of COVID-19 in Chicago. Right: The corresponding daily positive rate. The period is 

01-Mar-2020 to 23-Dec-2020. The solid horizontal line represents a reference of 10%

Fig. 3 Daily rates of hospitalization (left), death (center) and death amongst hospitalized individuals (right) from 01-Mar-2020 to 23-Dec-2020, in 

Chicago. The dark area shows the period when the rate seems to stabilize, i.e., 01-Aug2020 to 05-Oct-2020. The horizontal solid lines represent the 

median of the rates observed during 01-Aug-2020 to 05-Oct-2020
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severely ill people are most likely to search for hospitali-

zation, reducing the observed rate values. �e death rates 

in both outbreaks are considerably different. In the first 

outbreak the rate reached values higher than 5%, whereas 

in the second one, it remained around the median value 

observed during the period 01-Aug-2020 to 05-Oct-2020, 

i.e., 0.98%. Moreover, the number of individuals tested 

daily during the first outbreak is much lower than the 

observed ones during the other two periods.

�us, based on the insights given by the observed rates 

of hospitalization and death in Chicago, as well as the 

number of tests performed, we may infer that, during 

the outbreak of March to May, the number of COVID-19 

infections was considerably underestimated. Notice that 

we are also assuming that the disease did not change dur-

ing the period of study, keeping the same rates of severity 

and mortality.

Rates by Age Range In order to analyze the differences 

between the outbreaks of March to May and October to 

December in more details, we consider the daily rates of 

hospitalization, death, and death in hospital by age range. 

�e daily rates can be found in Fig.  4, and the corre-

sponding mean values, as well as 90% CIs are in Table 1.

During the outbreak of October to December, the 

observed rates of hospitalization, death and death in 

hospital corresponding to the age range of 0–17 years 

old remained stable, around the mean values obtained 

in the period 01-Aug-2020 to 05-Oct-2020. For the 

other age ranges, the hospitalization rates decreased 

to values below the observed mean values of the period 

01-Aug-2020 to 05-Oct-2020, whereas, the death rates 

stabilized around the mean, and the death rates in hos-

pital increased considerably above the mean.�is is an 

additional evidence that, during the outbreak, only peo-

ple with more severe symptoms are looking for hospi-

tal care, decreasing the hospitalization rate for all age 

ranges, but 0–17 years old.

When we look at the rates during outbreak of March to 

May, for every age range, all the rates of hospitalization 

and death are considerably higher than the ones observed 

during period 01-Aug-2020 to 05-Oct-2020 and on the 

outbreak of October to December. If we assume that the 

severity and mortality rates of COVID-19 remained con-

stant, we can also assume that from March to May the 

reports of COVID-19 infections were underestimated. 

On the other hand, since the death rates during Octo-

ber to December remained around the median values 

observed on 01-Aug-2020 to 05-Oct-2020, it seems that 

during this second outbreak underreporting was less 

likely to happen.

Underreporting estimation

�e aim of the present section is to present the techniques 

proposed to estimate underreporting by using the observed 

rates of hospitalization and death. We divide the rates of 

hospitalization and death by the corresponding values 

observed during the period when they stabilize around a 

mean value (period of stability). �e results are then mul-

tiplied by the reported numbers of infections. More pre-

cisely, if rH (t) and rD(t) denote, respectively, hospitalization 

and deaths rates reported on the t-th day, using the formu-

las in Eq. 1, h and d denote some of the rates of hospitali-

zation and death, respectively, reported in the period of 

stability, and I  denotes the time series of reported COVID-

19 infections, then, the corrected numbers are defined as

Table 1 Median values and 90% CI (numbers inside the parentheses) of the daily rates of hospitalization, death and death in hospital 

observed during the period 01-Aug-2020 to 05-Oct-2020 in Chicago

The rates are estimated for eight age ranges, two genders, and citywide

Hospitalization rate Death rate Death rate in hospital

Age range

 0–17 1.12 (0.34–2.59) 0 (0–0) 0 (0–0)

 18–29 2.05 (1.46–2.52) 0 (0–0.16) 0 (0–7.14)

 30–39 2.69 (1.54–4.28) 0.22 (0–0.45) 7.69 (0–27.27)

 40–49 4.22 (2.15–6.19) 0.31 (0–1.23) 8.89 (0–30.77)

 50–59 6.45 (3.83–10.36) 1.11 (0.37–1.7) 15.69 (5.56–26.67)

 60–69 12.61 (8.43–17.12) 2.79 (1.26–4.4) 20.69 (10.53–33.33)

 70–79 24.66 (14.05–32.14) 6.63 (4.13–12) 30.84 (18.18–45.45)

 80 + 36.24 (19.35–50) 17.57 (8.33–34.62) 53.85 (19.05–128.57)

Gender

 Female 5.3 (4.16–5.96) 0.8 (0.46–1.22) 16.06 (8.62–23.53)

 Male 5.05 (3.76–6.3) 1.1 (0.84–1.65) 21.21 (15.28–36.17)

 Citywide 5.2 (3.95–5.87) 0.98 (0.67–1.53) 18.91 (12.12–28.87)
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Fig. 4 Daily rates of hospitalization (left), death (center) and death amongst hospitalized individuals (right) from 01-Mar-2020 to 23-Dec-2020, in 

Chicago, for each age range. The dark area shows the period when the rate seems to stabilize, i.e., 01-Aug-2020 to 05-Oct-2020. The horizontal solid 

lines represent the median values of the rates observed during 01-Aug-2020 to 05-Oct-2020
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where IH and ID represent the time series of infec-

tions corrected by the hospitalization and death rates, 

respectively.

In order to avoid indefinite values in the correction pro-

cedure, whenever the reported hospitalization or death 

rate value is zero, we replaced it by the corresponding 

median value. If the median value is also zero, then, the 

corresponding formula in Eq. (2) is set to one.

The epidemiological model

In order to evaluate the impact of underreporting infec-

tions on a random mass vaccination strategy, we propose a 

SEIR-like model [21, 34] to design possible scenarios, con-

sidering different situations. �e epidemiological model 

has the following nine compartments: susceptible (S), vac-

cinated (V), exposed (E), asymptomatic and infective ( IA ), 

mildly infective ( IM ), severely infective or admitted to a 

hospital ( IS ), critically infective or admitted to ICU ( IC ), 

removed (R), and deceased (D). We only consider as vac-

cinated those individuals in the susceptible compartment 

that receive a vaccine. So, the vaccine efficacy is against 

infection. If someone already immune or infective receives 

a vaccine, he or she does not enter to the V compart-

ment. �e system of ordinary differential equations is the 

following:

(2)

IH (t − τH ) =I(t − τH )max

{

1,
rH (t)

h

}

, and

ID(t − τD) =I(t − τD)max

{

1,
rD(t)

d

}

,

(3)Ṡ = −S(βAIA + βMIM + βSIS + βC IC) − νS

(4)V̇ = νS

(5)Ė = S(βAIA + βMIM + βSIS + βC IC) − σE

(6)İA = (1 − p)σE − γR,AIA

(7)İM = pσE − (γR,M + αS) : IM

(8)İS = αSIM − (γR,S + αC)IS

(9)İC = αC IS − (γR,C + δD)IC

(10)Ṙ = γR,MIM + γR,SIS + γR,C IC + γR,AIA

(11)Ḋ = δDIC .

�e schematic representation of the model defined by 

Eqs. (345678910)–(11) can be found in Fig. 5.

�e parameters βM(t) , βS(t) , and βA(t) are, respectively, 

the time-dependent transmission rates amongst mildly, 

severely, critically, and asymptomatic infective individu-

als. �e daily vaccination rate is ν and the mean time 

from contagion to becoming infective is σ−1 . �e recov-

ery rate of mildly, severely, critically and asymptomatic 

infection are denoted, respectively, by γR,M , γR,S , γR,C , 

and γR,A . �e parameters αS and αC represent the rates 

of admission to hospital and to an ICU. �e death rate of 

those individuals critically ill is δD . Accordingly to [32], 

only people in critical conditions die by COVID-19, thus, 

we do not include death rates in the other compartments.

It is worth mentioning that the present model allows 

the incorporation of virus seasonality since the transmis-

sion parameters are time-dependent and adjusted to the 

daily reported infection.

�e parameters βS , βC and βA are defined as follows:

�ese definitions mean that, severely, critically, and 

asymptomatic ill individuals have a reduced capacity of 

infecting people, due to movement restrictions (in hos-

pital or in an ICU) or by the characteristics of asympto-

matic infection [35]. �e mean time between infection 

and onset of symptoms σ−1 is set to 5.1, following [28]. 

�e proportion of exposed individuals becoming mildly 

infective is p, which is set to 0.83, following [35]. �e 

recovery rates of mildly, severely, and critically ill individ-

uals are set to one minus the rates of hospitalization, ICU 

admission and death, respectively. All the asymptomatic 

individuals will recover in 14 days, thus, γR,A = 14−1 , 

which is the average-time until recovery for mildly infec-

tive individuals accordingly to [32]. �e rates of hospitali-

zation, ICU admission and death are set to the constant 

values:

βS = 0.1βM , βC = 0.01βM , and βA = 0.58βM .

Fig. 5 Schematic representation of the SEIR-type model in 

Eqs. (345678910)–(11)
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where the ICU admission rate was obtained in [36]. �e 

other rates can be found in Table 1. For more details on 

the numerical implementation of the model and the cor-

responding parameter estimation technique, we refer to 

[34].

�e model’s solution, simulation, and the estimation 

procedure were implemented in MATLAB R2019b (�e 

MathWorks, Inc., Natick, USA).

Results
Underreporting Estimation In order to estimate under-

reported infections, the formulas in Eq.  (2) are used, 

considering the daily cases of COVID-19. �e graphical 

comparison between the observed and corrected num-

bers of infections for Chicago can be found in Fig.  6. 

Table  2 presents the corrected and observed accumu-

lated numbers of COVID-19 infections in Chicago, dur-

ing the period 01-Mar-2020 to 23-Dec-2020. In order to 

observe the effect of corrections, we divided the period 

αS = 0.051, αC = 0.39, δD(t) =

0.186

0.39
,

01-Mar-2020 to 23-Dec-2020 into three periods, namely, 

01-Mar-2020 to 31-July-2020, 01Aug-2020 to 05-Oct-

2020, and 06-Oct-2020 to 23-Dec-2020. Additional 

results considering the data from other places can be 

found in the Additional file 1.

Corrections using hospitalization rates present smaller 

values than the ones obtained with death rates. �is can 

be explained by the considerably larger values of the 

death rate in hospital observed during the outbreaks of 

March to May and of October to November. �e esti-

mated numbers for 01-Mar-2020 to 31-July-2020 are 

larger than the ones estimated for other periods, indi-

cating that underreport can be more likely in the begin-

ning of the pandemic. Corrections suggest that, for 

01-Mar-2020 to 31-July-2020, the number of infections 

can be 32–632% larger. For 01-Mar-2020 to 23-Dec-2020, 

COVID-19 infections can be 10–238% larger. �us, from 

8% to 25% of the population of Chicago could have being 

infected in the study period, instead of the observed pro-

portion of 7.3%. Such figures are in remarkable agree-

ment with with the seroprevalence study [2], carried out 

Fig. 6 Corrected and reported series of daily infections in Chicago from 01-Mar-2020 to 23-Dec-2020, using the rates of hospitalization (left 

column) and death (right column) from Table 1. First row uses the daily reports, the second uses daily reports by gender, and the third one uses 

daily reports by age range. The filled envelopes are 90% confidence intervals (CIs)
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between June and December 2020 in Chicago, which 

pointed out a seroprevalence of 17.9%.

During larger outbreaks we expect that the stabiliza-

tion of the daily rates does not occur, as we observed in 

the case of the daily hospitalization rate during the sec-

ond wave in Chicago. So, we did not use values from this 

period in our analysis. On the other hand, the daily death 

rate remained stable during the second wave in Chicago, 

suggesting its robustness.

�e datasets from NYC do not have daily reports by 

age range or gender. We considered two different peri-

ods to estimate the stable rates of hospitalization and 

deaths and corrected infections can be found in Addi-

tional file 1: Table S.2, representing 7.5–30% of the NYC 

population, instead of the observed proportion of 4.41%. 

A seroprevalence study [3] estimated about 1.7 million 

accumulated infections in NYC by the end of May, which 

is very similar to our results for the same period, i.e., 1.47 

million (1.25 million–2.18 million).

For BA, unfortunately, during the period of study the 

percentage of positive tests was mostly above 10%, mak-

ing difficult the empirical analysis. However, we con-

sider the period when the positive rate was below 20%. 

Additional file  1: Table  S.4 presents the estimated rates 

of hospitalization and death. Death rates for individu-

als younger than 60 years old are like the corresponding 

rates observed in Chicago. However, for older individu-

als in BA, the death rates are considerably larger. Correc-

tions from Additional file  1: Table  S.5 suggest infection 

numbers varying from 3.4% to 303% larger than the 

notified cases, representing 4.7–18% of the estimated 

BA population for 2020, instead of the reported 4.53%. 

Unfortunately, we could not find a seroprevalence study 

for BA that could be used for comparison.

For MC, we could not identify a period when the rates 

of death or hospitalization stabilized around mean val-

ues. �us, we used the rates estimated for Chicago to 

provide corrections. Using the death rates by age-range 

from Chicago seems to be the more accurate way to esti-

mate underreported cases in other places, since the data 

from Chicago satisfied the hypotheses made to find stable 

rates. Corrections are 44–681% larger than the observed 

cases, representing 5.39–29.1% of the estimated popula-

tion of MC for 2020. In spite of the issues of the MC data, 

such estimates are pretty much similar to the seropreva-

lence of 30.7% (95% CI: 28.3–33.1%) found in the study 

[5] during December 2020, in the Region Central in Mex-

ico, that includes Mexico City.

In Denmark, from 01-Sep-2020 to 31-Oct-2020, more 

than 4% of the countrywide population was tested 

weekly, with positiveness proportions of less than 2%. 

We used this period to estimate the rates of death and 

hospitalization in Additional file 1: Table S.7. �e corre-

sponding estimations of accumulated cases in 2020 can 

be found in Additional file 1: Table S.8. Corrections are 

23.6–295% larger than the reports, representing 3.35–

10.7% of the estimated Danish population in 2020. Such 

numbers closely agree with the estimated seroprevalence 

of 4.0% (95% CI: 3.4–4.7%) found by the study [4].

Underreport Impact on Vaccination Scenarios  Let us 

now turn to the impact of underreporting on the capacity 

of vaccination strategies in reducing hospitalizations and 

deaths. We consider three different scenarios. �e first 

two consider random-mass vaccination under contained 

Table 2 Accumulated numbers of corrected and reported infections in Chicago from 01-Mar-2020 to 23-Dec-2020. Corrections use 

the median values and the 90% CI values from Table 1

Period By hopitalization rate By death rate Observed

Citywide correction

 01-Mar to 31-July 169,126 (149,945–222,446) 290,123 (186,707–423,991) 61,905

 01-Aug to 05-Oct 21,772 (21,157–27,321) 22,607 (21,134–30,861) 20,790

 06-Oct to 23-Dec 113,992 (113,992–113,994) 127,476 (115,017–167,933) 113,693

 01-Mar to 23-Dec 304,890 (285,095–363,762) 440,207 (322,859–622,785) 196,388

Correction by gender

 01-Mar to 31-July 170,244 (143,304–223,130) 297,418 (197,599–453,493) 61,905

 01-Aug to 05-Oct 21,994 (21,049–27,231) 23,616 (21,085–33,237) 20,790

 06-Oct to 23-Dec 113,561 (113,561–113,712) 129,178 (115,451–178,659) 113,693

 01-Mar to 23-Dec 305,798 (277,914–364,073) 450,212 (334,135–665,389) 196,388

Correction by age range

 01-Mar to 31-July 141,280 (97,351–254,365) 168,202 (80,124–264,252) 61,905

 01-Aug to 05-Oct 23,998 (21,209–40,851) 25,180 (21,146–31,802) 20,790

 06-Oct to 23-Dec 114,188 (113,979–132,578) 118,656 (113,986–146,240) 113,693

 01-Mar to 23-Dec 279,466 (232,539–427,795) 312,038 (215,257–442,295) 196,388
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and uncontained spread, whereas in the third an age-

range-dependent vaccination is performed under con-

tained spread. �e parameters used in these examples are 

estimated using reports from Chicago and NYC [34].

In all three cases we assume that the proportion of the 

population in the recovered, exposed or in some infec-

tive compartment in the model in Eqs. (345678910)–(11), 

ranges from 5% to 30%. Moreover, only the amount of 5% 

is observed in all cases. �is means that the probability 

of vaccinating someone that has already had contact with 

the virus is proportional to the percentage of the popu-

lation distributed in the exposed, non-hospitalized and 

infective, and recovered compartments that were not 

included in the reports. �us, in our simulations if 5% 

of the population was infected, then 100% of the vacci-

nated individuals were susceptible, whereas, if 30% of the 

population was infected, then only 73.4% of the vacci-

nated individuals were susceptible. We also assume that 

the vaccine is 90% effective, and 0.5% of the population 

is vaccinated every day, for 150 days. �e hospitaliza-

tion rate also decreased proportionally to the number of 

underreports.

Under contained spread, the transmission parameter 

amongst mildly infective individuals is set to βM = 0.23 . 

Under uncontained transmission, the parameter βM is set 

to 0.44. �e resulting accumulated numbers during the 

vaccination strategy, in both situations, can be found in 

Table 3.

�e assumed size of this hypothetical population is 

of 2,693,976 individuals. In Table 3, the numbers in the 

row Total Vaccinated correspond to the vaccinated indi-

viduals that were in the susceptible compartment. As 

the underreported infections increase, the number of 

effectively vaccinated individuals decreases. �e recov-

ered individuals are considered permanently immune. 

�e capacity of vaccination in reducing hospitaliza-

tions and deaths is hampered due to underreporting, 

both under contained and uncontained disease spread. 

However, if the disease transmission is not under con-

trol, then, as underreport increases, the number of hos-

pitalizations and deaths can decrease, indicating the 

achievement of herd immunity. �erefore, estimating 

underreporting helps to quantify and explain possible 

limitations of vaccination strategies.

In the age-range-dependent vaccination case, we use 

the same vaccination efficacy, and vaccination starts with 

those aged 80 years or older, then, 10 days after, those 

individuals aged 70 years or older are included, and so 

on. Individuals younger than 18 years are not vaccinated. 

�e experiment runs during 150 days, and at each day, 

0.5% of the population in each age range included in the 

strategy for such day is vaccinated. �e resulting accumu-

lated numbers can be found in Table 4. �e model used 

to simulate this example is the generalization of the pre-

sent one as in [23, 34].

�e accumulated numbers in Table 4 present a similar 

pattern to those in the previous examples, as expected, 

illustrating that the underreporting issue can also limit 

the effect of age-range-dependent vaccination strategies.

Discussion
�is work proposes possible ways to estimate underre-

ported COVID-19 infections, based on daily reported 

of cases, hospitalizations, and deaths, considering 

demography. �e proposed methodology of correc-

tion is then applied to data from Chicago, NYC, BA, 

Table 3 Accumulated numbers of recovered, vaccinated, hospitalized, and deceased individuals after a random mass vaccination 

strategy of 150 days, when the proportion of individuals that has already had contact with the virus ranges from 5% to 30% of the 

population, whereas reports represent only 5%

Contained spread

 Proportion 5% 10% 15 % 20% 25% 30%

 Initial recovered 117,704 237,730 357,756 477,782 597,808 717,834

 Total recovered 195,683 377,439 542,234 696,487 842,935 983,440

 Total vaccinated 1,808,276 1,537,035 1,446,621 1,356,207 1,265,794 1,175,380

 Hospitalizations 3192 4847 5993 6625 6892 6893

 Deaths 82 120 147 162 167 167

Uncontained spread

 Proportion 5% 10% 15 % 20% 25% 30%

 Initial recoverd 117,181 236,675 356,168 475,661 595,154 714,648

 Total recovered 428,580 697,122 866,907 1,006,654 1,130,436 1,244,991

 Total vaccinated 1,800,249 1,530,212 1,440,200 1,350,187 1,260,175 1,170,162

 Hospitalizations 13,107 16,418 17,063 16,554 15,500 14,185

 Deaths 200 250 259 251 235 215
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MC, and Denmark. Moreover, it estimates the poten-

tial impact of underreporting in vaccination strategies 

by using an SEIR-like model with parameters estimated 

from real data.

Estimating underreporting in an ongoing epidemic 

is a hard task, and only a seroprevalence study can 

address this task appropriately. However, if we can 

estimate the stable rates of hospitalization and death 

related to the disease, then we can use reports to esti-

mate the correct number of infections. �e major dif-

ficulty of this approach is to identify the period when 

these rates can be observed or approximated. Firstly, we 

assume that the number of tests performed daily must 

be sufficiently large, then the number of positive tests 

must be sufficiently small. Setting up this is subtle, and 

we must compare the data from different places. For 

Chicago and NYC, we set that the rate of positive tests 

must be below 10%, for BA, it was 20%, and for Den-

mark it was 2%, since we identified, in the correspond-

ing periods, a stabilization of the rates around mean 

values. For MC, we could not find such period.

For Chicago, NYC, MC, and Denmark during the 

period of study, corrections suggest that the number 

of infected individuals could reach 30% of the popula-

tion of these places, which represents, in some cases, 

more than six times the reported numbers. �ese esti-

mated numbers are in remarkable agreement with the 

estimates from seroprevalence studies carried out in 

Chicago, NYC, MC, and Denmark during 2020 [2–5]. 

Moreover, the death rate corresponding to 0.97% esti-

mated in [3] for NYC also agrees with the estimated 

death rates from Additional file 1: Table S.1, i.e., 1.22% 

(90% CI: 0.82–1.42%). Such estimates must be con-

sidered when evaluating the aftermath of vaccina-

tion strategies, since underreporting, as illustrated by 

numerical examples, can reduce the impact of vacci-

nation in reducing mortality and hospitalization rates. 

Estimating underreports can be useful, for example, to 

adjust the daily numbers of given vaccines in order to 

reach the target of reducing the numbers of infections, 

hospitalizations, and deaths.

Using age-dependent death rates seems to be a reliable 

way of estimating underreporting, since such rates can 

be used even if the age pattern of the infected population 

changes during the epidemic. �us, we expect that the 

more demographic information we incorporate into the 

death rates, the more reliable are the corrections.

We tested the proposed methodology with data from 

BA and MC where the positive test proportion was 

considerably higher than 5% to “stress test” the model, 

verifying if our premises were still valid when the small 

positiveness proportion was violated. For MC, we com-

pared our results with the estimates from the seropreva-

lence study [5] finding again a close agreement between 

them, in spite of the issues in MC data. �is illustrate 

the possibilities of this approach, since in the develop-

ing world seroprevalence studies are generally scarce, 

and our methodology can shed light on the underreport-

ing issue, providing at least a rough picture of the real 

number of infections. We believe that our approach rep-

resents an accurate alternative to seroprevalence stud-

ies that allows anyone who has access to daily reports of 

infections, deaths and hospitalizations, as well as testing 

data, to keep track on the underreporting issue. Moreo-

ver, for disease surveillance purposes, it can be used as 

the main underreporting estimation technique or as an 

independent source of results to validate results from 

seroprevalence studies.

By considering different vaccination strategies under 

different disease spread trends, we observe that under-

reporting can also limit the impact of vaccination in 

the reduction of hospitalizations and deaths, based 

on the results obtained with the SEIR-type model in 

Eqs (345678910)–(11).

Conclusions
In summary, using the proposed methodology described 

in Fig. 1 and employing a judiciously chosen data analysis 

implementation, we estimate COVID-19 underreport-

ing from publicly available data. �is leads to a powerful 

way of quantifying underreporting impact on the effi-

cacy of vaccination strategies. Furthermore, based on the 

insights given by the observed rates of hospitalization 

Table 4 For the (under) reported number of 5%, we present the accumulated numbers of recovered, vaccinated, hospitalized, and 

deceased individuals after an age-range-dependent vaccination strategy of 150 days, when the proportion of individuals that has 

already had contact with the virus ranges from 5% to 30% of the population

Proportion 5% 10% 15 % 20% 25% 30%

Initial recovered 123,419 252,838 382,257 511,676 641,095 770,514

Total recovered 367,327 555,216 687,900 801,158 908,024 1,014,017

Total vaccinated 1,808,276 1,537,035 1,446,621 1,356,207 1,265,794 1,175,380

Hospitalizations 6927 8136 7771 6923 5971 5061

Deaths 148 166 152 128 105 84
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and death in Chicago, as well as the number of tests per-

formed, we may infer that, during the outbreak of March 

to May 2020, the number of COVID-19 infections was 

considerably underestimated. Another byproduct of our 

analysis is that during the outbreak, only people with 

more severe symptoms were looking for hospital care 

thus decreasing the hospitalization rate for all age ranges 

except for the 0–17 years old cohort. Finally, the stud-

ies performed for the Chicago case were also conducted 

for Mexico City, the Province of Buenos Aires, and Den-

mark resulting in similar conclusions. A natural follow up 

would be to extend these studies to other metropolitan 

areas. In the cases of Chicago, NYC, MC, and Denmark, 

estimated underreported infections closely agreed with 

seroprevalence studies.

Moreover, by considering vaccination strategies under 

different disease spread scenarios, using an SEIR-type 

model, we found that underreporting can also limit the 

observed reduction in the numbers of deaths and hospi-

talizations caused by vaccination.
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