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ABSTRACT: In the early months of the COVID-19 pandemic with no designated cure or vaccine, the only 

way to break the infection chain is self-isolation and maintaining the physical distancing. In this paper, we 

present a potential application of the Internet of Things (IoT) in healthcare and physical distance monitoring 

for pandemic situations. The proposed framework consists of three parts: a lightweight and low-cost IoT 

node, a smartphone application (app), and fog-based Machine Learning (ML) tools for data analysis and 

diagnosis. The IoT node tracks health parameters, including body temperature, cough rate, respiratory rate, 

and blood oxygen saturation, then updates the smartphone app to display the user health conditions. The app 

notifies the user to maintain a physical distance of 2 m (or 6 ft), which is a key factor in controlling virus 

spread. In addition, a Fuzzy Mamdani system (running at the fog server) considers the environmental risk 

and user health conditions to predict the risk of spreading infection in real time. The environmental risk 

conveys from the virtual zone concept and provides updated information for different places. Two scenarios 

are considered for the communication between the IoT node and fog server, 4G/5G/WiFi, or LoRa, which 

can be selected based on environmental constraints. The required energy usage and bandwidth (BW) are 

compared for various event scenarios. The COVID-SAFE framework can assist in minimizing the corona-

virus exposure risk. 

INDEX TERMS IoT, Health monitoring, Smart Healthcare, Pandemic, COVID-19

I. INTRODUCTION 

Internet of Things (IoT) development brings new opportuni-

ties in many applications, including smart cities and smart 

healthcare. Currently, the primary usage of the IoT in 

healthcare can be categorized as remote monitoring and real-

time health systems. Controlling and managing dire situa-

tions, such as the one in 2020 when the coronavirus disease 

(COVID-19) took over the world, can be achieved with the 

help of IoT systems, without imposing severe restrictions on 

people and industries. COVID-19 causes respiratory symp-

toms and appears to be more contagious in comparison to 

SARS in 2003 [1]. One way to control the spread of viruses, 

until a vaccine is available, is to observe physical (or social) 

distancing [2]. By implementing better systems for surveil-

lance, healthcare, and transportation, contagious diseases 

will have less chance of spreading [3], [4]. An IoT system, 

combined with Artificial Intelligence (AI), may offer the fol-

lowing contributions when considering a pandemic [5]: 1) 

improving public security using surveillance and image 

recognition systems, 2) utilizing drones for supply, delivery, 

or disinfection, 3) contact tracing and limiting people’s ac-
cess to public places through apps and platforms empowered 

with AI. An IoT system for healthcare is typically composed 

of many sensors connected to a server; it gives real-time 

monitoring of an environment or users. In a pandemic, AI-

assisted sensors can be used to help predict whether or not 

people are infected with the virus, based on signs such as 

body temperature, coughing patterns, and blood oxygen lev-

els. Tracking people’s geolocation can be another useful fea-
ture. During the outbreak of a contagious disease, tracking 
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the distance between people can provide valuable infor-

mation. Using technologies, such as Bluetooth, we can get a 

reasonable estimate of how much distance people maintain 

when walking in public places. This data can be used to warn 

people who are not physically distanced within a specific 

range, 2 m for example [6], of a person, and thereby, poten-

tially prevent further transmission of the virus. During the 

development of such platforms, it is also crucial to consider 

security and data management thoroughly to prevent abuse 

of personal information [7], [8]. Governments may try to use 

these platforms and information for permanent surveillance 

after a pandemic to control and track people’s behaviors.  

 
II. RELATED WORKS 

During the last several years, different IoT applications have 

been proposed to improve healthcare systems. The IoT can 

be used for remote patient monitoring, e.g., connecting sen-

iors who have chronic diseases to doctors and medical re-

sources [9]. IoT applications have been implemented to aid 

people with Parkinson's [10] and Alzheimer's disease [11]. It 

offers disaster management for seniors who are living alone 

and need special care [12] and can also be applied to manage 

equipment and patients in hospitals [13]. In a smart 

healthcare setting, the IoT can help to provide a remote diag-

nosis prior to hospitals for more efficient treatment [14]. For 

diabetic patients, it is vital to monitor their blood glucose 

continuously [15]; blood glucose data can be sent from wear-

able sensors to doctors or smartphones for continuous moni-

toring of patients’ state of health. Castillejo et al. [16] de-

velop an IoT e-health system based on Wireless Sensor Net-

works (WSN) for firefighters. 

Geolocation of people gives important information about 

a potential outbreak during a pandemic. This process can be 

performed in many ways, each having its pros and cons alt-

hough providing accurate estimations. A global positioning 

system (GPS) uses large power consumption. However, GPS 

accuracy can be severely degraded based on the position of 

a receiver and satellites, especially indoors [17]. The work in 

[18] has demonstrated the feasibility of using the Received 

Signal Strength Indicator (RSSI) to locate the user in an in-

door environment. The user carries a mobile which is con-

nected to the Wireless Local Area Network (WLAN). The 

mobile sends a signal to several fixed position access points 

(APs), which are then fused using a Center of Gravity algo-

rithm to locate the user. Chawathe [19] conveys the usage of 

Bluetooth beacons for geolocation tracking. Bluetooth is 

used everywhere from smartwatches to phones, but one 

problem of using this technology is the reflection of its sig-

nals, which makes it difficult to acquire accurate distance es-

timations.  In [20], a low-power tracking method for IoT sys-

tems is proposed. It uses an orientation sensor and accel-

erometer for geolocation tracking to reduce the use of GPS, 

which requires less power consumption. Recently, Apple and 

Google announced that they would be using Bluetooth for 

contact tracing of iOS and Android users [21]. Users can turn 

it on or off, and the data would only be given to trusted health 

authorities that follow specified privacy policies. 

Audio signal processing is another area that can be helpful 

for the diagnosis of many respiratory diseases. For COVID-

19, the patients with advanced cases often suffer from cough-

ing in, but it can also be a symptom of influenza and many 

other medical conditions [22]. Currently, many research 

groups are working on this idea to battle COVID-19 [23], 

including Coughvid from Ecole Polytechnique Federale de 

Lausanne (EPFL) [24], Breath for Science from NYU [25], 

CoughAgainstCovid from Wadhwani AI group in collabora-

tion with Stanford University [26], and COVID Voice De-

tector from Carnegie Mellon University [27]. Imran et al. 

[22] have made an AI model to distinguish between coughs 

related to COVID-19 and coughs coused by other respiratory 

conditions. Their model has achieved promising results; 

however, their dataset is not large enough. Providing more 

data about the coughing of COVID-19 patients will make 

such AI models much more effective. 

FluPhone [28] is one of the first projects that utilized us-

ers’ phones to study how fast an infectious disease spreads. 

Mobile phones were used to collect some data, such as the 

presence of nearby Bluetooth devices, GPS coordination, 

and flu symptoms. Then, the data were sent to a server via 

3G/GPRS [29]. EpiMap [30] was another project done fol-

lowed FluPhone. The proposed framework could be used for 

rural areas or developing countries, where opportunistic net-

works and satellite communications were employed for the 

transmission of data. Another recent study [30] evaluates 

how much active contact tracing and surveillance can reduce 

the spread of infectious diseases. The results show that mo-

bile phone contact tracing has significant social and eco-

nomic benefits. 

In this paper, the proposed COVID-SAFE framework of-

fers: 1) a low-cost and lightweight IoT node to monitor con-

tinually a person’s body temperature, heart rate, and blood 

oxygen saturation, and periodically monitor coughing pat-

terns; 2) a smartphone app to display the parameters and in-

dividual risk factors; 3) a physical distance tracking mecha-

nism using Bluetooth 4.0 technology to alert the user in case 

of violation of safe physical distance; and 4) a fog server that 

collects data from the IoT nodes and applies a machine-

learning algorithm to send the necessary information to us-

ers. 

 
III. PROPOSED FRAMEWORK 

The development of the COVID-SAFE platform relies on 

three parts, including a wearable IoT device, smartphone 

app, and fog (or cloud) server. The hardware contains nodes 

that were developed on the Raspberry Pi Zero (RPIZ). The 

software parts include an application program interface 

(API) for interacting with users on a smartphone, and a fuzzy 

decision-making system on the fog server. Nodes collect spe-

cific vital data from participations and upgrade their deci-

sion-making regulations to aid users in various scenarios, 

such as the need to refer to a doctor, maintaining physical 

distance from others, and alerts regarding high-risk areas. 
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Fig. 1 illustrates the high-level architecture of the COVID-

SAFE framework. A detailed description of each part is 

given in the next sections. 

1.  WEARABLE IoT DEVICE 

This IoT node works in association with the user’s 
smartphone to collect proximity data using Bluetooth and to 

communicate with the server through the cellular data net-

work. It consists of a RPIZ as the central processor, temper-

ature and photoplethysmogram sensors, and a LoRa module 

for data communication in the absence of a cellular data net-

work and WiFi. The system then is synchronized with the 

software to monitor the user’s behavior during daily activi-

ties. In Scenario-1, the IoT node sends the sensor data to the 

smartphone app via Bluetooth connection. The smartphone 

then sends the data stream to the server via 4G/5G or WiFi. 

The server feeds the app with the latest updates. The app can 

notify users of new restrictions and provide useful tips given 

by the health service and governments. Meanwhile, the app 

sends the participations’ body parameters for further pro-

cessing. The cloud server receives all the information and 

applies a fuzzy inference system on the data, and finally 

sends back the risk score to the phone for the user. The sec-

ond mode of operation (Scenario-2) is a LoRa-based net-

work. The IoT node enters this mode when a 4G/5G/WiFi 

connection is not available. A possible situation is in rural 

areas with limited Global System for Mobile Communica-

tions (GSM) coverage. 

The RPIZ has a 1 GHz single Central Processing Unit 

(CPU) core with 512 MB of Random Access Memory 

(RAM), several Global Purpose Input/Outputs (GPIOs), 

wireless LAN, and Bluetooth connectivity, all in one plat-

form. These features make the RPIZ a suitable choice for im-

plementing many IoT-based systems. The COVID-SAFE 

framework is equipped with a temperature sensor and a pho-

toplethysmogram (PPG) sensor. The PPG sensor is a nonin-

vasive tool that attaches painlessly to the user’s fingertip, 

sending two wavelengths of light through the finger, and cap-

tures the reflected light using a pin diode. The output of this 

sensor is a PPG signal. The PPG recording is based on an 

analog sensor and needs a converter before connecting to the 

digital part; hence, an analog-to-digital converter (ADC) is 

used. The RPIZ is equipped with an internal Bluetooth and 

WiFi module, which makes it easy to interface with a 

smartphone app. The IoT node is battery operated and is de-

signed with a 3D printer as a finger clip to encapsulate the 

necessary hardware and to be friendly for the user during 

daily activities. 

In order to measure the power consumption of the system, 

the wearable IoT device is connected to a digital wattmeter. 

The data is logged in a computer that produces the wattage 

measurements.      

 
FIGURE 1. High-level architecture of COVID-SAFE framework, in which COVID-SAFE-1 is carried by the user and COVID-SAFE-2 - N 
belong to adjacent people. 
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2. SMARTPHONE APP 

Fig. 2 shows the COVID-SAFE smartphone app, which is 

built to interact easily with users. First, the user has to create 

an account and answer general background questions such as 

gender, age, weight, height, and history of diseases. Fig. 2(b) 

shows the general information page. By accumulating this 

information, the system can provide an individual risk factor 

for the user. Fig. 2(c) shows the radar dashboard; in this 

menu, all adjacent nodes in the range of 3 m are shown on 

the screen. The red dots illustrate nodes in the range of 2 m 

or less, the yellow dots indicate nodes between 2 to 3 m, and 

green dots are nodes placed at 3 m or further. The app noti-

fies the user as soon as the second node comes closer than 

the specified range. The position of nodes on the radar screen 

are separated for better visualization purposes. The app can 

display the heart rate, body temperature, blood oxygen satu-

ration, and individual risk factor in real-time mode as Fig. 

2(d) shows. The output of the decision-making system is de-

picted in Fig. 2(e). In this fragment, the app asks for symp-

toms following the body parameters, and it provides the risk 

evaluation, and sends some useful tips. 

3.  DECISION-MAKING SYSTEM 

A fuzzy inference system called the decision-making system, 

is used for predicting the risk of spreading the virus. The 

model estimates a risk factor containing three linguistic val-

ues (low, moderate, and high), which can help users to find 

out if they are in a safe position or if they might spread a 

disease. There has been significant evolving activities in this 

domain that are changing our understanding of symptoms 

and significant features in diagnosis. For instance, govern-

ment quarantine strategies and risk tolerance may be 

changed because of various factors, such as economic cir-

cumstances, or factors in different regions of a country. In 

this regard, a fuzzy decision seems more suitable for predict-

ing the risk factor of a person since it conveys uncertainties. 

Moreover, all predefined rules in a fuzzy system can be up-

dated regularly based on expert definitions from the cloud. A 

similar model were developed by other researchers with 

slightly different input variables [32]. 

A subset of samples from the Khorshid COVID Cohort 

(KCC) study [33] was used to design the rules of the pro-

posed decision-making system. Thirty samples from 

COVID-19 patients (the case group) and thirty other samples 

from hospitalized pneumonia patients (or patients with simi-

lar breathing problems) with negative Polymerase Chain Re-

action (PCR) and CT-scan results (the control group) were 

used in our study. The following baseline patient parameters 

were considered in the clinical study: gender (female, male), 

age, body temperature, oxygen saturation (SpO2), shortness 

of breath (yes, no), cough severity (high, increasing-moder-

ate, low), and the presence of chronic respiratory disease 

(yes, no) (Table I). 

 

 

 

 
TABLE I 

CHARACTERISTICS OF THE PARTICIPANTS IN THE COVID-19 

AND NON-COVID-19 GROUPS. 

 Non-COVID COVID p-value 

Gender 13 (female) 15 (female) 0.873 

Age (years) 59.9±19.8 59.5±14.4 0.919 

Body temperature 37±1 39±9 0.328 

Oxygen saturation (%) 86±8 84±10 0.426 

Shortness of breath 9 (no) 9 (no) 0.804 

Cough severity 2 (low) 

4 (high) 

7 (low) 

16 (high) 

< 0.001 

Chronic respiratory disease 18 (no) 27 (no) 0.079 

N 30 30 - 

MEAN±SD and frequency were provided for continuous and categorical variables, 

respectively. 

In this research, Sugeno architecture [34] is utilized, and 

an Adaptive-Network-Based Fuzzy Inference System (AN-

FIS) is used for training memberships and defining rules [35] 

for simplicity. All membership function types are selected 

based on a Gaussian function, which is more conventional 

for training ANFIS. A similar model [36] was developed by 

other researchers, wherein they selected rules and member-

ship properties manually without using ANFIS. In addition 

to the ANFIS model, a support vector machine (SVM) [37] 

and decision tree [38] are trained to be compared with the 

proposed method. The advantages of a fuzzy system are that 

it can handle uncertainty and its linguistic rules can be better 

realized. 

The cellphone fetches the rules from the cloud, which is 

updated regularly. Inputs of the fuzzy system are defined 

based on health features, and region-based information. 

Health-related features include respiratory rate, cough rate, 

temperature, Body Mass Index (BMI), and blood oxygen sat-

uration level. The region-based risk value can be calculated 

on the server using parameters such as the last time an ex-

posed case was detected and the number of cases in the re-

gion. 

 

4. DATA ACQUISITION   

Two different sensors are used in the IoT node. At the 

startup, the RPIZ initializes all sensors and makes them ready 

to capture the data. The digital temperature sensor has a 4-

byte output resolution. The body temperature usually does 

not change rapidly; hence, the sensor captures data every 15 

or 30 min. In order to have consistency in values, at each 

iteration, 10 samples are taken, and their average is stored 

into internal memory storage and also is sent to the server. 

The output of the photoplethysmogram sensor is a PPG 

signal. Due to the nature of the signal, it should be sampled 

continuously for at least 10 seconds to see the patterns and 

extract necessary features. The IoT node is responsible to 

reads the output of the sensor, using an external 8-bit ADC 

at a 50 Hz sampling rate. By applying the signal processing 

algorithms on the PPG signal, the heart rate, blood oxygen 

saturation (SpO2), and respiratory rhythm can be extracted 

[39]. For measuring the SpO2 from the signal, first, an aver-

age of five subsequent samples of the signals (A1 and A2) and 
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offsets (D1 and D2) for red and infrared waveforms (indexed 

as 1 and 2, respectively) are measured. Then, SpO2 is meas-

ured using a formula given by Maxim IntegratedTM. 

 𝐺 = −45.060 × 𝐾2 + 30.354 × 𝐾 + 98.845   (1) 

where, K = (A1/D1) / (A2/D2) and G is the SpO2 value. Ac-

cording to the literature [40], there is substantial evidence 

that can increasing respiratory rate is a contributing factor in 

determining COVID-19. For predicting the respiratory rate 

from the PPG signal, an adaptive lattice notch filter is uti-

lized based on Park and Lee [41]; the results can achieve 

0.78% R-square on the MIMIC II dataset. 

This database contains physiological signals and a time se-

ries of vital signs captured from patient monitors, as well as 

comprehensive clinical information obtained from hospital 

information systems. Furthermore, an average of 10 seconds 

of an estimated respiratory rate and SpO2 are used for reduc-

ing prediction error. 

The proposed framework can record the surrounding voice 

using the phone’s microphone to detect the user’s coughing 
patterns. To save battery power consumption, this feature is 

activated based on the user’s request. For cough detection, a 

pre-trained model for acoustic activity prediction is used 

[42]. For extracting a cough from the environment sounds, a 

pre-trained model is utilized [43]. After activation, the input 

microphone is sampled at 5 KHz and an 8-bit resolution for 

a duration of 10 seconds at each iteration. The reason for 

choosing 5 KHz is that cough frequency usually accuse be-

tween 200-900 Hz [44].  All the sensors’ data are stored in 

internal memory for further processing. 

 

5.  PROXIMITY DETECTION 

Most of the present smartphones have Bluetooth Low En-

ergy (BLE) V4.0 or above, along with another short-range 

wireless interface like Near Field Communication (NFC). 

Table II presents the comparison among related wireless 

technologies. It shows that NFC cannot be used for distance 

measurement due to its short range, and Bluetooth cannot be 

used due to its higher power consumption and lack of broad-

cast capability. On the other hand, using the beacon feature 

implemented in BLE, a connectionless RSSI monitoring can 

be used to detect the proximity of the devices or to calculate 

or measure the relative distance between the smartphones.  

TABLE II 

COMPARISON OF SMARTPHONE-BASED WIRELESS INTERFACE 

 NFC Bluetooth Bluetooth Low 

Energy 

RFID compatible ISO 1 8000-3 Active Active 

Standardization 

body 

ISO/IEC Bluetooth SIG Bluetooth SIG 

Network Standard ISO 13157 etc. IEEE 802.15.1 IEEE 802.15.1 

Network Type Point-to-point WPAN WPAN 

Cryptography Not with RFID available available 

Range < 0.2 m ~ 10 m (class 2) ~ 100 m 

Frequency 13.56 MHz 2.4- 2.5 GHz 2.4- 2.5 GHz 

Bit rate 424 Kbit/s 2.1 Mbit/s ~1.0 Mbit/s 

Setup time < 0.1 s < 6 s < 0.006 s 

Power consump-

tion 

< 15 mA (read) Varies with 

class 

< 15 mA (Tx or 

Rx) 

The proposed method makes it possible to indicate 

whether another person is located at an adjacent area or not. 

As soon as the second IoT node (along with the associated 

phone) comes within range, a flag is raised and the user is 

notified. The relationship between the transmitted signal 

strength and received signal power level can be mathemati-

cally expressed by equation (2): 𝑑 = 10(𝑇𝑥−𝑅10𝑛 )        (2) 

where, d stands for the distance, Tx is the transmit power, 

R is the received RSSI values, and n is the environmental 

coefficient. 

Two experiments were performed to validate the distance 

estimation using the RSSI. In the first experiment, two 

phones are placed at different orientation (face to face and 

side by side). One phone is placed at a fixed position to rec-

ord the signal strength, while the second one can move 

around. In this experiment, the transmit power was set at 4 

 
                                        (a)                                      (b)                                       (c)                                       (d)                                       (e) 

FIGURE 2. COVID-SAFE application which is connected to fog server based on predefined API, a) login menu b) general information 
page c) radar dashboard d) health monitoring menu and e) individual risk factor. 
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different levels (-16 dBm, -26 dBm, -35 dBm, and -59 dBm), 

and the position of the moving phone was changed from 30 

to 240 cm with a 30 cm step size. The same experiment was 

performed again with a 12 cm wooden wall between the 

scanner phone and broadcasters to consider various orienta-

tion and other ambient conditions, such as reflection and ab-

sorption. 

In experiment 2, multiple smartphones of different models 

were used, and Fig. 3 shows a graphical representation of the 

experimental setup. The RSSI data is acquired in the phone 

at the center using “Beacon Scanner” with an acquisition fre-

quency of 1 Hz, while other phones are traveling toward and 

away from the center phone at different angles and orienta-

tions. All phones are configured to broadcast the BLE bea-

con signal (using Google’s Eddystone protocol) at the same 

interval (3 Hz) with the same transmit power level (-59 

dBm). Various angular positions or orientations are defined 

for the moving phones, and they change their states while the 

fixed center phone records the received signals.  

 
FIGURE 3. BLE test setup. 

 

6. SERVER AND NETWORKING 

All the sensors’ data are sent from the IoT node to the 
smartphone using WiFi (IEEE 802.11.x standard protocol) 

as a physical layer for real-time data visualization. Mean-

while, data are transferred to the fog server for further pro-

cessing. Any transmission of information through the net-

work utilizing IPv4 or IPv6 and the Representational State 

 
FIGURE 4. Zone definition (displayed on the smartphone app showing real-time geolocation of hotspots; zone 0 being the most criti-
cal with the highest risk of spread; zone 1 has medium risk; zone 2 has low risk). 
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Transfer (REST) API is given for each participant to access 

his or her information. 
The main advantage of having REST API is that small de-

vices can use the API even if they have certain limitations 

such as limited computational capacity and low physical 

memory. A user can use a designed web page or a 

smartphone app to link to the services and see his or her sta-

tus. User data are saved as a user history in the database for 

potential future development. Connecting to the server can 

be established either through a 4G/5G infrastructure or LoRa 

network. Fig. 4 shows a map with different zones; each zone 

indicates the risk of infection. The database can be updated 

based on the recent status of regions reported by govern-

ments, with parameters such as the number of residences and 

history of infected people. The map is divided into three col-

ors: green for low risk of infection, yellow for moderate, and 

red for high.  

Zone segmentation has several benefits. First, using the in-

formation that each zone provides, users can manage their 

social activities with the necessary precautions. In addition, 

governments can send notification to users or limit their ac-

cess in case of emergency. Thus, the decision-making pro-

cess is enhanced, and reaction time to a situation is signifi-

cantly reduced. Information on the zones is then used in risk 

assessment by the software. The zones should cover the 

whole map; however, for visualization, only parts of the 

zones are depicted in Fig. 4.  

IV. RESULTS AND DISCUSSION 

1.  DISTANCE MEASURING 

According to our experiment, Fig. 5 shows the RSSI values 

at different distances from 30 to 240 cm, where phones are 

placed face-to-face, side-by-side, and face to face separated 

by a wooden wall. The results show that the relative orienta-

tion between two IoT nodes could change the RSSI by a 

maximum value of -10 dBm when phones are placed in side-

by-side position. The same experiments were conducted 

while separating the transmitter and receiver by a wooden 

wall with a thickness of 10 cm to examine the effect of signal 

blockage by the wooden wall, and the result is shown in Fig. 

5(c). Comparing Fig. 5(a) and 5(b) shows that the RSSI lev-

els depend on the relative positions of the phones. Fig. 5(c) 

also shows significant changes in the RSSI levels with the 

presence of a wall in between. As expected, a decrease of 

RSSI with an increase of distance was observed.  

 
(a) 

 
(b) 

 
(c) 

FIGURE 5. RSSI of BLE for different distances at different Tx 
power gain (dBm), keeping two smartphones in a) face-to-face, 
b) side-by-side position, and c) two smartphones in the face-to-
face position separated by a wooden wall. 
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This result is further justified by experiment 2 (as shown 

in Fig. 3), and the results are shown in Fig. 6. The data are 

processed separately for every phone used, and there is a no-

ticeable relationship with the distance from the receiving 

phone. Although this relationship between RSSI and dis-

tance is highly dependent on the device itself (model or hard-

ware construction), this can still be used to calculate the dis-

tance between two devices by using Bayesian filters (such as 

a Kalman filter or particle filter) to reduce the noise in the 

RSSI data [45]. 

Equation (2) can be presented in a more straightforward 

format, as shown in (3), where the environmental coefficient 

n is replaced by a and b. Parameter b is used as a threshold 

for the initial alarm or to trigger the calculation function lo-

cally in the IoT node. Parameter b, along with the reference 

RSSI (RSSI at 1 m distance, denoted as R2), is used to calcu-

late the distance from the RSSI measured (denoted as R1). 𝑑 = 𝑎𝑇𝑥𝑅1 + 𝑏 + 𝑅2                 (3) 

Fig. 7(a) shows the phone-specific values of the reference 

RSSI (at 1 m distance) and the parameter b for different RSSI 

levels like maximum, minimum, Q1 (lower limit of the 75% 

quartile), Q3 (upper limit of the 75% quartile); and Fig. 7(b) 

shows the phone-specific values of the parameter a for dif-

ferent RSSI levels. For this experiment, a threshold of -93 

dBm (taken from the value of parameter b for the maximum 

RSSI level above 2 m distance) can be used to trigger the 

proximity aware alarm and the distance calculation function 

in the smartphone app. However, a, b, and the reference 

RSSI are dependent on the smartphone used and the real-life 

environment. There are several algorithms, such as SVM and 

Machine Learning (ML) [46], with the device or environ-

ment-specific training parameterization [47] that can be used 

to calculate the distance between the devices. In addition, 

AltBeacon can be used to get device-specific information 

(manufacturer identification number and 1 m reference 

RSSI) along with the beacon signal [48] which can be used 

to improve the distance accuracy for different types of de-

vices used. 

 

FIGURE 6. RSSI of BLE at four different distances with various 
orientation and fixed transmit power for three different types of 
cellphones. 

 

  

In order to notify the user to maintain physical distancing, 

three threshold values are indicated. The software checks the 

RSSI values then maps them to the distance according to 

equation (3). If the distance is less than 200 cm a red flag is 

raised, if the transmitter is in the range of 200 to 300 cm the 
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TABLE III 

INPUTS AND OUTPUTS MEMBERSHIP FUNCTIONS IN PRO-

POSED FUZZY SYSTEM 

Feature Name Description ([δ, µ]) 

Shortness of breath 
Has: [.2,1] 

Has not: [.2,2] 

Cough rate 
Normal: [0.35 2.00] 

Not normal: [0.35 3.00] 

Temperature 

Cluster 1: [0.70 36.67] 

Cluster 2: [0.70 37.33] 

Cluster 3: [0.70 38.00] 

Cluster 4: [0.70 38.67] 

Cluster 5: [0.70 39.33] 

Age 
15 Clusters evenly distributed be-

tween 10 and 90 with δ=17 

SpO2 
15 clusters unevenly distributed 

between 60 and 100 with δ=6.7 

Gender 
Male: [.2,1] 

Female: [.2,2] 

Predicted risk 15 clusters with Sugeno type 

 
(a) 

 
(b) 

FIGURE 7. (a) phone specific RSSI values for the 1 m refer-
ence and the RSSI threshold of b for different levels of RSSI 
data (maximum, minimum, median, Q1 of 75%, and Q3 of 
75% RSSI values), (b) phone specific values of a for different 
levels of RSSI data (maximum, minimum, median, Q1 of 
75%, and Q3 of 75%. 

-8
6

-8
5

-6
8

-9
3

-8
0

-9
1-9

2

-9
2

-8
7

-9
3

-9
1 -9

2

-8
8

-8
6

-8
4

-8
9

-8
4

-8
7

-100

-95

-90

-85

-80

-75

-70

-65

-60

RSS_1m b_med b_min b_max b_Q1 b_Q3

R
S

S
I 

(d
B

m
)

Phone-1 Phone-2 Phone-3

-2
.5

-2
.4

-1
.3

-3
.3

-1
.1

-0
.3

-1
.4

-0
.2 -0

.5

-0
.4

-2
.0

-1
.9 -2

.1 -2
.3

-2
.1

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

a_med a_min a_max a_Q1 a_Q3

d
B

m
/
m

Phone-1 Phone-2 Phone-3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3030194, IEEE Access

 

VOLUME XX, 2020                                                                                                                                                                                                                                                                          9 
 

flag is yellow, and if the distance is longer than 300 cm it is 

green. 

2.   DECISION-MAKING RESULTS 

Table III shows the parameters acquired for training the 

model using ANFIS. 

The performance of the proposed method is compared 

with two ML methods, decision tree and SVM classifiers. 

The results are provided for five times a training algorithm 

with shuffling data based on hold-out validation (70% train-

30% test) in Table IV. 

 
TABLE IV. 

 ACCURACY AND F1-SCORE INDICES FOR TEST SET ACCORD-

ING TO DIFFERENT METHODS 

Method Accuracy (%) F1-score (%) 

Proposed Method 74.7 ± 4.2 75.3 ± 3.7 

Decision tree 72.9 ± 4.0 73.5 ± 3.8 

SVM 72.6 ± 4.2 74.1 ± 4.0 

Fig. 8 illustrates two examples of fuzzy rules and shows a 

risk of 0.79 and 0.07 for two people aged 45, with different 

genders, and similar shortness of breath. The first person has 

a low fever, and his cough rate is higher than the other per-

sons. It is worth noting that the estimated rules in the fuzzy 

interference system may not be ideal and can be extended 

and modified over time based on received feedback. The 

closed-loop system requires more data and could be ad-

dressed in future work. 

3.  SYSTEM PERFORMANCE 

Table. V shows scenario-specific activities with power re-

quirements for the various activities measured at the labora-

tory. According to the measured power, we can quantify the 

overall energy demand based on scenario-specific activities. 

Smartphone app power analysis shows that 25 mA is used 

for all processing in the cellphone. The bandwidth require-

ment is based on a one-second volume of data generated by 

the PPG sensors and voice data at the specified sampling 

rate. 

 

FIGURE 8. The designed fuzzy inference system based on rules defined in the cloud. Two examples of rules for showing how a per-
son’s risk is generated, based on input features. 
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TABLE V 

SCENARIO SPECIFIC ACTIVITIES AND POWER REQUIREMENT 

Scenario 

No Net-

work S1 S2 

Power consump-

tion (mW) 

Data acquisition Yes Yes Yes 678 

Data post-processing Yes No Yes 770 

LoRa Transfer No No Yes 1040 

Cellular network No Yes No 970 

BW requirement (bps)  147 K 80  

Data Burst time (sec)  1 0.02  

Time ranges, spanning 5 to 30 minutes, were used for data 

transfer using LoRa or Bluetooth. Scenario-specific energy 

demand was distinct, depending on time span. Fig. 9 shows 

the hourly energy requirement for different transmission in-

tervals; No Network and Scenario-2 require almost the same 

amount of energy, while Scenario-1 requires less than half of 

that as there is no offline processing in the IoT node itself. 

Since the node may need to be carried during only part of the 

day, the daily energy requirement will also vary depending 

on the duration of the operation. Scenario-1 is shown on a 

different scale for better visualization of the changes with 

transmission intervals. 

FIGURE 9. Scenario-specific hourly energy requirement for dif-
ferent transmission intervals. 

Fig. 10 shows the energy requirement for various dura-

tions of daily operation using 15-minute transmission inter-

vals. It also shows that local processing requires more than 

double the energy, compared with that required to send the 

unprocessed data over the wireless link. 

 

FIGURE 10.  Scenario-specific hourly energy requirement. 

 

FIGURE 11. Scenario-specific hourly data volume for different 
transmission intervals. 

Since data acquisition and processing were carried out 

continuously, and the unprocessed data was sent to the net-

work, hourly data volume remained the same for Scenario-1. 

However, it varied in Scenario-2 as only the processed data 

was sent. Fig. 11 shows the hourly data volume sent over the 

wireless links (both LoRa and Bluetooth) for different trans-

mission intervals. Scenario-1 generated much higher data 

volume compared with Scenario-2 due to the transmission of 

unprocessed sensor data over the wireless link. Fig. 12 shows 

the data volume to be transferred over the wireless links at a 

transmission interval of 15 minutes for different durations of 

operation of the portable node.  

After comparing both scenarios in terms of energy and 

bandwidth requirement, it can be seen that Scenario-1 is bet-

ter fit for outdoor use, where the energy requirement could 

be a constraint and there is good quality wireless data con-

nectivity, mainly in an urban area. On the other hand, Sce-

nario-2 might be a better choice for rural areas with a lack of 

cellular network coverage. Therefore, the energy require-

ment can be reduced by increasing the data-transmission in-

terval mainly for outdoor operation of the node. 

FIGURE 12. Scenario-specific data volume for different opera-
tion durations at 15-minute transmission intervals. 

 

Table VI provides a summary of recent similar systems 

available to fight COVID-19 with the help of digital technol-

ogy. As shown the proposed COVID-SAFE system presents 

a more complete IoT framework than others and can be used 

to control the infection after the pandemic. Many countries 

have implemented contact tracing apps, which are similar to 

the one shown in [21]. However,  
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these apps merely trace a patient’s history and location, and 

notify users if anyone has contracted COVID-19 in the 

places they have recently visited. On the other hand, the pro-

posed system provides hardware, sensors, and software (ML 

and mobile apps), which offer many other benefits, as shown 

in the table. 

V. CONCLUSION 

In this paper, an IoT framework is presented to monitor par-

ticipants’ health conditions and notify them to maintain 

physical distancing. The proposed system integrates a wear-

able IoT node with a smartphone app, by which the IoT sen-

sor node can collect a user's health parameters, such as tem-

perature and blood oxygen saturation, and the smartphone 

connects to the network to send the data to the server. The 

paper proposed a Radio Frequency (RF) distance-monitoring 

method which operates both for indoor and outdoor environ-

ments to notify users to maintain the physical distancing. Ap-

plying ML algorithms on body parameters makes it possible 

to monitor participant’s’ health conditions and to notify in-

dividuals in real time. A voice coughing-detector continually 

monitors the user’s voice and records the number and sever-
ity of coughing. The fog-based server is implemented to pro-

cess received data from an IoT node using a cellular network 

or LoRa connection. In addition, locally processing the data 

makes it possible to use the IoT node in the environments 

without internet connectivity or fog-based networks. The 

system can assist participants in monitoring their daily activ-

ities and minimize the risk of exposure to the Coronavirus. 
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