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Abstract
We present COVID-CT-Mask-Net model that predicts COVID-19 in chest CT scans. The model works in two stages: in the
first stage, Mask R-CNN is trained to localize and detect two types of lesions in images. In the second stage, these detections
are fused to classify the whole input image. To develop the solution for the three-class problem (COVID-19, Common
Pneumonia and Control), we used the COVIDx-CT data split derived from the dataset of chest CT scans collected by China
National Center for Bioinformation. We use 3000 images (about 5% of the train split of COVIDx-CT) to train the model.
Without any complicated data normalization, balancing and regularization, and training only a small fraction of the model’s
parameters, we achieve a 90.80% COVID-19 sensitivity, 91.62% Common Pneumonia sensitivity and 92.10% true negative
rate (Control sensitivity), an overall accuracy of 91.66% and F1-score of 91.50% on the test data split with 21192 images,
bringing the ratio of test to train data to 7.06. We also establish an important result that regional predictions (bounding boxes
with confidence scores) detected by Mask R-CNN can be used to classify whole images. The full source code, models and
pretrained weights are available on https://github.com/AlexTS1980/COVID-CT-Mask-Net.
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1 Introduction

Since the start of COVID-19 pandemic a large number of
deep learning models predicting COVID-19 from chest CT
scans and x-rays has been developed. One of the biggest
challenges in this area is a three class problem: COVID-19
vs Common Pneumonia vs Control/Negative. Solutions for
this problem include COVID Net-CT [1], that consists of a
single feature extractor trained on COVIDx-CT dataset split,
COVNet (augmented Res Net50) [2], ResNet18 [3] and
LightCNN [4]. Some solutions use an ensemble of networks
(AlexNet, GoogleNet,ResNet18) and majority voting, see
[5]. In order to achieve the state-of-the-art [1] accuracy,
large amounts of data are required to train (about 60K
images) the model, that are often not available, which
explains the need for various augmentations, both for the
data and the classification model.
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One approach that is used to augment the classifier, is the
semantic segmentation model, e.g. in [6, 7] UNet is used
as a pre-processing step: its output (mask) is concatenated
with the feature maps to enhance the predictive power of
the model. The advantage of using a segmentation model is
that it is capable of explicitly learning and predicting areas
of lesions associated with COVID-19. For a binary classifi-
cation problem, COVID-19 vs non-COVID-19, COVID-CT
[8] and Joint Classification and Segmentation (JCS) [7]
models are publicly available. COVID-CT concatenates
lung masks predicted by UNet with deep image features
extracted using DenseNet169 and ResNet50 to predict the
class, achieving an overall accuracy of 89% on the test data
of about 350 images. JCS uses a similar approach, but with
additional loss functions at deep layers (multiscale train-
ing), achieving an F1 score of 0.783 on the test data of
about 120K images. Recently, in [9] a novel method was
introduced that alleviates the lack of COVID-19 data by
generating COVID-19 chest CT scans from lung cancer
scans using CycleGAN [10]. A number of classifiers, such
as ResNet50 and VGG16 are trained on the fusion of the
generated and real COVID-19 images. Advanced method-
ology based on convnets and wavelets optimized using
biogeography-based optimization was introduced in [11] to
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classify COVID-19 and negative images. Another approach
in [12] fused convnets and Graph convolutional nets. This
paper introduced a number of novelties, such as modifi-
cations of convnet operators: pooling, cropping, histogram
normalization, etc. Other methodologically advanced mod-
els, such as [13] experimented with the truncation of the
feature extractors and fusion of features on a small dataset
with four classes; in [14] relation among different images
is captured using Graph Neural Net, which is fused with a
ConvNet; [15] introduced a seven-layer ConvNet with new
operators like stochastic pooling and a range of data pre-
processing and augmentation techniques. At least one recent
publication [16] discusses the use of Mask R-CNN for
predicting COVID-19 from the segmentation of CT scans.

A number of review papers compared different models
directly to establish the best one for accuracy and COVID-
19 sensitivity. From these papers, it appears that for the
chest CT scans data, models with ResNet50, ResNeXt and
DenseNet121 feature extractors produce the highest overall
accuracy across a number of datasets. For further details see
[17–19].

The majority of COVID-19 deep learning models use
radiography (x-rays) data due to its prevalence, e.g. the
state-of-the-art COVID-Net [12] that has an architecture
similar to COVIDNet-CT. Also, the majority of published
solutions solve two-class problems mentioned above. To the
best of our knowledge, only COVIDNet-CT [1], LightCNN
[4], COVNet [2] and ResNet18 in [3] use chest CT scans
for a 3-class (COVID-19, Common Pneumonia, Control).
This problem is more challenging due to the similarities
and subtle differences between COVID-19 and Common
Pneumonia (CP) on CT scans. For the discussion of these
differences see [20–23].

These models have a number of drawbacks that we would
like to address. COVIDNet-CT [1] requires a large training
data with various augmentations and class balancing to
achieve the reported accuracy and COVID-19 sensitivity,
COVNet [2] was evaluated on a small dataset (about 500
images), the model using ResNet18 as a feature extractor
[3] is not publicly available. Also, it reported a relatively
low COVID-19 sensitivity (81.20%) and it was evaluated on

a small data (90 images). Light CNN’s reported COVID-19
sensitivity is also quite low, and it was also evaluated on a
small dataset. The biggest drawback though, is that these
models were evaluated on the test split that was a fraction
of the training split, see Table 1. For further discussion of
the pitfalls and limitations of COVID-19 models see [24]
and Section 5, which raises a question of overfitting and
generalization to other datasets.

In this paper we would like to address some of these
shortcomings by extending the semantic segmentation and
classification solution (e.g. in [6]) to instance segmentation
and COVID-19 classification using Mask R-CNN. Mask
R-CNN [25] and Faster R-CNN [26] are the state-of-the-
art models in instance segmentation and object detection.
Mask R-CNN is an extension of Faster R-CNN with an
object mask prediction branch. This is different to semantic
segmentation models like Fully Convolutional Network
(FCN) [27] and UNet [28], which predict objects at pixel
level. Mask R-CNN localizes each object independently
of others, by predicting their location (bounding box
coordinates) using Region Proposal Network (RPN) and
Regions of Interest (RoI). Each predicted object has
therefore three properties: bounding box, class and mask.
The strength of Faster and Mask R-CNN comes from
the fact that the model constructs batches of data from
each image to make predictions about the instances. This
leverages the scarcity of the training data, and we use
this strength both to obtain accurate predictions and use
a small sample of images for training. We augment Mask
R-CNN with a classification module and extend Mask R-
CNN’s ability to detect separate objects to the classification
of the whole image. The novelty of our approach to
COVID-19 prediction can be summarized in the following
way:

1. Results: we use approximately 5% of the COVIDx-
CT training data, (this is approx. 3% of the whole
CNCB-NCOV dataset), to train the model, and, without
any data and model augmentations, e.g. class weights,
background removal and batch balancing, on which
COVIDNet-CT depends, achieve 90.80% COVID-19

Table 1 Comparison of the models’ sizes and the sizes of the data splits used for training, validation and testing

Model #Total #Trainable Training Validation Test Ratio

parameters parameters Test to Train

Mask R-CNN (segmentation) 31.78M 31.78M 650 100 0.153

COVID-CT-Mask-Net (only S) 31.52M 2.25M

COVID-CT-Mask-Net (S+BN) 2.36M 3K 20.6K 21.1K 7.060

COVID-CT-Mask-Net (full) 31.52M

LightCNN [4] 1.20M 1.20M 1528/1768 118/138 392/203 0.258/0.117

COVNet [2] 25.61M 25.61M 3K 370 438 0.129

ResNet18 [3] 11.69M 11.69M 528 90 0.170
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sensitivity, and 91.66% overall accuracy on the full test
split (21192 images). The ratio of the test to the training
split is 7.06,

2. Methodology: we repurpose Mask R-CNN to predict
the class of the whole image by leveraging the ability of
Mask R-CNN to extract regions of interest (RoIs) from
deep features and obtain spatial predictions (bounding
boxes) from them to construct a batch of ranked
regional predictions in each image and use it to predict
the global (image) class.

3. Open-source solutions: We develop, train and evaluate
two solutions: one for the segmentation and one for the
classification problem, by training two models. Mask
R-CNN segmentation model predicts and segments
instances of Ground Glass Opacity and Consolidation
in chest CT scans, COVID-CT-Mask-Net extends this
model to predict the class of the image. Models’ code
and weights are available on Github.

In short, we use much less training data than, achieve
both better overall accuracy and COVID-19 sensitivity than
other OS solutions, and our solution has a very good
potential for generalization to other datasets, due to the
ratio of test to training data. In Section 2 we discuss
the datasets for both tasks, in Section 3 we introduce
the segmentation and classification models, Section 4
introduces the training setup, experimental results and
comparison to other models, Section 5 reports ablation
studies and methodology limitations, Section 6 concludes.

2 Data

2.1 Segmentation data

For our segmentation model we use the publicly available
dataset released by China National Center for Bioinforma-
tion (CNCB) [6], consisting of 750 scans across 150 patients
with various stages of COVID-19. A total of 3 classes are
segmented at pixel level: clean lungs, which we merged
with the background due to its prevalence, and two types
of lesions: Ground Glass Opacity (GGO) and Consolidation
(C).

These two types of lesions are often associated with
various stages of COVID-19 and other types of pneumonia,
so we treat them as positive classes. We randomly split the
provided dataset into 650 training and validation and 100
test images, maintaining the patients’ consistency. Due to
the shape of the lungs, some slices of COVID-19 patients
do not contain positive classes, and were therefore removed
from the study.

The challenges of the data are summarized in Fig. 2: it is
clear that positive scans can contain a small number of small

objects of either class, and overall, the proportion of positive
areas to the background is very low, making the problem of
segmenting them a serious challenge. To avoid overfitting,
we merged the clean lungs regions with the background.
Examples of positive and negative images and their masks
are presented in Fig. 1.

In addition to CNCB-NCOV, other open-source segmen-
tation datasets are available, e.g. MosMedData [29], Zenodo
lung and infections segmentation [30] and others. One of
the key challenges in generalizing segmentation algorithms
to out-of-sample data is the difference among the input
images. Unlike benchmark datasets, such as Pascal VOC
and MS COCO, chest CT scan datasets were collected
using different methodologies and equipment. The usual
approach to minimizing these differences is image normal-
ization that we used in this study. Unfortunately, the usual
normalization does not offset these differences. As a result,
for all experiments, we used a single dataset. Nevertheless,
development of data normalization tools and generalization

Fig. 1 Examples of chest CT scans from the segmentation dataset
with their ground truth masks. Upper row: major lungs masks, major
presence of both GGO (red) and C (blue) classes, middle row: average
lung mask, negative slice (no lesions), bottom row: small lung mask,
small presence of GGO. In our implementation all lung masks are
merged with the background
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Fig. 2 Distribution of the COVID-19 correlates in the segmentation
data. The absolute majority of images have a small number (< 5
occurrences of each type) and the absolute majority of them are very
small: GGO are < 2% of the image size and C are < 1%. This
means that CT scans contain mostly a small number of small lesion
occurrences

across a number of datasets is one of our priorities for the
future work (Fig. 2).

2.2 Classification data

To compare our model to COVIDNet-CT, we also used the
second part of the dataset provided by CNCB [6], which
is labelled at image level, http://ncov-ai.big.ac.cn/download
and the splits from COVIDx-CT that was used to train
COVIDNet-CT model (https://github.com/haydengunraj/
COVIDNet-CT), both of which are publicly available. In
[1] 104900 images were partitioned into 60% training,
20% validation and 20% test data. The difference between
COVIDx-CT and the source data is that for COVID-
19 and CP classes, only scans with observable infected
regions were selected from the patients in those two classes.

One of the advantages of our approach is the size
of the dataset used for training. We randomly extracted
3000 images from COVIDx-CT training split (1000/class,
randomized across patients), while maintaining the full
size of the validation (21036 images) and test (21192
images) splits for the direct comparison. In the validation
split, the shares or Normal, CP and COVID-19 classes are
43%/35%/22%, in the test split they are 45%/35%/20%.
As a result, the ratio of test to train split is 7.06, which is
much higher than COVIDx-CT (0.353). These splits are also
available on our Github repository.

Fig. 3 Overall flowchart of the algorithm. Normal arrows: data and
labels, dotted arrow: weights copy from Mask R-CNN to COVID-
CT-Mask-Net, broken arrows: copy all weights for the classifier’s
evaluation

3Methodology

The overall flow of the algorithm is presented in Fig. 3.
Our solution is split into three stages: first, we train,
validate and test Mask R-CNN to predict boxes, classes
and masks of GGO and C areas. After that, this model is
converted to COVID-CT-Mask-Net by augmenting it with
a classification module S that uses ranked bounding box
predictions to classify the whole input image (Fig. 4) and
the weights are copied from Mask R-CNN to COVID-
CT-Mask-Net. Module S logic is presented in Fig. 5.
Finally, COVID-CT-Mask-Net is tested on the test split
discussed above. Overall, functionally, COVID-CT-Mask-
Net extends Mask R-CNN to make global (image class)
predictions (Fig. 3).

3.1 Mask R-CNN

We start with a brief overview of the functionality of the
segmentation model that is at the core of our approach.

Mask R-CNN can be in one of the two stages: training
and testing. At training stage, ground truth data (class labels,
box coordinates and masks) are used to compute the loss and
update weights. At test time, the model outputs the predicted
boxes, masks and class confidence. One of its strength is
the construction of batches of predictions from each image,
which to some extent alleviates the demand for more data.

At training time, the backbone, which consists of a
ResNet feature extractor and Feature Pyramid Net (FPN,
[31]) extracts features from the input image and outputs
the final image-level feature map. Backbone passes this
map to the Region Proposal Net (RPN) module that uses a
large number of anchors (predefined rectangles) and these
features, to construct a batch of candidate bounding boxes
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Fig. 4 Mask R-CNN (Backbone+FPN, RPN, RoI) and COVID-CT-
Mask-Net architectures. The architecture of Mask R-CNN at training
and test time is the same, except that at training time LSEG is
computed for RPN and RoI. At test time, RPN and RoI do not
compute any losses. See Section 3.1 for a detailed discussion of its

functionality. The new classification module S (Fig. 5) takes the batch
size N of the ranked encoded boxes with their confidence scores as an
input and predicts the class of the input image. Normal arrows: tensors
or data, broken arrows: boxes, dotted arrow: image class label. Best
viewed in color

and their objectness (object vs background scores) and
compute losses by matching anchors to the ground truth.

Next, Region of Interest (RoI) module maps these candi-
dates to the backbone’s feature map and extracts regional
feature maps (also known as regions of interest) of the pre-
defined dimensionality. This is done in three steps: 1) align
the box coordinates predicted by RPN to the feature map,
2) crop the local features to match the coordinates of the
object’s box, 3) resize the cropped features to the predefined
size using RoIAlign functionality. As a result, each region
of interest has the same dimensionality, C × H × W (C:
number of channels, H, W : height and width of the region).

First, RoIs output encoded box coordinates, that are
used to compute the box loss. For each box, its class and
mask losses are computed too. In total, 5 loss functions are
computed: objectness loss, LRPN

Obj , LRPN
Box box coordinates

in the RPN module, class LRoI
Cl loss, box coordinates in RoI

LRoI
Box and pixel-wise loss for masks, LMask (1). Mask loss

is class-aware, i.e. its loss is calculated only for the correct
class. Mask and bounding box losses are calculated only for
positive predictions.

LSEG = LRPN
Obj + LRPN

Box + LRoI
Cl + LRoI

Box + LMask (1)

All loss terms in (1) are taken from the respective
publications (LRPN

Obj , LRPN
Box , LRoI

Cl , LRoI
Box from Faster R-

CNN and LMask from Mask R-CNN) and their out-of-the-
box implementation from Torchvision library v0.8.0.

At test time, the model outputs predictions that consist
of decoded boxes, masks and class confidence scores.
Those that have confidence score below a certain threshold
are discarded. Also, NMS threshold is used to discard
overlapping predictions with higher confidence scores. For
the details of NMS threshold, see Section 3.2.3. Also,
some important bits of RoI functionality are discussed in
Section 3.2.1. Final box and mask predictions are resized to
the object’s and image dimensions.

Fig. 5 Batch output from RoI layer and image classification mod-
ule S of COVID-CT-Mask-Net: RoI batch is reshaped from N × 5
to a feature vector size 1 × N · 5 by concatenating the encoded
boxes (green) and their scores(red, blue), followed by two fully

connected layers, and the last prediction layer outputting 3 logits
(scores), 1 per image class. The colors in each element reflect the nor-
malized (sigmoid) confidence score (red:high, blue:low). Best viewed
in color
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3.2 COVID-CT-Mask-Net

The main motivation for the development of the clas-
sifier is to explore the idea of fusing local (object)
information to make a global (image) prediction

(image class). In this study, we select a set of RoI
encoded boxes and class confidence scores, as they
can explicitly detect both lesions and the background.
In this section we introduce our model and explain its
functionality.

The training of COVID-CT-Mask-Net algorithm is
formalized in Algorithm 1 and visualized in Fig. 4. The
architecture of the image classification layer S is presented
in Fig. 5. The image class loss is computed using (2),
where ŝk is the vector of class logits (COVID-19, CP,
Control) output by the model, σ is a sigmoid function
and C∗ is the correct class. We chose to use binary cross-
entropy loss (each class is either 0 or 1) instead of the
multilabel cross-entropy (softmax) to improve the total loss
computation.

LCLS = −
C∑

k=1

Lk × log σ(ŝk) (2)

Lk =
{
1 if C∗ = k

0 otherwise

3.2.1 Detection of regions of interest

The backbone, anchor scales and sizes, architecture of RPN
and RoI layers in COVID-CT-Mask-Net are identical to
Mask R-CNN, but RoI hyperparameters and functionality
is quite different and needs to be put in the context of the
classification problem.

As discussed previously, at test time, each region predicts
objects’ classes and box coordinates (including the back-
ground class). RoI collects all of these predictions, filters
out backgrounds, and outputs positive object predictions
with class confidence score exceeding a predefined thresh-
old (RoI confidence scoreθ ). The maximum number of

predictions is also capped at a predefined number N . We
adapt this functionality for the image classification problem.

Our objective is to extract a N (fixed number, defined
as a hyperparameters) of predictions from each image:
obviously, in Negative images there are no lesions at all, and
our objective is to address this fact. We do this by accepting
all N predictions, regardless of their confidence scores.
This is achieved by setting the threshold that we call RoI
classification scoreθ to a value that guarantees acceptance
of exactly the predefined number of predictions.

We discard the decoded, object and image-adjusted box
coordinates predicted by RoI, and, instead, use the encoded
ones (confidence scores are kept the same). Next, all of
these predictions are ranked in the decreasing order of
their confidence scores. This ranking is essential for the
next step. At this stage we are ready to extract the output
batch of fixed size N from RoI (N = 256 in Table 3)
of top-ranking predictions from this set, which is used as
an input in the image classification module. The challenge
of the classification problem is that RoI box scores for
lesions in Control images are very low, barely above 0.
Additionally, in order to keep the batch size fixed at N ,
we need a sufficient number of proposals after discarding
highly overlapping and empty boxes. For this reason, RoI
classification scoreθ is set to −0.01, which ensures both of
these condition. As a result, we extract the same number
of predictions from each type of image. All predictions
from Normal/Control images are in fact background, for
the obvious reason, but they are still ranked in the same
decreasing order of confidence scores, however low.
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3.2.2 Conversion of the RoI batch to a feature vector

The ranked RoI predictions from the previous step are
concatenated into a batch with dimensions N × 5 (N
predictions × 4 encoded box coordinates + 1 confidence
score), which is illustrated in Fig. 5. As a result of this
operation, this batch has three important properties that the
image classification module S can learn:

– Object’s location (encoded box coordinates),
– Object’s confidence score (actual predicted class is

discarded),
– Object’s area (box size, boxes below a threshold are

discarded),

These properties are important factors in determining the
difference between the classes:

– COVID-19 vs Control, CP vs Control: higher box
scores, different box coordinates,

– COVID-19 vs CP: different box coordinates, higher
number of high-scoring boxes, larger box area

Finally, image classification module S accepts the batch and
reshapes it into a single feature vector with dimensionality
1 × (N · 5), by vertically concatenating the predictions in
the batch while maintaining their ranking order explained
above. This feature vector is passed through two fully
connected layers in S that outputs three class logits,
predicting the class of the image. Finally, the loss, (2) is
computed and backpropagated through the model (including
RoI and RPN layers), updating the weights.

3.2.3 NMS threshold

As discussed in Section 3.1, this hyperparameter is used to
filter out overlapping predictions, which is essential to the
detection/segmentation problem, both at training and test
stages to avoid multiple predictions for the same object. For
the classification problem, its role is different. As shown
in [23, 32], the frequently observed difference between
COVID-19 and other types of pneumonia is the distribution
of the location of lesions in the lungs, e.g. COVID-19
lesions tend to be bilateral in comparison to other types
of pneumonia, therefore the presence of a larger number
of high-scoring overlapping box predictions can be learnt
by S to indicate the presence of COVID-19 rather than
CP. This is illustrated in Fig. 6: left column is the output
with RoI NMSθ = 0.25, central column is the output
with RoI NMSθ = 0.75. This motivated our choice of
selecting RPN and RoI NMSθ for Mask R-CNN, set out
in Table 2 and COVID-CT-Mask-Net, set out in Table 3.
This threshold ensures a higher number of high scoring
predictions, which are an important factor in distinguishing
between COVID-19 and CP.

4 Experiments and results

4.1 Mask R-CNN

We design hyperparameters of Mask R-CNN to maximize
its capacity to detect and segment a number of small objects
of varying shapes, which are widespread in chest CT scans
of patients with COVID-19, see Table 2, Figs. 1 and 2. Most
anchor sizes are small (< 32 × 32 pixels) and have a large
number of scales (6 in total between 0.1 and 2), allowing
for accurate detection of various shapes of GGO and C.
Examples of Mask R-CNN’s outputs are presented in Fig. 6.

Mask R-CNN model was trained for 100 epochs on the
train split using Adam optimizer [34] with a learning rate
of 1e − 5 and regularization factor if 1e − 3. Tables 1
and 2 report the key hyperparameters of Mask R-CNN. At
training time, RPN/RoI IoUθ are thresholds for determining
whether the prediction is positive. RPN and RoI batches are
the number of candidates selected for training. RPN output
is the set of positive predictions passed from RPN to RoI
at both stages. At test stage, RoI output is the cap on the
number of predictions, and RoI confidence scoreθ is the cut-
off value for positive predictions. RPN/RoI NMSθ are as
described in Section 3.2.3, and are also the same in both
stages.

To evaluate the model on the test split in Table 1 we use
the main criteria fromMS COCO dataset introduced in [35]:
average precision at IoU thresholds, 0.5 and 0.75, and a
mean average precision across 10 IoU thresholds, 0.5 : 0.95
with a step of 0.05. For each image in the test split, the
model’s predictions are compared to the ground truth masks
(GGO, C, see Fig. 1). If the IoU between the predicted and
gt masks exceeds the IoU threshold, and the class prediction
is correct, it is considered a True Positive. Other predictions
are False Positives. Gt objects without positive predictions
are False Negatives. Average precision across all images is
similar to a Precision-Recall curve. For further details see
[35].

Segmentation results are reported in Table 6. Backbones
in both networks were initialized from the weights of the
model trained on ImageNet. We trained two Mask R-
CNN models, which is a common practice in the literature:
only RPN and RoI modules (‘heads’), and the ‘full’
model: backbone, RPN and RoI. The ‘full’ model strongly
outperforms the ‘heads’ across all IoU thresholds. We
explain it by the fact that both coarse and semantic features
in the pretrained backbone do not immediately translate
from the general-purpose ImageNet model to a specific
chest CT scans dataset. Although both results appear strong,
we could not compare them to any benchmark, as we did
not find another Mask R-CNN model trained on a chest
CT scans dataset that uses the same precision metrics,
and our results cannot be directly compared to MS COCO
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Fig. 6 GGO and C (a) and only
GGO (b) segmentation by the
same model with RoI
NMSθ = 0.25 in the left column
and RoI NMSθ = 0.75 in the
central column. The right
column is the ground-truth mask
for each scan slice. Predictions
with scores above RoI
confidence scoreθ = 0.05 for
each detection and all pixels in
mask logits> 0 are considered
positive

leaderboard. Examples of lesion instance prediction by
Mask R-CNN are presented in Fig. 6.

4.2 COVID-CT-Mask-Net

The weights from the best Mask R-CNNmodel were used to
initialize COVID-CT-Mask-Net. As explained in Section 3,
mask branch in RoI is not used in our implementation,
which is reflected in the model sizes (#Total parameters in
Table 1).

Key hyperparameters for the training of COVID-CT-
Mask-Net are presented in Table 3 (the number of trainable
parameters in S is 2.26M). We reimplement Torchvision’s
Mask R-CNN library for the necessary augmentation and
hacking. During the training of the classifier, RPN and
RoI do not compute any loss. RoI classification scoreθ ,
as mentioned above, is set to −0.01 to accept all box
predictions, however low-scoring, to guarantee the RoI
batch size is equal to 256, this is particularly important
for Negative images without lesions. In their case all

predictions are very low-scoring (e.g. 0.001), which is a
pattern that S can learn. RPN and RoI NMSθ defined in
Section 3.2.3 are set to 0.75. RPN output is the same as in
Mask R-CNN.

We train COVID-CT-Mask-Net in three different ways,
which determines the total number of trainable parameters,
see Table 1: 1) only classification module S, 2) S+batch
normalization (BN) layers in the backbone, 3) all weights.

To train the full model, a large hack was applied: all
layers, including the backbone, were set to test mode
(no targets for object detection and segmentation, batch
normalization layers’ tracking of means and standard
deviations switched off), while the gradients were computed
for all layers. Therefore, although formally, RPN and RoI
were in the test mode, in fact their weights were updated
using image class loss. We use a small fraction of the dataset
of COVIDx-CT for training, while maintaining the full size
of the test and validation sets. We use Adam optimizer [34],
the learning rate of 1e − 5, weight regularization parameter
of 1e − 3, and train each algorithm for 50 epochs.

Table 2 Key hyperparameters of Mask R-CNN. Hyperparameters marked with ∗ are used only at test time

Backbone Anchor Anchor RPN RoI RPN RoI RPN RoI RPN RoI RoI

sizes scales NMSθ NMSθ batch batch output output∗ IoUθ IoUθ conf. score∗
θ

ResNet50
22:5

0.1, 0.25, 0.5,
0.75 0.25 256 256 1000 100 0.75 0.75 0.05+FPN 1, 1.5, 2
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Table 3 Key hyperparameters of COVID-CT-Mask-Net

Backbone Anchor Anchor RPN RoI RPN RoI RoI Classifier

sizes scales NMSθ NMSθ output batch class. scoreθ Module S

ResNet50
22:5

0.1, 0.25, 0.5,
0.75 0.75 1000 256 -0.01 2.26M+FPN 1, 1.5, 2

As pointed out in Sections 1 and 2, the share of test to
training split in our experiments is very high compared to
other solutions. We explain high accuracy of the models
trained on this small split by Mask R-CNN’s innovative
functionality to construct batches of candidates from each
image in RPN and RoI modules. This functionality greatly
augments the classifier’s ability to learn from a single image
and reduces its demand for larger dataset.

To evaluate each model, we compute the sensitivity
(recall) and precision (positive predictive value) for each
class Cl, overall accuracy and class-adjusted F1 score,
see (3)-(6) (TP: true positive, FP: false positive, FN: false
negative). In (6) wCl is the share of class Cl in the test split.

Sens(Cl) = TP(Cl)

TP(Cl) + FN(Cl)
(3)

Prec(Cl) = TP(Cl)

TP(Cl) + FP(Cl)
(4)

Overall Accuracy =
∑

Cl TP(Cl)∑
Cl TP(Cl)

+
∑

Cl

FN(Cl)

=
∑

Cl TP(Cl)∑
Cl TP(Cl) + ∑

Cl FP(Cl)
(5)

F1 score =
∑

Cl

wCl · 2 · Sens(Cl)Prec(Cl)

Sens(Cl) + Prec(Cl)
(6)

Best results for each version of COVID-CT-Mask-Net
are presented in Table 4. The variant where we train S and
batch normalization layers achieved the highest COVID-19
sensitivity, while keeping the sensitivity to other classes,
overall accuracy and F1-score above 90%. The model
training all parameters achieves the highest overall accuracy
and F1-score and the second best COVID-19 sensitivity.
Comparison of the models’ sizes and main results for other
COVID-19 classifiers for 3 classes are presented in Tables 1
and 5.

Although S adds only a small overhead in terms of
weights, the results are quite strong compared to other
models with a feature extractor + classification head
architecture, that are mostly much larger. To obtain results
for LightCNN and COVIDNet-CT we used the best reported
models (resp. Model1 and COVIDNet-CT-A), COVNet
and ResNet18 in [3] report only one model. The results
for COVIDNet-CT were obtained by running the publicly

available model on the test split. Results for the other
models are taken from the respective publication. Ours(best)
is the model with the highest COVID-19 sensitivity
(Table 6).

Although OSmodels in Table 5 report very high accuracy
and COVID-19 sensitivity, they are not directly compara-
ble for a number of reasons. These reasons are discussed
in-depth in [24] and include the size of the datasets, repro-
ducibility of the solutions, lack of the details of the training
and test protocols, and many other. These methodological
flaws prevent their comparison, generalization, and appli-
cation in-the-wild, i.e. in radiological departments. In this
study, to address the issue of the size of the datasets, we used
CNCB-NCOV, the largest open-source dataset to adapt and
evaluate our models.

5 Ablation studies

We perform additional testing of the introduced model.
First, we use the remaining 58782 images from the training
dataset of CNCB-NCOV that were left after the random the
sampling of 3000 training images. Results in Table 7 are
consistent with the test results in Table 4.

To address the issue of the ability of the model to
generalize to out-of-sample data, we use the 2-class publicly
available iCTCF [36, 37] dataset (Table 8) to finetune the
models for 10 epochs. Only 600 images from the training
data were used to finetune each model that took about 15
minutes on a single GPU. Each model was evaluated on
12976 images in the test split. Results in Table 9 confirm the
ability of our approach to quickly and successfully adapt to
the new data.

Although in this ablation study we had to turn to an
additional finetuning on the new dataset, we kept the ratio
of the train to test splits low, following the setup of the base
dataset. Fast and simple finetuning protocol demonstrate
the potential of our model to generalize to new data.
Nevertheless, we see this as the major limitation of our
solution, that we share, to the best of our knowledge, with
all other COVID-19 solutions, both that report a very high
accuracy one dataset, and those that claim out-of-the box
generalization to other datasets, because in the latter case
the reported accuracy on the other dataset is low.
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Table 4 Results on COVIDx-CT test split (21192 images). Sensitivity (PPV) per class. Best results in bold

Model COVID Pneumonia Normal Overall F1-score

COVID-CT-Mask-Net (only S) 76.30% (81.13%) 71.13% (67.70%) 82.37% (83.38%) 77.20% 77.30%

COVID-CT-Mask-Net (S+BN) 90.80% (94.75%) 91.62% (87.08%) 91.10% (94.33%) 91.66% 91.50%

COVID-CT-Mask-Net (full) 82.26% (87.01%) 91.70% (95.22%) 97.21% (95.33%) 92.22% 92.93%

Table 5 Comparison to OS models trained on the 3-class problem (COVID-19 vs CP vs Control). Due to the difference in sample size/COVID-19
prevalence, in fact, models are not directly comparable

Model COVID Sensitivity Overall accuracy COVID prevalence #Test images

Ours (best) 90.80% 91.66% 20.00% 21191

ResNet50 [8] 85.90% 88.10% 46.84% 746

LightCNN [4] 88.23% 84.56% 25.39% 392

COVNet [2] 90.00% 89.04% 30.00% 434

ResNet18 [3] 81.30% 86.70% 35.79% 210

DarkCOVIDNet [33] 85.25% 87.02% 50.00% 1000

DreNet [17] 93.00% 87.00% 47.38% 57

WRE [11] 86.40% 86.12% 50.00% 29

Table 6 Average Precision on the segmentation data test split (100 images). Best results in bold

Model AP@0.5 IoU AP@0.75 IoU AP@[0.5:0.95] IoU

Mask R-CNN (head only) 0.511 0.301 0.298

Mask R-CNN (full) 0.565 0.413 0.352

Table 7 Results on COVIDx-CT left-out train split (58782 images). Sensitivity (PPV) per class. Best results in bold

Model COVID Pneumonia Normal Overall F1-score

COVID-CT-Mask-Net (only S) 79.21% (86.01%) 70.12% (68.34%) 85.73% (82.28%) 78.56% 78.30%

COVID-CT-Mask-Net (S+BN) 93.18% (96.51%) 90.68% (88.04%) 94.22% (97.31%) 93.89% 93.55%

COVID-CT-Mask-Net (full) 81.14% (85.91%) 90.01% (95.22%) 94.00% (91.32%) 90.22% 90.93%

Table 8 Summary of the iCTCF-CT [36, 37] classification dataset

Split COVID-19 Negative Total

Train/Val 300 300 600

Test 3701 9275 12976
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Table 9 Accuracy results on the iCTCF-CT test split (12976 images). Best results in bold

Model COVID-19 Negative F1score

Ours (only S) 85.45% 81.27% 82.01%

Ours (S+BN) 93.91% 91.46% 92.20%

Ours (full) 91.31% 87.27% 88.91%

We also addressed other limitations in the COVID-19
literature discussed in [24]: we provided the OS dataset
details, such as test splits and class distribution; critical
hyperparameters for both models, results on the test splits
for both problems; comparison to a set of OS models;
other details, including all remaining hyperparameters, can
be found in the source code in a Github repository that
we made available. Therefore, we minimized the list of
methodological flaws discussed in [24], and our solution can
be both verified and used in other studies.

6 Conclusions

It is often a challenge to find a sufficiently large dataset
to train models for accurate predictions of COVID-19. This
means that the model must either be trained using various
augmentation tricks, or it is evaluated on a relatively small
dataset, and therefore may not generalize well to the new
data. One of the strongest features of COVID-CT-Mask-
Net’s methodology is the ability to train on very small
training split relative to the test split, without any balancing
and augmentation tweaks due to the functionality of Mask
R-CNN.

We trained our model on 3000 images from COVIDx-
CT training split, and evaluated it on more than 21192
test images achieving a 91.66% overall accuracy and
90.80% COVID-19 sensitivity. The model can be easily
and quickly adapt to new chest CT scans data to achieve
a high sensitivity to COVID-19. Mask R-CNN achieved a
0.352 average precision of the segmentation of instances of
Ground Glass Opacity and Consolidation lesions in chest
CT scans. The source code with all models and weights are
on https://github.com/AlexTS1980/COVID-CT-Mask-Net.

Despite these achievements, unlike Faster and Mask R-
CNN, that were trained on large benchmark datasets, our
model at present does not generalize out-of-the-box. In
our future work we will focus on developing models that,
without any additional finetuning, will generalize to other
datasets, and could be introduced in radiology departments.
Very likely, this will include new architectural solutions,
pre-processing algorithms and loss functions.

References

1. Gunraj H, Wang L, Wong A (2020) Covidnet-ct: A tailored deep
convolutional neural network design for detection of covid-19
cases from chest ct images, arXiv:2009.05383

2. Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, Bai J, Lu Y, Fang Z,
Song Q et al (2020) Artificial intelligence distinguishes covid-19
from community acquired pneumonia on chest ct. Radiology

3. Butt C, Gill J, Chun D, Babu BA (2020) Deep learning system to
screen coronavirus disease 2019 pneumonia. Appl Intell:1–7

4. Polsinelli M, Cinque L, Placidi G (2020) A light cnn for detecting
covid-19 from ct scans of the chest, arXiv:2004.12837

5. Zhou T, Lu H, Yang Z, Qiu S, Huo B, Dong Y (2021) The
ensemble deep learning model for novel covid-19 on ct images.
Appl Soft Comput 98:106885

6. Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X, Zha Y, Liang W,
Wang C, Wang K et al (2020) Clinically applicable ai system for
accurate diagnosis, quantitative measurements, and prognosis of
covid-19 pneumonia using computed tomography. Cell

7. Wu Y-H, Gao S-H, Mei J, Xu J, Fan D-P, Zhao C-W, Cheng M-
M (2020) Jcs: An explainable covid-19 diagnosis system by joint
classification and segmentation. arXiv:2004.07054

8. Zhao J, Zhang Y, He X, Xie P (2020) Covid-ct-dataset: a ct scan
dataset about covid-19, arXiv:2003.13865

9. Jiang H, Tang S, Liu W, Zhang Y (2021) Deep learning for covid-
19 chest ct (computed tomography) image analysis: a lesson from
lung cancer. Comput Struct Biotechnol J 19:1391–1399

10. Zhu J-Y, Park T, Isola P, Efros AA (2017) Unpaired image-to-
image translation using cycle-consistent adversarial networks. In:
Proceedings of the IEEE international conference on computer
vision, pp 2223–2232

11. Wang S-H, Wu X, Zhang Y-D, Tang C, Zhang X (2020)
Diagnosis of covid-19 by wavelet renyi entropy and three-
segment biogeography-based optimization. Int J Comput Intell
Syst 13(1):1332–1344

12. Wang L, Wong A (2020) Covid-net: A tailored deep convolutional
neural network design for detection of covid-19 cases from chest
x-ray images. arXiv:2003.09871

13. Wang S-H, Nayak DR, Guttery DS, Zhang X, Zhang Y-D (2021)
Covid-19 classification by ccshnet with deep fusion using transfer
learning and discriminant correlation analysis. Inf Fusion 68:131–
148

14. Wang S-H, Govindaraj VV, Górriz JM, Zhang X, Zhang Y-
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