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Abstract

One of the driving concerns during any epidemic is the strain on the healthcare system. As we have seen many
times over the globe with the COVID-19 pandemic, hospitals and ICUs can quickly become overwhelmed by cases.
While strict periods of public health mitigation have certainly helped decrease incidence and thus healthcare
demand, vaccination is the only clear long-term solution. In this paper, we develop a two-module model to
forecast the effects of relaxation of non-pharmaceutical intervention and vaccine uptake on daily incidence, and
the cascade effects on healthcare demand. The first module is a simple epidemiological model which incorporates
non-pharmaceutical intervention, the relaxation of such measures and vaccination campaigns to predict caseloads
into the the Fall of 2021. This module is then fed into a healthcare module which can forecast the number of
doctor visits, the number of occupied hospital beds, number of occupied ICU beds and any excess demand of
these. From this module we can also estimate the length of stay of individuals in ICU. For model verification
and forecasting, we use the four most populous Canadian provinces as a case study.

Keywords: COVID-19, healthcare demand, public health mitigation, vaccination
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1 Introduction

COVID-19 continues to strain healthcare systems globally [38, 24, 35, 3]. To combat the spread of SARS-CoV-2,
many countries have implemented various public health mitigation measures (i.e., quarantine, social distancing
recommendations, schools closures, border closures) and have cancelled elective healthcare procedures to reduce
healthcare demand and occupancy [22, 27, 8]. Vaccination campaigns have also been launched in ways to
minimize healthcare demand, vaccinating healthcare workers and those with the highest potential for severe
outcome first [31, 1, 20].

In Canada, periods of strict public health mitigation have certainly worked to decrease infection, and thus,
healthcare and hospital demand (see Figure 1, left panel). COVID-19 vaccination in Canada started out slow,
but it accelerated through Spring and early Summer 2021 (see Figure 1, right panel).

Figure 1: COVID-19 cases and vaccination in Canada. (left) New reported cases per day. The green shaded regions
generally correspond to strict public health lockdowns in Canada’s three largest provinces (Ontario, Quebec, British
Columbia). The red shaded region is the time period after a relaxation of public health measures (e.g. reopening
of schools, non-essential retail, construction, etc.). (right) Total vaccine doses administered. We see that by May
23, 2021 roughly 57% of Canadians have had at least one dose of a COVID-19 vaccine. Note the slow start of the
vaccination program in late 2020 into early 2021.

Until June 2021, the Canadian COVID-19 vaccination program focused on accelerated delivery of one dose
of vaccine to as many Canadians as possible [16, 36], so as to minimize healthcare demand and allow for some
relaxation of public health mitigation programs for Summer 2021. Delivery of the second dose of vaccine in
two-dose vaccine regimens was to be a focus over Summer 2021 and into the Fall, but earlier delivery of the
second dose was initiated in response to the δ-variant. It has been observed that vaccination rates experience
decreases in uptake once a country has reached > 40 − 50% coverage (see, for example, the vaccine uptake for
Canada, Hungary, Israel, United Kingdom, United States of America at [37]). It has also been observed that
lower infection rates can induce relaxation in personal protective behaviours (i.e., social distancing and mask
wear). Canada achieved 50% population coverage of at least once dose in mid-May 2021. A reduction in vaccine
uptake over the summer months unfortunately occurred [37]. Relaxation in personal protective behaviours also
occurred over Summer 2021, particularly when provincial jurisdictions relaxed restrictions and opened borders
(in early July 2021). Reductions in vaccination uptake and protective behaviour will affect the probability and
degree of Fall 2021 COVID-19 resurgence. The expected burden on the healthcare system needs to be quantified.

Mathematical models have been used to look at various aspects of the COVID-19 epidemic in Canada and
globally. Early models focused on parameter estimation and effects of different mitigation strategies on disease
spread [26, 39]. More recently, models have looked at the correlation between mobility patterns and disease
transmission [2], or the interplay between vaccination and relaxing the aforementioned mitigation strategies
[32, 6]. While there have been studies on the impact of COVID-19 on healthcare infrastructure in various
countries [15, 30, 14], there has been no such study for Canada as of yet. Moreover, there is a need for a
generalized framework from which to build such models that can be adapted to different regions.

We have developed a mathematical framework to study healthcare demand in Canada, adapted from a model
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developed by [34, 33] for Australia. The framework consists of two modules: a mathematical epidemiology
module that consists of mathematical model of COVID-19 infections (mild and severe, reported and unknown);
and a healthcare demand clinical pathways module adapted from [34, 33], through which outcomes of the
epidemiological model are fed, in order to quantify healthcare demand. Here within, we employ our mathematical
framework to study scenarios of COVID-19 infection in Summer and Fall 2021, with lower vaccination uptake
and social distancing behaviour.

2 Model

The modelling framework presented here consists of two modules, a mathematical modelling module and a
clinical pathways module, that include models of COVID-19 epidemiology and healthcare demand. The modules
are used in combination to project COVID-19 infection load during a specified time period, and determine the
need for healthcare resources i.e., doctor (GP) and emergency room (ED) visits, COVID-19 assessment clinic
visits, and ward (non-ICU) and ICU beds.

2.1 Mathematical Epidemiology Module

The clinical pathways module is informed by an underlying epidemiological model. The clinical pathway model
requires cases to be separated into mild and severe cases; these are defined as cases with no/mild/moderate
symptoms, and severe symptoms with hospitalization needed, respectively. In a previous study [7], we developed
an epidemiological model that (1) is simple enough, with few enough parameters that we can fit the model to
small data sets, and (2) separates mild and severe cases, that enables model results to be fed into the clinical
pathways model. Herewithin, we employ this model in the Mathematical Epidemiology Module.

Briefly, our model tracks four compartments: mild active cases, Im, severe active cases, Is, cumulative known
cases, CK , and cumulative total cases (i.e. total incidence), CI . The governing equations are

dCI

dt̂
= Rp

︸︷︷︸

Reproduction
Number

M(t̂)
︸ ︷︷ ︸

non-pharmaceutical
intervention

(

1−
CI

N

)

︸ ︷︷ ︸

Proportion of population
still susceptible

(Im + pIs)

dCK

dt̂
= r

︸︷︷︸

reporting
rate

(1− ps)
︸ ︷︷ ︸

proportion
mild infection

dCI

dt
+ ps

dCI

dt

dIm

dt̂
= (1− ps)

dCI

dt
− Im

dIs

dt̂
= ps

dCI

dt
− Is

(1)

Here, RP is the population reproduction number, p is a scaling factor on severe cases which limits their ability
to spread disease (increased non-pharmaceutical interventions placed on severe cases), ps is the probability of an
infection being severe, r is the reporting rate, and M(t) is a mitigation function which can be tuned to account
for increases and relaxations of non-pharmaceutical interventions (NPI). For the model, time is measured in
infectious lifetimes, t̂.

The mitigation function takes on the general form

M(t) = k + (1− k)
(
e−mt +Atne−m1t

)
(2)

which allows for both non-pharmaceutical interventions and relaxation of said interventions.
The model is subject to a number of assumptions:

1. The total population is constant.

2. Acquired immunity lasts longer than the outbreak.

3. There is no co-infection or super-infection.

4. The testing/reporting rate in the population is relatively constant.

5. The probability of a case being severe vs. mild is constant.

6. All severe infections are reported, whereas a fraction of mild infections are.
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We see from these assumptions that the model is best used for short- to moderate-term forecasting (particularly
assumptions 1 and 2).

We fit Model (1), with Equation (2), using a least squares method on the cumulative known cases. In the
current study, the model is fit from February 15, 2021 to May 18, 2021, the date corresponding to 50% population
coverage of at least one dose of vaccine. In order to maximize the number of data points used, we use both
cumulative known cases and new known cases per day (i.e. the derivative of cumulative known cases). We
minimize the error function

E =
N∑

i=0

(

CK(ti)− Ĉi

)2

+

(

dCK

dt

∣
∣
∣
∣
t=ti

− N̂i

)2

(3)

where Ĉi is the cumulative known case measurement on day ti and N̂i is the new cases measured on day ti.
We use a modified bootstrapping method which is described in [7]. We run the least squares fitting on different
random subsets of the data, and use the mean of all fits as the fit. This process is similar to how a random forest
generates classifications and reduces overfitting [28].

The model fit for each province is shown in Figures 3 to 6, depicted by the blue line. The model is carried
forward past the last day of data considered in the model fitting (May 18, 2021, orange vertical line). It is in
close agreement with case data for each province past this date to June 1. In all provinces the blue line reaches a
daily incidence of approximately zero by early August 2021. However, NPI relaxation, changes to vaccine efficacy
due to introductions of new variants of concern, and lower uptake of the vaccines, will affect this outcome.

We note that Model (1) does not explicitly model vaccination. The case data, however, incorporates effects
of vaccine uptake. In the model fit, the effects of vaccination are reflected in the fitted value of parameter RP

which incorporates effects of vaccination i.e., reductions in the average susceptibility of susceptibles (including
vaccinated and non-vaccinated individuals), and reductions in transmission capabilities of infecteds that were
vaccinated.

Once we have the baseline fit (from February 15, 2021 to May 18, 2021), we are able to explore different sce-
narios which incorporate dynamics that explicitly consider increases in protection from infection in vaccinateds,
and in the relaxation of NPI measures. Beginning June 1 2021, we would like to consider modifications to the
effects of vaccination and NPI relaxation in the system. In (4) we modify system (1), with the modifications in
blue,

dCI

dt̂
= RpM̄(t̂)

(

1−
CI

N(1− V (t̂))

)

(Im + pIs)

dCK

dt̂
= r(1− ps)

dCI

dt
+ ps

dCI

dt
dIm

dt̂
= (1− ps)

dCI

dt
− Im

dIs

dt̂
= ps

dCI

dt
− Is .

(4)

Here, V (t) is a non-negative monotonically increasing function of time bounded above by 1 which represents the
total proportion of the population which is vaccinated. We fit the function

V (t) = E
0.75

1 +Ke−d(t−T )
(5)

to vaccination administration data from [4]. We set the numerator to 0.75 as this is the estimated percentage of
Canadians who are willing and able to get a vaccine [23]. E is an efficacy parameter. We set this to a conservative
0.6 as most of the Canadian population received a first dose of vaccine by the end of May, which has limited
efficacy. This gives us a realistic ‘worst-case scenario’ for the fourth wave in Fall 2021. The parameters K, d
and T are fit using vaccine administration data [4].

The new function M̄(t) allows for explicit relaxation of non-pharmaceutical interventions beginning on day
τ by using the functional form

M̄(t) =







M(t) t < τ

M(τ) +
t− τ

θ + t− τ

(
2.5

RP

−M(τ)

)

t ≥ τ
(6)

In the current study we consider the four largest provinces in Canada, British Columbia, Alberta, Ontario
and Quebec. Fitted parameters for Model (1) and Equation 5 for each province are listed in Table 1.
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Province Parameter Mean ± Std. Dev. Province Parameter Mean ± Std. Dev.

British Columbia Rp 1.93± 0.86 Alberta Rp 0.44± 0.72
p 0.26± 0.35 p 0.33± 0.39
r 0.20± 0.32 r 0.24± 0.33
k 0.70± 0.25 k 0.53± 0.32
m 5.44± 4.32 m 6.84± 4.10
A 3.8± 3.67 A 3.40± 3.33
m1 704.02± 26079 m1 0.86± 0.33
n 8.04± 8.94 n 4.59± 1.72
K 0.03411 K 0.0481
d 0.436 d 0.4469
T 15.39 T 14.35

Ontario Rp 1.38± 0.73 Quebec Rp 0.89± 0.85
p 0.017± 0.082 p 0.098± 0.22
r 0.010± 0.098 r 0.048± 0.20
k 0.50± 0.27 k 0.59± 0.30
m 6.94± 4.02 m 7.60± 3.57
A (0.591± 9.65× 10−5 A (0.103± 1.21× 10−7

m1 7.09± 1.41 m1 7.83± 2.20
n 35.8± 6.46 n 38.9± 7.28
K 0.046 K 0.0404
d 0.435 d 0.4417
T 14.71 T 14.68

Table 1: Table of fitted parameters for four provinces in study. Thee parameters K, d and T are the product of a
single least-squares fit and thus do not have error bounds. Note that Rp is the population reproduction number
as of the start date of the fitting February 15, 2021 for Ontario and Quebec, and March 1, 2021 for Alberta and
British Columbia.
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Figure 2: Clinical Pathways Flow Diagram. Adapted from [33].

2.2 Clinical Pathways Model

The clinical pathways model is informed by an underlying epidemiological model which must have cases separated
by into mild and severe infections; these are defined as cases with no/mild/moderate symptoms, and severe
symptoms needing hospitalization, respectively.

The clinical pathways module determines the demand for healthcare consultations (General Practitioners
(GP), emergency departments (ED), and assessment clinics) and hospital beds (ward and ICU) given the daily
case incidence provided by the epidemiological model. The modules were first developed by [33] – a detailed
description of the module is provided in [33], with links to a github repository. A flow diagram is shown in
Figure 2. Daily presentations (α) are divided into mild and severe classes, where it is assumed that η = 0.1
are severe [33, 12]. Severe cases are then evenly distributed into two presentation classes, early and late, that
determine when they present to healthcare. It is assumed that 80% and 20% of mild cases will report to GPs
and EDs, respectively, and that all severe cases will report to GPs or EDs, with proportions 80% and 20% if
they report early, and 0% and 100% if they report late [33]. Additionally, if assessment clinics are provided, it
is assumed that some mild and severe cases will present to these locations (25% of mild cases, 50% of severe
cases [33]). The number of consultations in each setting is limited (see Table 2 and more detail below). It is
assumed that, if a consultation is requested within one healthcare setting, but not available, the individual will
try for a consultation in a different healthcare setting given by the following flow: assessment clinics → ED →

GP. Futhermore, it is assumed that if a GP consult cannot be obtained, the individual will return home and will
be successful in obtaining a telehealth consult on that particular day. Additionally, it is assumed that for mild
cases, 10% of GP consults and 5% of ED consults will try to revisit EDs and GPs, respectively, the next day
[33].

Severe cases are considered for hospital admission. If a hospital bed is available, a severe case will be admitted.
Probabilities of hospitalization given infection, by age, can be used, though we ignore age distribution in the
current study given that our epidemiological model is not age stratified. Hospital beds are allocated depending
on the location of consultation - first assessment clinics, then EDs, then GPs. Upon admission, the type of
hospital bed is determined. Approximately 30% of all admissions will request an ICU bed [12]. If an ICU bed is
needed but is not available, a ward bed will be allocated. However, if a ward bed is needed and is not available,
the individual will be sent home.

GP, ED, and assessment clinic consultation availabilities, and hospital bed capacities are informed by national
and provincial reports [10, 13, 12]. See Table 2. Similar to Moss et al. [33], we assume that 50% or 25% of
the total capacity of GP and ED consults, and ICU and ward beds can be devoted to COVID-19 by default. It
is assumed that assessment clinics are fully devoted to COVID-19, but that the provision of assessment clinics
reduces the number of consultations available by GPs and EDs, as GP and ED doctors are needed to work within
the assessment clinic setting. Similar to Moss et al. [33], we assume that 10% of the GP and ED workforce are
needed to staff assessment clinics.
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Once admitted to hospital, it is assumed that a patient will stay in the hospital for a particular length of
stay (LOS). The LOS can depend on the province of study, but it can also change over time given changes in
disease severity from dominant viral strains. In the current study, we choose to consider LOS’s of 4-19 days in
ward beds, and 8-40 days for ICUs [12]. We however assume that the ward bed LOS must be less than that of
the ICU LOS.

3 Results

Figures 3, 4, 5, 6 show the fit of Model (4) to cumulative and daily incidence data for British Columbia, Alberta,
Ontario and Quebec, respectively (all subplots, blue line). In each figure, we also plot six different scenarios,
considering relaxation in public health interventions and modifications to vaccine efficacy. For these scenarios,
we switch from Model (1) to (4), with Equations (5) and (6) in early June 2021. In Scenario (a), we assume that
NPI relaxation does not occur (τ = ∞), and we assume that V (t) = 0. Here, the projection using Model (4)
(pink line) agrees with the fitted Model (1) (blue line). In Scenario (b), we allow for NPI relaxation, starting June
1, 2021 and assuming that θ = 10, but we again assume that V (t) == 0. This allows us to quantify the effects of
relaxation in the system. In Scenarios (b) and (c), we implement both equations (5) and (6) (with θ = 10), again
with NPI relaxation starting on June 1. We, however, assume that the vaccine efficacy is higher in Scenario
(d), changing E = 0.6 to E = 0.8. Comparing Scenarios (b), (c), and (d), we observe that vaccination reduced
the impact of NPI relaxation, and this is more pronounced as vaccine efficacy increases (infection incidence in
subplot (d) is less than that in subplot (c)). Finally, in Scenarios (e) and (f), we consider the same conditions
as in Scenarios (b) and (c), but we increase the effect of NPI relaxation, decreasing θ from 10 to 1. Intuitively,
we find a larger resurgence in Fall 2021 in Scenarios (e) and (f).

For comparison, we plot the daily incidence data from June 1 to Aug 15 2021 against all scenarios (a) to (f).
It is clear from these figures that scenario (b) or (c) produce mean daily incidence numbers of similar magnitude
to the most recent case report data. Considering a best scenario, scenario (c), produces incidence numbers that
capture incidence numbers for all provinces in the 95 confidence interval (pink shaded area).

3.1 Length of Stay

The model fits for each province of study were introduced into the healthcare demand module to determine ICU
and Ward bed lengths of stay (LOS) that best match provincial COVID-19 hospital bed occupancy data [11] for
the entire month of May 2021. Here, we considered availability matching 50% and 25% capacity of the ICUs and
Wards in each province. The resulting ICU and Ward bed LOS’s under both assumptions are listed in Table 2,
Fitted Model.

The Canadian Discharge Abstract Database (DAD) records the LOS for every patient entering and exiting
all ICU beds in every province and territory (Quebec is not required to report). Table 2 lists the average ICU
LOS calculated from Feb 19 to Mar 21 2021. We have also included and calculated ICU LOS from our model
for the same time period. They are in close agreement.

3.2 Excess Demand

High case numbers can result in excess demand for ICU and Ward beds. The healthcare demand model calculates
the number of ICU andWard bed admissions that have not been met for each relaxation scenario considered above
(except Scenario (d)). Table 2 provides the median and (5%, 95%) confidence intervals for the excess demand
for each province given the corresponding ICU and Ward bed LOS’s, assuming 50% and 25% availability for
COVID patients. Considering a maximum capacity of 50% of the total beds, we observe that the median ICU
excess demand reaches a number greater than zero for BC under Scenario (e) only. All scenarios have excess
ICU demand for the provinces of Alberta and Ontario, and Quebec incurs excess ICU demand under scenarios
(c) and (f) only. We however also observe that the median Ward bed excess demand for all scenarios, for all
provinces, is zero for all scenarios. This means that there is sufficient Ward bed availability to accommodate
all patients turned away from the ICU, and accommodate all admissions to Ward beds directly from the GP,
Clinics, and ED consultations for each of the provinces. Therefore, there is no excess demand for Ward beds and
the Fall 2021 resurgence predicted by the model under a 50% cap of ICU and Ward beds. Considering a cap of
25%, intuitively, the excess demand increases. Our models results again show that median excess ward demand
is zero.

Figures 7 and 8 plot the daily admissions (left column) and occupancy (right column) of the ICU (top column)
and ward (bottom row) beds for each province for the respective LOS’s, assuming 50% and 25% maximum bed
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Type BC AB ON QC

ICU beds∗ 780 382 2,300 1,262
Ward beds∗ 10,604 10,570 29,743 16,000
General Practitioners∗∗ (GPs) 6,687 5,599 16,864 10,786
Emergency Doctors∗∗ (EDs) 181 170 393 185

Length of Stay (LOS, days)
At 50% (25%) capacity limit
ICU∗∗∗ 28 days 16 (16) 9 (11) 17 (19) 14 (14)
Ward∗∗∗ 28 days 7 (7) 6 (6) 7 (6) 6 (6)

DADx Feb 19 - Mar 21 10 12 13 –
Calculatedx Feb 19 - Mar 21 9 8 14 12

Excess Demand (fraction ICU/Ward cap)
median (5%; 95%) CI 50% cap

Fitted Model ICU 0 (0; .66) .74 (0; 7.48) .04 (0; 1.92) 0 (0; .41)
Ward 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 0)

Scenario (a) ICU 0 (0; .62) .69 (0; 7.75) 0.01 (0; 1.75) 0 (0; .76)
Ward 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 0)

Scenario (b) ICU 0 (0; 89.02) 6.38 (0; 172.68) .21 (0; 8.71) .12 (0; 10.98)
Ward 0 (0; 10.33) 0 (0; 7.24) 0 (0; 0) 0 (0; 0)

Scenario (c) ICU 0 (0; 39.43) 2.40 (0; 95.88) .11 (0; 1.96) 0 (0; 1.58)
Ward 0 (0; .29) 0 (0; .24) 0 (0; 0) 0 (0; 0)

Scenario (e) ICU 7.16 (0; 89.62) 20.23 (0; 181.36) 3.62 (0; 18.71) 4.44 (0; 18.24)
Ward 0 (0; 14.79) 0 (0; 13.87) 0 (0; .03) 0 (0; .03)

Scenario (f) ICU 0 (0; 41.53) 3.89 (0; 96.55) .19 (0; 3.77) 0 (0; 5.21)
Ward 0 (0; 38.65) 0 (0; 96.31) 0 (0; 0) 0 (0; 0)

median (5%; 95%) CI 25% cap

Fitted Model ICU .43 (0; 5.17) 7.98 (0; 25.72) 1.82 (0; 9.03) 0.81 (0; 5.55)
Ward 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 0)

Scenario (a) ICU .47 (0; 4.96) 7.48 (0; 25.45) 1.74 (0; 8.20) .23 (0; 4.42)
Ward 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 0)

Scenario (b) ICU 9.99 (0; 191.39) 31.73 (0; 381.79) 4.49 (0; 29.95) 5.39 (0; 31.02)
Ward 0 (0; 21.02) 0 (0; 14.76) 0 (0; 0) 0 (0; 0)

Scenario (c) ICU 21.72 (0; 91.74) 13.31 (0; 224.46) 2.35 (0; 9.54) 0.32 (0; 7.23)
Ward 0 (0; .65) 0 (0; .48) 0 (0; 0) 0 (0; 0)

Scenario (e) ICU 21.72 (0; 188.84) 5.71 (0; 386.06) 15.21 (0; 50.13) 14.69 (0; 44.84)
Ward 0 (0; 29.85) 0 (0; 27.94) 0 (0; .01) 0 (0; .06)

Scenario (f) ICU 2.82 (0; 92.41) 18.39 (0; 214.67) 3.26 (0; 16.95) .82 (0; 15.66)
Ward 0 (0; 5.89) 0 (0; 7.12) 0 (0; 0) 0 (0; 0)

Table 2: Healthcare bed and consult capacities, and length of stay, by province. Estimated from ∗[25, 17, 9]
and ∗∗[13, 10]. ∗∗∗calculated using provincial hospital data [11]. xcalculated from [?] and from model simulation
output, from Feb 19 to Mar 21 2021. Excess demand for ICU and Ward beds for the fitted model, and Scenarios
(a-c), (e-f) .
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(a) (b) (c)

(d) (e) (f)

Figure 3: Forecasts in British Columbia under six different scenarios. In all scenarios, the blue line corresponds to
Model (1) with equation (2). Black dots are data and the vertical line is the last date used for model fitting. The
pink line (and purple shaded region) correspond to the mean and confidence intervals for six different scenarios
under Model (4), with equations (5) and (6). The scenarios are implemented in early June. (scenario a) no NPI
relaxation, τ = ∞, (scenario b) no change in vaccination, V (t) = 0, and NPI relaxation with θ = 10, (scenario c)
a combination of vaccination and relaxation assuming starting in early June, (scenario d) the same as in scenario
(c), but with E = 0.8. Scenario (e) shows relaxation with no vaccination with parameter θ = 1. Scenario (f) shows
the combined effects of vaccination and relaxation with E = 0.6 and θ = 1.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Forecasts in Alberta under four different scenarios. In all scenarios, the blue line corresponds to Model
(1) with equation (2). Black dots are data and the vertical line is the last date used for model fitting. The
pink line (and purple shaded region) correspond to the mean and confidence intervals for six different scenarios
under Model (4), with equations (5) and (6). The scenarios are implemented in early June. (scenario a) no NPI
relaxation, τ = ∞, (scenario b) no change in vaccination, V (t) = 0, and NPI relaxation with θ = 10, (scenario c)
a combination of vaccination and relaxation assuming starting in early June, (scenario d) the same as in scenario
(c), but with E = 0.8. Scenario (e) shows relaxation with no vaccination with parameter θ = 1. Scenario (f) shows
the combined effects of vaccination and relaxation with E = 0.6 and θ = 1.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Forecasts in Ontario under six different scenarios. In all scenarios, the blue line corresponds to Model
(1) with equation (2). Black dots are data and the vertical line is the last date used for model fitting. The
pink line (and purple shaded region) correspond to the mean and confidence intervals for six different scenarios
under Model (4), with equations (5) and (6). The scenarios are implemented in early June. (scenario a) no NPI
relaxation, τ = ∞, (scenario b) no change in vaccination, V (t) = 0, and NPI relaxation with θ = 10, (scenario c)
a combination of vaccination and relaxation assuming starting in early June, (scenario d) the same as in scenario
(c), but with E = 0.8. Scenario (e) shows relaxation with no vaccination with parameter θ = 1. Scenario (f) shows
the combined effects of vaccination and relaxation with E = 0.6 and θ = 1.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Forecasts in Quebec under six different scenarios. In all scenarios, the blue line corresponds to Model
(1) with equation (2). Black dots are data and the vertical line is the last date used for model fitting. The
pink line (and purple shaded region) correspond to the mean and confidence intervals for six different scenarios
under Model (4), with equations (5) and (6). The scenarios are implemented in early June. (scenario a) no NPI
relaxation, τ = ∞, (scenario b) no change in vaccination, V (t) = 0, and NPI relaxation with θ = 10, (scenario c)
a combination of vaccination and relaxation assuming starting in early June, (scenario d) the same as in scenario
(c), but with E = 0.8. Scenario (e) shows relaxation with no vaccination with parameter θ = 1. Scenario (f) shows
the combined effects of vaccination and relaxation with E = 0.6 and θ = 1.
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(a) (b)

(c) (d)

Figure 7: Daily admission and occupancy of ICU and Ward beds, by province, assuming 50% maximum bed
availability, for Model (4), with Equations (5) and (6), with E = 0.6 and θ = 1 – Scenario (e). (panel a) BC,
(panel b) AB, (panel c) ON, (panel d) QC. The daily admissions (left column) and occupancy (right column) of
ICU (top row) and Ward (bottom row) beds is shown for the provincial best match LOS - see Table 2. Results
from April 1 to December 31, 2021 are shown. Admissions for each simulation are shown (light blue lines), with
median (black line) and mean (red line).
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(a) (b)

(c) (d)

Figure 8: Daily admissions and occupancy of ICU and Ward beds, by province, assuming 25% maximum bed
availability, for Model (4), with Equations (5) and (6), with E = 0.6 and θ = 1 – Scenario (e). (panel a) BC,
(panel b) AB, (panel c) ON, (panel d) QC. The daily admissions (left column) and occupancy (right column) of
ICU (top row) and Ward (bottom row) beds is shown for the provincial best match LOS - see Table 2. Results
from April 1 to December 31, 2021 are shown. Admissions for each simulation are shown (light blue lines), with
median (black line) and mean (red line).
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availability, considering Scenario (e) conditions (a scenario with high excess demand for all provinces under
study). Here, we observe that the Fall 2021 wave will reach high enough levels such that ICUs in each province
will reach capacity - a plateau in admission and occupancy levels occurs. We, however, also observe that, on
average (mean = red line, median = black line), the Ward bed capacity is not achieved in any of the four
provinces.

4 Discussion

With the introduction of variant strains [21, 29] of COVID-19, coupled with vaccine hesitancy [19] it is important
to look to the future with a cautious lens. Here, we study the effects of an outbreak in different jurisdictions in
Canada on the healthcare system. We estimate current length of stay in hospital for COVID-19 patients, and
project forward into Fall 2021. A key result is that some jurisdictions in Canada may be at risk of straining their
healthcare system in the fall as vaccine efficacy against variant strains of SARS-CoV-2 falls and vaccine uptake
saturates.

Of course, the easiest ways to reduce this burden are to lower the average length of stay, which is not feasible
unless there are new therapeutics, to increase the number of hospital ICU and Ward beds, something that can be
managed but only to a limited extent, or to reintroduce non-pharmaceutical interventions. Non-pharmaceutical
interventions such as lockdown will be increasingly hard to implement as frustration and fatigue of the population
continue to rise [18]. Luckily, our results show that many of the most populous provinces will show little to no
overburdening of the healthcare system in many of our scenarios.

While vaccination deployment has been successful and rapid in 2021 in Canada, there is still a careful balance
that needs to be struck when considering relaxation of public health measures. Relaxation too quickly can quickly
create a situation where vaccination efforts are undermined [6, 5] and the consequences fall on the healthcare
system. The model predicts that various provincial healthcare services may not see overall excess demand in Fall
2021, but could still see an overburden on ICU needs. While the model-predicted future of COVID-19 in Canada
thus seems optimistic, it must be noted that Fall resurgence outcomes that do not see excess ICU demand should
still be a goal for all Canadians. Increased vaccine uptake should thus be considered, as well as, increased uptake
and proper practice of personal protective behaviours.

In this study we have employed a mathematical modelling framework to project COVID-19 epidemic scenarios
and quantify healthcare demand. This framework can be modified to consider other infectious diseases. It can
also be refined to consider larger and smaller jurisdictions. Refinement to particular Canadian healthcare regions
is a course for future work.
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