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The COVID-19 pandemic continues to rage on, with multiple waves causing substantial

harm to health and economies around the world. Motivated by the use of computed

tomography (CT) imaging at clinical institutes around the world as an effective

complementary screening method to RT-PCR testing, we introduced COVID-Net CT, a

deep neural network tailored for detection of COVID-19 cases from chest CT images,

along with a large curated benchmark dataset comprising 1,489 patient cases as

part of the open-source COVID-Net initiative. However, one potential limiting factor

is restricted data quantity and diversity given the single nation patient cohort used

in the study. To address this limitation, in this study we introduce enhanced deep

neural networks for COVID-19 detection from chest CT images which are trained

using a large, diverse, multinational patient cohort. We accomplish this through the

introduction of two new CT benchmark datasets, the largest of which comprises

a multinational cohort of 4,501 patients from at least 16 countries. To the best

of our knowledge, this represents the largest, most diverse multinational cohort

for COVID-19 CT images in open-access form. Additionally, we introduce a novel

lightweight neural network architecture called COVID-Net CT S, which is significantly

smaller and faster than the previously introduced COVID-Net CT architecture. We

leverage explainability to investigate the decision-making behavior of the trained

models and ensure that decisions are based on relevant indicators, with the results

for select cases reviewed and reported on by two board-certified radiologists with

over 10 and 30 years of experience, respectively. The best-performing deep neural

network in this study achieved accuracy, COVID-19 sensitivity, positive predictive

value, specificity, and negative predictive value of 99.0%/99.1%/98.0%/99.4%/99.7%,

respectively. Moreover, explainability-driven performance validation shows consistency

with radiologist interpretation by leveraging correct, clinically relevant critical factors. The

results are promising and suggest the strong potential of deep neural networks as an

effective tool for computer-aided COVID-19 assessment. While not a production-ready
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solution, we hope the open-source, open-access release of COVID-Net CT-2 and the

associated benchmark datasets will continue to enable researchers, clinicians, and

citizen data scientists alike to build upon them.

Keywords: COVID-19, computed tomography, deep learning, image classification, radiology, SARS-CoV-2,

pneumonia

1. INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic, caused
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), continues to rage on, with multiple waves causing
substantial harm to health and economies around the world.
Real-time reverse transcription polymerase chain reaction (RT-
PCR) testing remains the primary screening tool for COVID-19,
where SARS-CoV-2 ribonucleic acid (RNA) is detected within
an upper respiratory tract sputum sample (1). However, despite
being highly specific, the sensitivity of RT-PCR can be relatively
low (2, 3) and can vary greatly depending on the time since
symptom onset as well as sampling method (3–5).

Clinical institutes around the world have explored the
use of computed tomography (CT) imaging as an effective,
complementary screening tool alongside RT-PCR (2, 5, 6). In
particular, studies have shown CT to have great utility in
detecting COVID-19 infections during routine CT examinations
for non-COVID-19 related reasons such as elective surgical
procedure monitoring and neurological examinations (7, 8).
Other scenarios where CT imaging has been leveraged include
cases where patients have worsening respiratory complications,
as well as cases where patients with negative RT-PCR test results
are suspected to be COVID-19 positive due to other factors. Early
studies have shown that a number of potential indicators for
COVID-19 infections may be present in chest CT images (2, 5,
6, 9–12), but may also be present in non-COVID-19 infections.
This can lead to challenges for radiologists in distinguishing
COVID-19 infections from non-COVID-19 infections using
chest CT (13, 14).

Inspired by the potential of CT imaging as a complementary
screening method and the challenges of CT interpretation
for COVID-19 screening, we previously introduced COVID-
Net CT (15), a convolutional neural network (CNN) tailored
for detection of COVID-19 cases from chest CT images. We
further introduced COVIDx CT, a large curated benchmark
dataset comprising chest CT scans from a cohort of 1,489
patients derived from a collection by the China National Center
for Bioinformation (CNCB) (16). Both COVID-Net CT and
COVIDx CT were made publicly available as part of the COVID-
Net (17, 18) initiative, an open-source initiative1 aimed at
accelerating advancement and adoption of deep learning in
the fight against the COVID-19 pandemic. While COVID-
Net CT was able to achieve state-of-the-art COVID-19 detection
performance, one potential limiting factor is the restricted
quantity and diversity of CT imaging data used to learn the deep

1https://alexswong.github.io/COVID-Net

neural network given the entirely Chinese patient cohort used in
the study. As such, a greater quantity and diversity in the patient
cohort has the potential to improve generalization, particularly
when COVID-Net CT is leveraged in different clinical settings
around the world.

Motivated by the success and widespread adoption of
COVID-Net CT and COVIDx CT, as well as their potential
data quantity and diversity limitations, in this study we
introduce COVID-Net CT-2, enhanced CNNs for COVID-19
detection from chest CT images which are trained using a
large, diverse, multinational patient cohort. More specifically,
we accomplish this through the introduction of two new
CT benchmark datasets (COVIDx CT-2A and COVIDx CT-
2B), the largest of which comprises a multinational cohort
of 4,501 patients from at least 16 countries. To the best of
the authors’ knowledge, these benchmark datasets represent
the largest, most diverse multinational cohorts for COVID-
19 CT images available in open access form. Additionally, we
introduce a novel lightweight neural network architecture called
COVID-Net CT S, which is significantly smaller and faster
than the previously introduced COVID-Net CT architecture
and achieves an improved trade-off between performance and
efficiency. Finally, we leverage explainability to investigate the
decision-making behavior of COVID-Net CT-2 models to ensure
decisions are based on relevant visual indicators in CT images,
with the results for select patient cases being reviewed and
reported on by two board-certified radiologists with 10 and
30 years of experience, respectively. The COVID-Net CT-
2 networks and corresponding COVIDx CT-2 datasets are
publicly available as part of the COVID-Net initiative (17, 18).
While not a production-ready solution, we hope the open-
source, open-access release of the COVID-Net CT-2 networks
and the corresponding COVIDx CT-2 benchmark datasets will
enable researchers, clinicians, and citizen data scientists alike to
build upon them.

2. MATERIALS AND METHODS

2.1. COVIDx CT-2 Benchmark Dataset
The original COVIDxCT benchmark dataset consists of chest CT
scans collected by the China National Center for Bioinformation
(CNCB) (16) which were carefully processed and selected to form
a cohort of 1,489 patient cases.While COVIDx CT is significantly
larger than many CT datasets for COVID-19 detection in
literature, a potential limitation with leveraging COVIDx CT
for training neural networks is the limited diversity in terms of
patient demographics. More specifically, the cohort of patients
used in COVIDx CT are collected in different provinces of
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China, and as such the characteristics of COVID-19 infection as
observed in the chest CT images may not generalize to patients
around the world outside of China. Therefore, increasing the
quantity and diversity of the patient cohort in constructing new
benchmark datasets could result in more diverse, well-rounded
training of neural networks. In doing so, improved generalization
and applicability for use in different clinical environments
around the world can be achieved.

In this study, we carefully processed and curated CT images
from several patient cohorts from around the world which were
collected using a variety of CT equipment types, protocols, and
levels of validation. By unifying CT imaging data from several
cohorts from around the world, we created two diverse, large-
scale benchmark datasets:

• COVIDx CT-2A: This benchmark dataset comprises 194,922
CT images from a multinational cohort of 3,745 patients
between 0 and 93 years old (median age of 51) with strongly
clinically-verified findings. The multinational cohort consists
of patient cases collected by the following organizations
and initiatives from around the world: (1) China National
Center for Bioinformation (CNCB) (16) (China), (2) National
Institutes of Health Intramural Targeted Anti-COVID-
19 (ITAC) Program (hosted by TCIA (19), countries
unknown), (3) Negin Radiology Medical Center (20) (Iran),
(4) Union Hospital and Liyuan Hospital of Huazhong
University of Science and Technology (21) (China), (5)
COVID-19 CT Lung and Infection Segmentation initiative,
annotated and verified by Nanjing Drum Tower Hospital (22)
(Iran, Italy, Turkey, Ukraine, Belgium, some countries
unknown), (6) Lung Image Database Consortium (LIDC)
and Image Database Resource Initiative (IDRI) (23) (USA),
and (7) Radiopaedia collection (24) (Iran, Italy, Australia,
Afghanistan, Scotland, Lebanon, England, Algeria, Peru,
Azerbaijan, some countries unknown).

• COVIDx CT-2B: This benchmark dataset comprises 201,103
CT images from a multinational cohort of 4,501 patients
between 0 and 93 years old (median age of 51) with a mix
of strongly verified findings and weakly verified findings. The
patient cohort in COVIDx CT-2B consists of the multinational
patient cohort we leveraged to construct COVIDx CT-
2A, which have strongly clinically-verified findings, with
additional patient cases with weakly verified findings collected
by the Research and Practical Clinical Center of Diagnostics
and Telemedicine Technologies, Department of Health Care
of Moscow (MosMed) (25) (Russia). Notably, these additional
cases are only included in the training dataset, and as such
the validation and test datasets are identical to those of
COVIDx CT-2A.

In both COVIDx CT-2 benchmark datasets, the findings for
the chest CT volumes correspond to three different infection
types: (1) novel coronavirus pneumonia due to SARS-CoV-2 viral
infection (NCP), (2) common pneumonia (CP), and (3) normal
controls. The image and patient distributions for the three
infection types across training, validation, and test partitions are
shown in Tables 1, 2 for COVIDx CT-2A and COVIDx CT-2B,

TABLE 1 | Distribution of chest CT slices and patient cases (in parentheses) by

data partition and infection type in the COVIDx CT-2A dataset.

Infection type

Partition Normal CP NCP Total

Training 35,996 (321) 25,496 (558) 82,286 (1,958) 143,778 (2,837)

Validation 11,842 (126) 7,400 (190) 6,244 (166) 25,486 (482)

Test 12,245 (126) 7,395 (125) 6,018 (175) 25,658 (426)

Total 60,083 (573) 40,291 (873) 94,548 (2,299) 194,922 (3,745)

TABLE 2 | Distribution of chest CT slices and patient cases (in parentheses) by

data partition and infection type in the COVIDx CT-2B dataset.

Infection type

Partition Normal CP NCP Total

Training 35,996 (321) 25,496 (558) 88,467 (2,714) 149,959 (3,593)

Validation 11,842 (126) 7,400 (190) 6,244 (166) 25,486 (482)

Test 12,245 (126) 7,395 (125) 6,018 (175) 25,658 (426)

Total 60,083 (573) 40,291 (873) 100,729 (3,055) 201,103 (4,501)

respectively. Note that the data is partitioned at the patient level,
and as such each patient appears in a single partition. For CT
volumes labeled as NCP or CP, slices containing abnormalities
were identified and assigned the same labels as the CT volumes.
Notably, patient age was not available for all cases, and as
such the age ranges and median ages reported above are based
on patient cases for which age was available. The given range
alludes to the inclusion of pediatric images in the COVIDx CT-2
datasets, which possess significant visual differences from adult
images. However, we argue that leveraging COVID-19 pediatric
cases may allow for the trained models to be more robust, and
moreover only 26 of the included patients are under the age of
18. For images which were originally in Hounsfield units (HU),
a standard lung window centered at −600 HU with a width of
1,500 HU was used to map the images to unsigned 8-bit integer
range (i.e., 0–255).

The rationale for creating two different COVIDx CT-2
benchmark datasets stems from the availability of weakly
verified findings (i.e., findings not based on RT-PCR test
results or final radiology reports), which can be useful for
further increasing the quantity and diversity of patient cases
that a neural network can be exposed to and can be of
great interest for researchers, clinicians, and citizen scientists
to explore and build upon while being made aware of the
fact some of the CT scans do not have strongly verified
findings available. Select patient cases from the benchmark
datasets were reviewed and reported on by two board-certified
radiologists with 10 and 30 years of experience, respectively.
Both COVIDx CT-2A and COVIDx CT-2B benchmark datasets
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FIGURE 1 | Example CT images from the COVIDx CT-2 benchmark datasets

from each type of infection: (A) novel coronavirus pneumonia due to

SARS-CoV-2 infection (NCP), (B) common pneumonia (CP), and (C) normal

controls.

are publicly available2 as part of the COVID-Net initiative,
with example CT images from each type of infection shown in
Figure 1.

2.2. COVID-Net CT-2 Construction and
Learning
By leveraging the COVIDx CT-2 benchmark datasets introduced
in the previous section, we train a variety of CNNs in
a way that better generalizes to a wide range of clinical
scenarios. More specifically, six COVID-Net CT-2 deep neural
networks are built based on six different deep CNN architecture
designs: SqueezeNet (26), MobileNetV2 (27), EfficientNet-
B0 (28), NASNet-A-Mobile (29), COVID-Net CT (15) (denoted
COVID-Net CT L in this work), and a novel lightweight
architecture called COVID-Net CT S. COVID-Net CT S shares
the same macroarchitecture design as COVID-Net CT L, but
with significantly more efficient microarchitecture designs. This
greatly improved efficiency was achieved by leveraging machine-
driven design exploration via generative synthesis (30), with
the COVID-Net CT L architecture utilized as the initial design
prototype. The COVID-Net CT S architecture is shown in
Figure 2, and is made publicly available3.

The various COVID-Net CT-2 CNNs were trained on
the COVIDx CT-2A dataset. For comparison purposes, we
also trained each COVID-Net CT-2 network on the original
COVIDx CT dataset (15) (referred to from here on as
COVIDx CT-1 for clarity). To differentiate between networks
trained on different datasets, we indicate CT-1 or CT-2 in the

2https://www.kaggle.com/hgunraj/covidxct
3https://github.com/haydengunraj/COVIDNet-CT

network names (e.g., MobileNetV2 CT-1, MobileNetV2 CT-2,
COVID-Net CT-1 L, COVID-Net CT-2 L, etc.). Given the
unsigned 8-bit integer format of the datasets, CT slices were
normalized to the range [0, 1] through division by 255.
Optimization was performed via stochastic gradient descent with
momentum (31) using cross-entropy loss with L2 regularization,
and the following hyperparameters were selected: learning rate
= 5e-4, momentum = 0.9, λL2 = 1e-4, batch size = 8. To
further increase data diversity beyond what is provided by
the large multinational cohort, we leveraged random data
augmentation in the form of cropping box jitter (±7.5%),
rotation (±20o), horizontal and vertical shear (±0.2), horizontal
flip, and intensity shift (±15 gray levels) and scaling (±10%), with
all augmentations being applied with 50% probability. Training
was stopped once the validation accuracy plateaued (i.e., early
stopping). During training, we leveraged the batch re-balancing
strategy used in (15) to ensure a balanced distribution of each
infection type at the batch level.

We evaluate the various COVID-Net CT-2 networks using
the COVIDx CT-2 test dataset. To assess performance, we
report test accuracy as well as class-wise sensitivity, positive
predictive value (PPV), specificity, and negative predictive value
(NPV). Additionally, to assess the efficiency-performance trade-
offs of the models, we report NetScore (32) which takes
into account test accuracy, architectural complexity, as well as
computational complexity within a unified metric. Qualitative
evaluation through explainability was also performed, and is
discussed in the next section.

2.3. Explainability-Driven Performance
Validation
As with COVID-Net CT (15), we utilize GSInquire (33) to
conduct explainability-driven performance validation. Using
GSInquire, we audit the trained models to better understand
and verify their decision-making behavior when analyzing CT
images to predict the condition of a patient. This form of
performance validation is particularly important in a clinical
context, as the decisions made about patients’ conditions can
affect the health of patients via treatment and care decisionsmade
using a model’s predictions. Therefore, examining the decision-
making behavior through model auditing is key to ensuring that
the right visual indicators in the CT scans (e.g., ground-glass
opacities) are leveraged for making a prediction as opposed to
irrelevant visual cues (e.g., synthetic padding, artifacts, patient
tables, etc.). Furthermore, incorporating interpretability in the
validation process also increases the level of trust that a clinician
has in leveraging such models for clinical decision support by
adding an extra degree of algorithmic transparency.

To facilitate explainability-driven performance validation via
model auditing, GSInquire provides an explanation of how a
model makes a decision based on input data by identifying
a set of critical factors within the input data that impact the
decision-making process of the neural network in a quantitatively
significant way. This is accomplished by probing the model
with an input signal (in this case, a CT image) as the targeted
stimulus signal and observing the reactionary response signals
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FIGURE 2 | COVID-Net CT-2 S architecture design and COVIDx CT-2 benchmark. We leverage the COVID-Net CT network architecture (15) as the basis of the

COVID-Net CT S network, which was discovered automatically via machine-driven design exploration.

throughout the model, thus enabling quantitative insights to
be derived through the inquisition process. These quantitative
insights are then transformed and projected into the same space
as the input signal to produce an interpretation (in this case, a
set of critical factors in the CT image that quantitatively led to
the prediction of the patient’s condition). These interpretations
can be visualized spatially relative to the CT images for
greater insights into the decision-level behavior of COVID-
Net CT-2. Compared to other explainability methods (34–38),
this interesting nature of GSInquire in identifying quantitative
impactful critical factors enables it to achieve explanations
that better reflect the decision-making process of models (33).
This makes it particularly suitable for quality assurance of
models prior to clinical deployment to identify errors, biases,
and anomalies that can lead to “right decisions for the wrong
reasons.” The results obtained from GSInquire for select patient
cases are further reviewed and reported on by two board-certified
radiologists (AS and DK). The first radiologist (AS) has over 10
years of experience, while the second radiologist (DK) has over
30 years of radiology experience.

3. RESULTS

3.1. Quantitative Analysis
To explore the efficacy of the COVID-Net CT-2 networks
for COVID-19 detection from CT images, we conducted a
quantitative evaluation of the trained networks using the
COVIDx CT-2 test dataset. For comparison purposes, results
for networks trained on the COVIDx CT-1 dataset (15)
are also given. The training data used for each network is
denoted by either CT-1 or CT-2 in the network name, as
previously mentioned.

The test accuracy and NetScore (32) of each COVID-
Net CT-2 network is shown in Table 3. It can be observed
that all architectures achieve high test accuracy, with the

best accuracy (99%) obtained using the MobileNetV2 and
EfficientNet-B0 architectures trained on COVIDx CT-2A.
Moreover, for all tested architectures, training on COVIDx CT-
2A yields significant gains in test accuracy over training
on COVIDx CT-1, with improvements ranging from +3.3
to +7.3% test accuracy. In terms of architectural and
computational complexity, COVID-Net CT S possesses the
fewest parameters (0.45 M) and floating-point operations
(FLOPs, 1.94 G) while achieving an accuracy of 98.3%. The
efficiency-performance trade-off of each model is assessed via
its NetScore, of which COVID-Net CT-2 S’ score of 83.3 is
the highest and is significantly higher than the other tested
networks. In contrast, the two COVID-Net CT-2 networks with
the highest accuracies achieved significantly lower NetScores
(74.1 and 70.7 for MobileNetV2 CT-2 and EfficientNet-
B0 CT-2, respectively) owing to their significantly higher
architectural and computational complexities. In resource-
limited environments, balancing performance with efficiency is
an important consideration.

The sensitivity and PPV for each infection type on the
COVIDx CT-2 test dataset is shown in Table 4. Examining the
differences in sensitivity between COVID-Net CT-2 networks
trained on COVIDx CT-1 and COVIDx CT-2A, it can be
observed that significant gains in sensitivity are achieved
through training on COVIDx CT-2A (+4.9 to +23.9%), with
the best sensitivity (99.1%) obtained using the EfficientNet-
B0 architecture. Notably, for the COVID-Net CT L and S
architectures, increased sensitivity comes at the cost of a slight
reduction in COVID-19 PPV, whereas for the other four
architectures sensitivity and PPV are both improved. From a
clinical perspective, high sensitivity ensures few false negatives
which would lead to missed patients with COVID-19 infections,
whereas high PPV ensures few false positives which add an
unnecessary burden on the healthcare system, which is already
stressed due to the ongoing pandemic.
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TABLE 3 | Comparison of parameters, FLOPs, accuracy (image-level), and

NetScore (32) for the tested networks on the COVIDx CT-2 benchmark test

dataset.

Network Parameters (M) FLOPs (G) Accuracy (%) NetScore

SqueezeNet CT-1 (26) 0.74 8.09 94.4 74.2

MobileNetV2 CT-1 (27) 2.23 3.33 91.7 72.8

EfficientNet-B0 CT-1 (28) 4.05 4.07 94.9 69.9

NASNet-A-Mobile CT-1 (29) 4.29 5.94 95.5 68.1

COVID-Net CT-1 L (15) 1.40 4.18 94.5 74.4

COVID-Net CT-1 S 0.45 1.94 93.2 82.4

SqueezeNet CT-2 (26) 0.74 8.09 98.7 75.0

MobileNetV2 CT-2 (27) 2.23 3.33 99.0 74.1

EfficientNet-B0 CT-2 (28) 4.05 4.07 99.0 70.7

NASNet-A-Mobile CT-2 (29) 4.29 5.94 98.8 68.7

COVID-Net CT-2 L (15) 1.40 4.18 98.4 75.1

COVID-Net CT-2 S 0.45 1.94 98.3 83.3

Best results highlighted in bold.

TABLE 4 | Sensitivity and positive predictive value (PPV) for each infection type at

the image level on the COVIDx CT-2 benchmark test dataset.

Sensitivity (%) PPV (%)

Network Normal CP NCP Normal CP NCP

SqueezeNet CT-1 (26) 92.9 98.3 92.8 97.5 96.6 86.3

MobileNetV2 CT-1 (27) 85.5 98.2 74.6 98.1 98.0 76.2

EfficientNet-B0 CT-1 (28) 99.3 97.8 82.5 94.8 93.4 97.6

NASNet-A-Mobile CT-1 (29) 98.9 97.9 85.5 96.0 94.6 95.5

COVID-Net CT-1 L (15) 98.8 99.0 80.2 96.1 90.2 97.6

COVID-Net CT-1 S 98.6 99.2 74.9 96.4 85.7 98.4

SqueezeNet CT-2 (26) 99.2 98.6 97.7 99.0 98.7 98.1

MobileNetV2 CT-2 (27) 99.3 98.9 98.5 99.5 99.0 98.0

EfficientNet-B0 CT-2 (28) 99.1 98.7 99.1 99.5 99.0 98.0

NASNet-A-Mobile CT-2 (29) 99.2 98.2 98.7 99.5 99.3 96.9

COVID-Net CT-2 L (15) 99.1 97.6 98.1 99.4 98.8 96.1

COVID-Net CT-2 S 99.4 99.1 97.3 99.3 98.3 96.3

Best results highlighted in bold.

The specificity and NPV for each infection type on the
COVIDx CT-2 test dataset is shown in Table 5. Examining
the differences in specificity between models trained on
COVIDx CT-1 and COVIDx CT-2A, it can be observed that
specificity does not change significantly in most cases, with
a mix of improvements and reductions when switching from
COVIDx CT-1 training to COVIDx CT-2 training. In contrast,
when considering NPV, we observe consistent improvements
ranging from no change (for COVID-Net CT L) to +6.4% (for
EfficientNet-B0) when training on COVIDx CT-2A. The high
specificity and NPV achieved by these models are important
from a clinical perspective to ensure that COVID-19-negative
predictions are indeed true negatives in the vast majority
of cases, which facilitates rapid identification of COVID-19-
negative patients.

TABLE 5 | Specificity and negative predictive value (NPV) for each infection type

at the image level on the COVIDx CT-2 benchmark test dataset.

Specificity (%) NPV (%)

Network Normal CP NCP Normal CP NCP

SqueezeNet CT-1 (26) 97.8 98.6 95.5 93.8 99.3 97.7

MobileNetV2 CT-1 (27) 98.6 99.2 90.8 88.2 99.4 98.6

EfficientNet-B0 CT-1 (28) 95.0 97.2 99.4 99.3 99.1 94.9

NASNet-A-Mobile CT-1 (29) 96.2 97.7 98.8 99.0 99.1 95.7

COVID-Net CT-1 L (15) 99.4 99.5 98.8 99.2 99.0 99.4

COVID-Net CT-1 S 96.6 93.3 99.6 98.7 99.6 92.8

SqueezeNet CT-2 (26) 99.1 99.5 99.4 99.3 99.4 99.3

MobileNetV2 CT-2 (27) 99.5 99.6 99.4 99.4 99.6 99.5

EfficientNet-B0 CT-2 (28) 99.6 99.6 99.4 99.2 99.5 99.7

NASNet-A-Mobile CT-2 (29) 99.5 99.7 99.0 99.3 99.3 99.6

COVID-Net CT-2 L (15) 99.4 99.5 99.8 99.2 99.0 99.4

COVID-Net CT-2 S 99.4 99.3 98.8 98.4 99.6 99.2

Best results highlighted in bold.

Given the diverse nature of the COVIDx CT-2 test dataset,
these experimental results are particularly promising in
terms of network generalization and applicability for use in
different clinical environments. Additionally, the reduced
performance observed when COVIDx CT-1 is used for
training illustrates the value of larger, diverse training
data for improving model performance in a variety of
clinical scenarios.

3.2. Qualitative Analysis
To audit the decision-making behavior of COVID-Net CT-2
and ensure that it is leveraging relevant visual indicators
when predicting the condition of a patient, we conducted
explainability-driven performance validation using the
COVIDx CT-2 benchmark test dataset, and the results
obtained using COVID-Net CT-2 L for select patient cases
are further reviewed and reported on by two board-certified
radiologists. The critical factors identified by GSInquire
for example chest CT images from the four COVID-19-
positive cases that were reviewed are shown in Figure 3, and
additional examples for COVID-Net CT-2 S are shown in
Figure 4.

Overall, it can be observed from the GSInquire-generated
visual explanations that both COVID-Net CT-2 L and COVID-
Net CT-2 S are mainly utilizing visible lung abnormalities
to distinguish between COVID-19-positive and COVID-19-
negative cases. As such, this auditing process allows us to
determine that COVID-Net CT-2 is indeed leveraging relevant
visual indicators in the decision-making process as opposed to
irrelevant visual indicators such as imaging artifacts, artificial
padding, and patient tables. This performance validation process
also reinforces the importance of utilizing explainability methods
to confirm proper decision-making behavior in neural networks
designed for clinical decision support.
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FIGURE 3 | Example chest CT images from four COVID-19 cases reviewed

and reported on by two board-certified radiologists, and the associated critical

factors (highlighted in red) as identified by GSInquire (33) for

COVID-Net CT-2 L. Based on the observations made by two expert

radiologists, it was found that the critical factors leveraged by

COVID-Net CT-2 L are consistent with radiologist interpretation.

3.3. Radiologist Findings
The expert radiologist findings and observations with regards
to the critical factors identified by GSInquire for each of the
four patient cases shown in Figure 3 are as follows. In all four
cases, COVID-Net CT-2 L detected them to be novel coronavirus
pneumonia due to SARS-CoV-2 viral infection, which was
clinically confirmed.

Case 1 (top-left of Figure 3). It was observed by one of the
radiologists that there are bilateral peripheral mixed ground-glass
and patchy opacities with subpleural sparing, which is consistent
with the identified critical factors leveraged by COVID-Net CT-
2 L. The absence of large lymph nodes and effusion further
helped the radiologist point to novel coronavirus pneumonia
due to SARS-CoV-2 viral infection. The degree of severity is
observed to be moderate to high. It was confirmed by the
second radiologist that the identified critical factors leveraged by
COVID-Net CT-2 L are correct areas of concern and represent
areas of consolidation with a geographic distribution that is
in favor of novel coronavirus pneumonia due to SARS-CoV-2
viral infection.

Case 2 (top-right of Figure 3). It was observed by one of the
radiologists that there are bilateral peripherally-located ground-
glass opacities with subpleural sparing, which is consistent with
the identified critical factors leveraged by COVID-Net CT-2 L.
As in Case 1, the absence of large lymph nodes and large
effusion further helped the radiologist point to novel coronavirus
pneumonia due to SARS-CoV-2 viral infection. The degree of

FIGURE 4 | Example chest CT images from four COVID-19 cases, and the

associated critical factors (highlighted in red) as identified by GSInquire (33) for

COVID-Net CT-2 S.

severity is observed to be moderate to high. It was confirmed by
the second radiologist that the identified critical factors leveraged
by COVID-Net CT-2 L are correct areas of concern and represent
areas of consolidation with a geographic distribution that is
in favor of novel coronavirus pneumonia due to SARS-CoV-2
viral infection.

Case 3 (bottom-left of Figure 3). It was observed by one of the
radiologists that there are peripheral bilateral patchy opacities,
which is consistent with the identified critical factors leveraged
by COVID-Net CT-2 L. Unlike the first two cases, there is small
right effusion. However, as in Cases 1 and 2, the absence of large
effusion further helped the radiologist point to novel coronavirus
pneumonia due to SARS-CoV-2 viral infection. Considering that
the opacities are at the base, a differential of atelectasis change was
also provided. The degree of severity is observed to be moderate.
It was confirmed by the second radiologist that the identified
critical factors leveraged by COVID-Net CT-2 L are correct areas
of concern and represent areas of consolidation.

Case 4 (bottom-right of Figure 3). It was observed by
one of the radiologists that there are peripherally located
asymmetrical bilateral patchy opacities, which is consistent with
the identified critical factors leveraged by COVID-Net CT-
2 L. As in Cases 1 and 2, the absence of lymph nodes and
large effusion further helped the radiologist point to novel
coronavirus pneumonia due to SARS-CoV-2 viral infection,
but a differential of bacterial pneumonia was also provided
considering the bronchovascular distribution of patchy opacities.
In addition, there is no subpleural sparing. This highlights the
potential difficulties in differentiating between novel coronavirus
pneumonia and common pneumonia. It was confirmed by the
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second of the radiologists that the identified critical factors
leveraged by COVID-Net CT-2 L are correct areas of concern and
represent areas of consolidation with a geographic distribution
that is in favor of novel coronavirus pneumonia due to SARS-
CoV-2 viral infection.

Therefore, it can be observed that the explainability-
driven validation process shows consistency between the
decision-making process of COVID-Net CT-2 and radiologist
interpretation, which suggests strong potential for computer-
aided COVID-19 assessment within a clinical environment.

4. DISCUSSION

In this work, we introduced COVID-Net CT-2, enhanced CNNs
tailored for the purpose of COVID-19 detection from chest
CT images. Two new CT benchmark datasets were introduced
and used to facilitate the training of COVID-Net CT-2, and
these datasets represent the largest, most diverse multinational
cohorts of their kind available in open-access form, spanning
cases from at least 16 countries. Experimental results show that
the COVID-Net CT-2 networks are capable of not only achieving
strong quantitative results, but also doing so in a manner that
is consistent with radiologist interpretation via explainability-
driven performance validation. The results are promising and
suggest the strong potential of neural networks as an effective tool
for computer-aided COVID-19 assessment.

Given the severity of the COVID-19 pandemic and the
potential for deep learning to facilitate computer-assisted
COVID-19 clinical decision support, a number of deep learning
systems have been proposed in research literature for detecting
SARS-CoV-2 infections using CT images (14–16, 21, 39–50),
with a comprehensive review performed by Islam et al. (51).
While some proposed deep learning systems focus on binary
detection (SARS-CoV-2 positive vs. negative) (50), several
proposed systems operate at a finer level of granularity by
further identifying whether SARS-CoV-2-negative cases are
normal control (16, 39, 47, 48), SARS-CoV-2 negative pneumonia
[e.g., bacterial pneumonia, viral pneumonia, community-
acquired pneumonia (CAP), etc.] (16, 39–42, 48, 49), or non-
pneumonia (41).

The majority of the proposed deep learning systems for
COVID-19 detection from CT images rely on pre-existing
network architectures that were designed for other image
classification tasks. A large number of proposed systems
additionally rely on segmentation of the lung region and/or
lung lesions (14, 16, 39–41, 44, 45, 47, 48). Some proposed
systems also modify pre-existing network architectures; for
example, Xu et al. (39) add location-attention modules to a
ResNet-18 (52) backbone architecture, and Li et al. (41) and
Bai et al. (40) add pooling operations to 2D architectures for
volume-driven detection. Of the deep learning systems that
proposed new neural network architectures, Shah et al. (43)
proposed a 10-layer CNN architecture named CTnet-10, which
ultimately showed lower detection performance than pre-existing
architectures in literature. Zheng et al. (45) proposed a 3D CNN
architecture namedDeCovNet which is capable of volume-driven

detection. Gunraj et al. (15) used machine-driven design to
construct a tailored architecture, which was found to outperform
three existing architectures. Hasan et al. (53) combined features
obtained from a Q-deformed entropy model and custom CNN
and used them to train a long short-term memory-based
classifier. This feature fusion approach was found to outperform
either of the feature sets alone. Finally, Javaheri et al. (54)
use a U-Net-based architecture known as BCDU-Net to pre-
process CT images before performing classification using a
custom CNN architecture. The proposed BCDU-Net was trained
using artificial data based on control cases and the 3D CNN
classifier was then trained to classify CT volumes as COVID-19,
community-acquired pneumonia, or control.

While the concept of leveraging deep learning for COVID-19
detection from CT images has been previously explored, even the
largest studies in research literature have been limited in terms of
quantity and/or diversity of patients, with many limited to single-
nation cohorts (14–16, 21, 39, 42, 54, 55). For example, the studies
by Mei et al. (14), Gunraj et al. (15), Ning et al. (21), and Zhang
et al. (16) were all limited to Chinese patient cohorts consisting
of 905 patients, 1,489 patients, 1,521 patients, and 3,777 patients,
respectively. Moreover, the studies by Ardakani et al. (42) and
Javaheri et al. (54) leveraged patient cohorts from Iran including
108 and 335 patients, respectively. Multinational patient cohorts
have been leveraged in several studies, but have typically been
limited to few patients or few countries. For example, Hasan
et al. (53) leveraged a multinational cohort (countries unknown)
of 321 patients, Harmon et al. (50) leveraged a cohort of 2,617
patients across four countries, and Jin et al. (47) leveraged
a cohort of 9,025 patients across at least three countries. To
the best of the authors’ knowledge, the multinational patient
cohort introduced in this study represents the most diverse
multinational patient cohort at 4,501 patients across at least
16 countries, and is the largest available in open-access form.
By building the COVID-Net CT-2 deep neural networks using
a large multinational patient cohort, we can better study the
generalization capabilities and applicability of deep learning
for computer-assisted assessment in a wide variety of clinical
scenarios and demographics.

With the tremendous burden the ongoing COVID-19
pandemic has put on healthcare systems and healthcare workers
around the world, the hope is that research such as COVID-
Net CT-2 and open-source initiatives such as the COVID-Net
initiative can accelerate the advancement and adoption of deep
learning solutions within a clinical setting to aid front-line health
workers and healthcare systems in improving clinical workflow
efficiency and effectiveness in the fight against the COVID-
19 pandemic. While to the best of the authors’ knowledge
this research does not put anyone at a disadvantage, it is
important to note that COVID-Net CT-2 is not a production-
ready solution and is meant for research purposes. As such,
predictions made by COVID-Net CT-2 should not be utilized
blindly and should instead be built upon and leveraged in a
human-in-the-loop fashion by researchers, clinicians, and citizen
data scientists alike. Future work involves leveraging the pre-
trained networks for downstream tasks such as lung function
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prediction, severity assessment, and actionable predictions for
guiding personalized treatment and care for SARS-CoV-2
positive patients.
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