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Background: The global burden of the new coronavirus SARS-CoV-2 is increasing at

an unprecedented rate. The current spread of Covid-19 in Brazil is problematic causing a

huge public health burden to its population and national health-care service. To evaluate

strategies for alleviating such problems, it is necessary to forecast the number of cases

and deaths in order to aid the stakeholders in the process of making decisions against

the disease. We propose a novel system for real-time forecast of the cumulative cases

of Covid-19 in Brazil.

Methods: We developed the novel COVID-SGIS application for the real-time

surveillance, forecast and spatial visualization of Covid-19 for Brazil. This system captures

routinely reported Covid-19 information from 27 federative units from the Brazil.io

database. It utilizes all Covid-19 confirmed case data that have been notified through

the National Notification System, from March to May 2020. Time series ARIMA models

were integrated for the forecast of cumulative number of Covid-19 cases and deaths.

These include 6-days forecasts as graphical outputs for each federative unit in Brazil,

separately, with its corresponding 95% CI for statistical significance. In addition, a worst

and best scenarios are presented.

Results: The following federative units (out of 27) were flagged by our ARIMA models

showing statistically significant increasing temporal patterns of Covid-19 cases during

the specified day-to-day period: Bahia, Maranhão, Piauí, Rio Grande do Norte, Amapá,

Rondônia, where their day-to-day forecasts were within the 95% CI limits. Equally,

the same findings were observed for Espírito Santo, Minas Gerais, Paraná, and Santa

Catarina. The overall percentage error between the forecasted values and the actual

values varied between 2.56 and 6.50%. For the days when the forecasts fell outside

the forecast interval, the percentage errors in relation to the worst case scenario were

below 5%.
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Conclusion: The proposedmethod for dynamic forecastingmay be used to guide social

policies and plan direct interventions in a cost-effective, concise, and robust manner.

This novel tools can play an important role for guiding the course of action against the

Covid-19 pandemic for Brazil and country neighbors in South America.

Keywords: SARS-CoV-2 spread forecast, intelligent forecasting systems, infectious diseases, dynamic forecasting

systems, Covid-19 forecasting

1. INTRODUCTION

The world faces a new pandemic that is spreading at an alarming

rate. The ongoing outbreak is caused by an acute infectious
disease known as severe acute respiratory syndrome coronavirus

(SARS-CoV-2) which is responsible for the current coronavirus
disease 2019 (Covid-19) pandemic. The probable origins of

SARS-CoV-2 are from the Pangolins, a mammalian animal of the
order Pholidota (1). The SARS-CoV-2 has a high transmission
rate, within a short time period between December 2019 andMay

2020, more than 4.7 million people were infected in 216 countries
(2). The acute symptoms for Covid-19 includes fever, cough, sore

throat, fatigue, and shortness of breath (3); however, in some
cases if the symptoms are not managed, it can develop into severe

pneumonia which, in turn, leads to critical conditions, such as
sepsis or acute respiratory distress syndrome which can be fatal.
As of May 2020, the Covid-19 has claim more than 317,000 lives
and this figure shall continue to rise in the coming months (2).

The gold standard test for diagnosing Covid-19 is the Reverse
Transcription Polymerase Chain Reaction (RT-PCR) with DNA
sequencing and identification (4). Nevertheless, the RT-PCR
needs several hours to return a result (4). While the RT-PCR
identifies directly the presence or absence of the virus, on the
other hand, the rapid test may sometimes be non-specific. They
detect the serological evidence of recent infection based on the
presence of antibodies. However, the production of antibodies
starts after some days, or even weeks after the infection (5).
Besides that, this kind of tests could recognize antigens of other
viruses; for example, influenza and other coronaviruses (6). What
compromise the test’s accuracy; for example, are tests based on
IgM/IgG antibodies which were realized in samples collected in
the first week of the illness have 18.8% sensitivity and 77.8%
specificity (7).

Currently, there is no vaccine nor a specific treatment for
curing Covid-19. In a home or hospital settings, one can only
ease the symptoms through the course of the infection until s/he
recovers. The best strategy to decrease its transmission within a
population is to quarantine those infected with Covid-19, and
to encourage the practice of social and physical distancing on
a mass scale. This course of action provides a much safer and
practical approach for limiting contact between the infected and
those at risk of infection (8). This course of action, and in addition
to, the cancellation or postponement of large public events as
well as deferment of non-essential activities on a mass scale
has significantly helped in controlling the spread of the virus as
observed in China and elsewhere. Social isolation and quarantine
also prevents people with asymptomatic infection from spreading

the virus (8, 9). Other works also show positive results in the
reduction of its transmission with social isolation in effect in
countries, such as Italy (9), Switzerland (10), and Brazil (11).

One of the approaches used to combat diseases include the
forecast of the number of cases based on the behavior of past
events. In the case of arboviruses, for example, the time series
of the number of cases and climatic variables are used to
forecast future behaviors (12–14). Considering the SARS-CoV-
2, forecasting the pandemic trends could be crucial to avoid the
virus spreading. Manymathematical models, such as Susceptible-
Infected-Removed (SIR) and its variations have being used to
forecast Covid-19 pandemic trends (15–20).

Therefore, the main goal of this research is to present a
methodology for monitoring and to provide forecasts of cases
and deaths of Covid-19 for each federative units of Brazil.
This research relies on an interdisciplinary approach that brings
together digital health, statistical modeling, GIS and computer
sciences to create a system which comprise of a dynamic web
application interfaced with multiple databases reporting incident
cases (and deaths) of Covid-19 in Brazil. This tool will churn
the information to provide forecasts on a national and state-
level. The Autoregressive Integrated Moving Average (ARIMA)
method (21) was utilized for this purpose. The reasons for
choosing the ARIMA model: (1) it provides the user with
dynamic forecasts for a daily basis through model training (per
day with a maximumwindow of 3 days); and (2) its flexibility and
robustness in terms of providing user three important outputs
[i.e., the forecasted number future cases with their corresponding
95% confidence interval (CI) as well as both best and worst
case scenarios].

This paper is organized as follows: in section 2, we provide a
brief discussion about previous studies that used mathematical
models to forecast trends of Covid-19 pandemic. In section 3,
we describe our proposed method and review its theoretical
concepts. In section 4, we present the analysis of the data and
the results. Discussions are delivered in section 5, and finally,
conclusions are drawn in section 6.

2. RELATED WORKS

Several forecasting models for Covid-19 have emerged around
the world. Due to many uncertainties surrounding the behavior
of the virus, these models have guided the development of
public health strategies and the application of policies that
promote social isolation. Given this scenario, several studies
have sought to adapt conventional epidemiological models to
forecast this pandemic trend (15); for instance, an extended
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Susceptible-Infected-Removed (eSIR) model was used to forecast
epidemics trends in Italy and compared with Hunan (China)
due to its similarity in population size and structure. The
eSIR model is a version of the classical Susceptible-Infected-
Removed (SIR) model. The SIR model uses three different
compartments: Susceptible (S), Infected (I), and Recovered (R).
This model was presented by Kermack and McKendrick (22),
by Britton (23) in his book entitled “Essential Mathematical
Biology,” and by Brauer et al. (24) in the book “Mathematical
Epidemiology.” The SIR model is used to investigate diseases,
such as measles and chickenpox. This model is represented by
the following equations:

d

dt
S = −βSI, (1)

d

dt
I = βSI − γ I, (2)

d

dt
R = γ I, (3)

where S(t) is the population of susceptible individuals, I(t)
is the symptomatic infected individuals, R(t) is the recovered
individuals with immunity, β is the contact rate between
susceptible and infected individuals, and γ is the transfer
rate from I to R. The diagram in Figure 1A illustrates the
compartments of the SIR model.

It should be noteworthy that while a SIR model uses a
constant transmission rate. The eSIR can account for time-
varying transmission rates in the population, and in addition,
use time-varying parameters for isolation measures. Wangping
et al. (15) used the eSIR forecast the reproduction number
(R0) for Covid-19 in Hunan and Italy which was estimated
as 3.15 (95% CI: 1.71–5.21) and 4.10 (95% CI: 2.15–6.77),
respectively. Due to the discrepancy between these two R0 values,
the authors concluded that the results needs to be confirmed in
further studies.

In a similar manner, other models, like Bastos and Cajueiro
(16), that are akin to SIR have been developed purposefully for
forecasting the evolution of Covid-19 in Brazil from February
25, 2020 to March 30, 2020. Data were provided by the
Brazilian Ministry of Health. For this purpose, the authors used
a modified SIR model in order to create two versions: (1)
SID (Susceptible-Infected-Dead) and (2) SIASD (Susceptible-
Infected-Asymptomatic-Symptomatic-Dead). In the first version,
the authors modified the original model in order to estimate
the proportion of individuals who dies from Covid-19. This
new parameter also changes the total number of individuals in
the population. On the other hand, the second version seeks
to improve the SID model. It considers that a relevant part
of the population is infected, but asymptomatic. In the SIASD
model, the variable of infecteds is divided into two groups
accordingly—symptomatic and asymptomatic. In addition, the
authors modified the transmission factor which takes into
account the effects of the social distancing policies adopted
during the selected period. Additionally, this parameter allows
the model to evaluate the effectiveness of the measures adopted.
In order to estimate the parameters of the models, the work

sought to minimize the quadratic error between the real data
and the estimated values. The curves were constructed with a
95% confidence interval (95% CI). The authors also considered
the underreporting of cases, due to the lack of tests and the
government’s recommendation to test only patients with severe
symptoms. Finally, both models indicated that social distancing
policies were able to minimize contagion. It was also possible
to conclude that the policies adopted for a short period bought
sometime to postpone the peak of the pandemic. Thus, the
authors indicated the dates considered to be the optimal for
ending the quarantine period. In particular, the SIASD model
forecasted a greater number of infections than the SID model.
It also indicated a lower peak for symptomatic patients who, in
turn, are need of urgent medical attention.

A recent study from China proposed a modified SIR model to
forecast the cumulative number of cases of Covid-19 (17). In this
example, the model defined by series of five differential equations
depicted in a flowchart shown in Figure 1B.

S′(t) = −τ (t)S(t)[I(t)+ U(t)] (4)

I′(t) = τ (t)S(t)[I(t)+ U(t)]− νI(t) (5)

R′(t) = ν1I(t)− ηR(t) (6)

U ′(t) = ν2I(t)− ηU(t) (7)

r′(t) = ηR(t)+ ηU(t) (8)

This model formation represents the following: S(t) is the
number of individuals susceptible to infection at time t, I(t) is
the number of asymptomatic infectious individuals at time t, R(t)
is the number of reported symptomatic infectious individuals at
time t, U(t) is the number of unreported symptomatic infectious
individuals at time t, τ (t) is the transmission rate at time t, 1

ν

is the average time during which asymptomatic infectious are
asymptomatic, and 1

η
is the average time symptomatic infectious

have symptoms.
This model provides information on the number of both

asymptomatic and symptomatic infected individuals. It estimates
the amount of reported and unreported cases from the
symptomatic group. From this study, the authors found that
the estimation of unreported cases is extremely important to
understand the severity of Covid-19. They also showed the
importance of considering the asymptomatic infectious cases for
the estimation of disease transmission rate. In these findings, the
authors demonstrated the merits of implementing strict control
measures by the government, and tighten them so as to decrease
the transmission burden.

Similar research utilize a Susceptible-Infectious-Recovered-
Dead (SIRD) model to forecast the basic reproduction number
(R0) of SARS-Cov-2 and the daily rates of infection mortality
and recovery (18). The R0 measures the average number of
secondary cases that has resulted from an index infectious case.
From the R0 value, a system may forecast the spreadability of an
infectious disease. This approach was based on the daily available
data of new confirmed cases in Hubei province, China, and was
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FIGURE 1 | (A) Flow chart of the SIR model. The classic SIR model considers three classes: Susceptible, Infectious, and Recovered. β means the rate at which

susceptible people can become infectious, and γ is the rate at which infectious people recover. (B) Model flow chart adapted from Liu et al. (17). They proposed a

modified SIR model by adding asymptomatic infectous people and by dividing symptomatic cases into two classes: reported and unreported. (C) Flow chart of the

SEIR model. It is composed by four individual classes: Susceptible, Exposed to the virus, Infected and Removed. In contrast to the SIR model, β is the rate at which

susceptible people become exposed, ǫ is the rate from exposed to infected, and γ is the rate at which infectious people recover.

described by the following equations:

S(t) = S(t − 1)−
α

N
S(t − 1)I(t − 1), (9)

I(t) = I(t − 1)+
α

N
S(t − 1)I(t − 1)

−βI(t − 1)− γ I(t − 1), (10)

R(t) = R(t − 1)+ βI(t − 1), (11)

D(t) = D(t − 1)+ γ I(t − 1), (12)

The model formation for the above equations are represented as
follows: S(t) is the number of susceptible individuals at time t,
I(t) is the number of infected individuals at time t, R(t) is the
number of recovered individuals at time t, D(t) is the number of
dead individuals at time t, α is the estimation of the infection rate,
β is the estimation of the recovery rate, γ is the estimation of the
mortality rate, and N is the population size.

This model fits the behavior of Covid-19 in Hubei which
enables the estimation of key epidemiological parameters. The
approach was successful in forecasting the spread of Covid-19
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in China. Nevertheless, the SIRD model has some limitations in
terms of its inability to include important factors that impacts
disease dynamics, such as the effect of the incubation period,
demographical characteristics of the population and the effects
of restrictive policies. The authors acknowledge point the urgent
need for using data in their derived from validated tests. The
inclusion of these factors are crucial for building a more accurate
and robust forecast models—since they are the key for limiting
any residual confounding that may arise from the results, as
well as building a more realistic picture for a deterministic point
of view.

On the other hand, as proposed by Yang et al. (19) who
use a modified Susceptible-Exposed-Infectious-Removed (SEIR)
model jointly with the Artificial Intelligence method known as
the Long-Short-Term-Memory (LSTM), to forecast epidemics
trend of Covid-19 in China under public health interventions.
SEIR model is another conventional forecast model, which is
composed of four individual classes: Susceptible, Exposed to the
virus or in the latent period, Infected and Removed. This model
was first introduced by Kermack and McKendrick (22) and is
used to understand illnesses like influenza. SEIR model uses the
following equation system:

dS

dt
= −βIS, (13)

dE

dt
= βIS− ǫE, (14)

dI

dt
= ǫE− γ I, (15)

dR

dt
= γ I − λR, (16)

where S(t) is the population susceptible individuals, E(t)
represents the individuals exposed to the disease or in a latent
period, I(t) is the symptomatic infected individuals, R(t) is
the recovered individuals with immunity, β is the contact rate
between susceptible and exposed, ǫ is the transfer rate from class
E to I, and γ is the transfer rate from I to R. The diagram in
Figure 1C explains the SEIR model.

Yang et al. (19) modified the SEIR model by including the
parameters: move-in, move-out, and the contact rate before
and after the implementation of control policies. They used the
recurrent neural network Long-Short-Term-Memory (LSTM) to
corroborate their model forecasts. LSTMwas trained on the 2003
SARS epidemic statistics, with available cases between April and
June of 2003. They forecasted that the disease in China will peak
in late February and end in late April by a combination of their
methods. However, using a deep network like LSTM can trigger
challenges. The main one is the high memory consumption,
since it stores past states, thus making a multi-user application
unfeasible (25). In this sense, LSTM is not suitable for client-
server applications, such as the one proposed in this study.

In contrast to previous works (20), the authors made a
comparative analysis of machine learning (ML) techniques for
forecasting the coronavirus outbreak. The authors argue that
more traditional models, such as SIR and SEIR, are insufficient
to model the pandemic. The reasons are the quarantine and

social distance policies applied by many governments in an
iterative way, and the lack of data that reveals the real scenario,
since the reported data do not actually correspond to the
number of infected people. These factors impose great limits
on the generalization ability of these conventional models.
Thus, the work explores ML techniques to find the best
model that estimates time-series data. Data were collected on
the worldometers website in five countries: Italy, Germany,
Iran, USA and China, corresponding to a period of 30 days.
Initially, simple mathematical models were tested (i.e., Logistic,
Logarithmic, Quaddratic, Compound, Power, and exponential).
In order to estimate the parameters, three optimization
algorithms were tested: Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and the Gray Wolf (GWO) optimizer.
Considering the processing time, the Root Mean Standard Error
(RMSE) and the correlation coefficient as evaluation metrics,
the GWO optimizer presented the best results, while the logistic
model showed the smallest errors in the forecast of the Covid-19
outbreak for the five countries. However, these models showed
low accuracy and low generalization capacity which lacked the
ability to properly extrapolate the data beyond 30 days. In the
following, two ML methods were introduced for time-series
forecast: MultiLayer Perceptron (MLP) and adaptive network-
based fuzzy inference system (ANFIS). Both were tested in two
different scenarios: Scenario 1 with the data processed weekly;
and Scenario 2, with daily sampling of consecutive days. In the
case of MLP, they tested 8, 12, and 16 neurons. For ANFIS,
the membership function types were Tri, Trap, and Gauss. The
comparison between analytical and intelligent models indicated
that MLP presented better results in both scenarios, being able
to achieve a good approximation with the real data. Long-term
data (up to 150 days) were also extrapolated, which reported an
outbreak progression. Finally, the authors concluded that ML
techniques can be useful in forecasting the Covid-19 pandemic,
being able to overcome challenges found in traditional models.

Although the works presented in this section have shown
good results, the models using equations require that we estimate
a certain number of parameters. It can be a bias for the
construction of the model. Moreover, mathematical models are
insufficient to analyze the randomness of epidemics and they are
also difficult to generalize (26). In addition, as each state has its
own dynamics, it makes difficult to implement these models in
the proposed tool. ARIMA models, in turn, are good tools for
modeling time series because they can capture their changing
trends, periodic changes and random distortions in time series.
Besides, ARIMA models have been applied in several areas of
health due to its simplicity and fast applicability. According to
the survey carried out by Ceylan (26), ARIMA models have been
used to forecast epidemics, such as dengue, tuberculosis, and
hemorrhagic fever, for example.

3. MATERIALS AND METHODS

3.1. Proposed Method
In this work, we proposed a system for real-time forecast of the
cumulative cases of Covid-19 in Brazil, and for each of its 27
federative units (or state). The system operates as follows: Each
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FIGURE 2 | Proposed method: Each of the Health Secretariat of the 26 Brazilian states plus the Distrito Federal (the autonomous district in which is inserted the

national capital) is responsible for feeding a notification base. All of this information is available on Brazil.io. Our Covid-SGIS software is updated daily with data from

Brazil.io. A file in CSV format is organized with the accumulated data. From them, training sets of the model can be formed. After the ARIMA model training, the user

can view the forecast of the number of cases and deaths for each of the states, with a 6-days projection.

Brazilian state feeds a database of Covid-19 notifications. All of
this information is gathered in a general database, the Brazil.io.
Then, our developed software, the COVID-SGIS, captures Covid-
19 data which is made readily available by the Brasil.io portal
(https://brasil.io/home/) on a daily basis through the SGIS web
crawler. This accumulated data are collated into a comma

separated value (.csv) file.We can in turn, derive training datasets
from this data for which models are created for the accumulated
number of confirmed and reported deaths of Covid-19. With
the generated models, 6-days forecasts are reported with their
corresponding 95% CI. The forecasted graphs of the accumulated
confirmed cases and deaths caused by Covid-19 are available for
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TABLE 1 | Results of the Dickey-Fuller tests of the historical series of the

accumulated number of cases of covid-19 in Brazil and in its 27 federative units.

State Differencing

order

t-statistics τ

Acre

d = 0 4.4121 −1.95

d = 1 1.874 −1.95

d = 2 −3.983 −1.95

Alagoas

d = 0 1.6772 −1.95

d = 1 −0.7374 −1.95

d = 2 −7.8526 −1.95

Amazonas

d = 0 5.8866 −1.95

d = 1 1.6766 −1.95

d = 2 −5.5631 −1.95

Amapá

d = 0 4.674 −1.95

d = 1 −0.2412 −1.95

d = 2 −6.2019 −1.95

Bahia

d = 0 7.9516 −1.95

d = 1 1.4916 −1.95

d = 2 −8.651 −1.95

Ceará

d = 0 6.1006 −1.95

d = 1 0.7138 −1.95

d = 2 −2.7642 −1.95

Distrito Federal

d = 0 5.481 −1.95

d = 1 −1.0392 −1.95

d = 2 −8.9064 −1.95

Espírito Santo

d = 0 4.7973 −1.95

d = 1 −1.1292 −1.95

d = 2 −9.1055 −1.95

Goiás

d = 0 5.0383 −1.95

d = 1 −0.9949 −1.95

d = 2 −7.6139 −1.95

Maranhão

d = 0 4.1517 −1.95

d = 1 0.674 −1.95

d = 2 −5.2222 −1.95

Minas Gerais

d = 0 6.9037 −1.95

d = 1 0.62 −1.95

d = 2 −9.5418 −1.95

Mato Grosso do Sul

d = 0 3.988 −1.95

d = 1 −1.9052 −1.95

d = 2 −7.5919 −1.95

Mato Grosso

d = 0 4.9929 −1.95

d = 1 −1.1216 −1.95

d = 2 −6.0585 −1.95

Pará

d = 0 5.8845 −1.95

d = 1 0.5428 −1.95

d = 2 −5.5288 −1.95

Paraíba

d = 0 7.6861 −1.95

d = 1 2.0185 −1.95

d = 2 −7.0357 −1.95

Pernambuco

d = 0 3.5281 −1.95

d = 1 −0.2507 −1.95

d = 2 −8.4942 −1.95

Piauí d = 0 5.693 −1.95

(Continued)

TABLE 1 | Continued

State Differencing

order

t-statistics τ

d = 1 1.7041 −1.95

d = 2 −5.3715 −1.95

Paraná

d = 0 2.5805 −1.95

d = 1 −1.4351 −1.95

d = 2 −7.2115 −1.95

Rio de Janeiro

d = 0 8.1792 −1.95

d = 1 0.3303 −1.95

d = 2 −9.0729 −1.95

Rio Grande do Norte

d = 0 4.6418 −1.95

d = 1 −1.7051 −1.95

d = 2 −6.9444 −1.95

Rondônia

d = 0 4.8637 −1.95

d = 1 0.3534 −1.95

d = 2 −5.8114 −1.95

Roraima

d = 0 3.0461 −1.95

d = 1 0.1819 −1.95

d = 2 −2.3616 −1.95

Rio Grande do Sul

d = 0 4.1479 −1.95

d = 1 0.3525 −1.95

d = 2 −3.7048 −1.95

Santa Catarina

d = 0 3.7958 −1.95

d = 1 −1.6657 −1.95

d = 2 −8.1044 −1.95

Sergipe

d = 0 8.3063 −1.95

d = 1 −0.2861 −1.95

d = 2 −12.0538 −1.95

São Paulo

d = 0 4.3266 −1.95

d = 1 −1.4522 −1.95

d = 2 −7.4511 −1.95

Tocantis

d = 0 5.9875 −1.95

d = 1 1.1544 −1.95

d = 2 −7.4744 −1.95

Brazil

d = 0 5.1648 −1.95

d = 1 1.4947 −1.95

d = 2 −5.7441 −1.95

When t-statistic is greater than τ , it indicates that the series has a single root (it is

non-stationary). When t-statistic is lower than τ , the series is stationary.

Brazil and for each of its federative units, separately. In addition
to the forecasts, the worst and best scenarios are presented for
the number of confirmed cases as well as the number of deaths by
Covid-19. Figure 2 shows the general schematic of this solution.

3.2. Confirmed Cases Database
We used the data referring to confirmed cases available in the
Brasil.io portal1 in our temporal forecast approach. Brasil.io
portal provides the records of confirmed cases and deaths
obtained through the bulletins of the State Health Secretariats. In

1https://brasil.io/dataset/covid19/caso/
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FIGURE 3 | Forecasts of the number of Covid-19 cases from 06-05-2020 to 11-05-2020 for states (A) Acre, (B) Alagoas, (C) Amazonas, (D) Amapá, (E) Bahia, (F)

Ceará, (G) Distrito Federal, and (H) Espírito Santo.
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FIGURE 4 | Forecasts of the number of Covid-19 cases from 06-05-2020 to 11-05-2020 for states (A) Goiás, (B) Maranhão, (C) Minas Gerais, (D) Mato Grosso do

Sul, (E) Mato Grosso, (F) Pará, (G) Paraíba, and (H) Pernambuco.
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FIGURE 5 | Forecasts of the number of Covid-19 cases from 06-05-2020 to 11-05-2020 for states (A) Piauí, (B) Paraná, (C) Rio de Janeiro, (D) Rio Grande do

Norte, (E) Rondônia, (F) Roraima, (G) Rio Grande do Sul, and (H) Santa Catarina.
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this work, we selected data related to confirmed cases of Covid-
19 for all Brazilian federative units. For each federative unit (out
of 27), the records is from the first date of confirmation of the
disease until the last update on May 5, 2020.

3.3. ARIMA Model
ARIMA models are classic models widely used to forecast future
behaviors of stationary time series. ARIMA’s acronym indicates
the combination of autoregressive (AR) and moving average
(MA)models. The “I” which stands for “integrated,” this indicates
the model’s original undifferenced series, which was differenced
d times until it became a stationary series before fitting the
ARMA(p,q) process. In the ARIMA(p, d, q) model, p and q
correspond to the orders of the AR and MAmodels, respectively,
while the d corresponds to the level of differencing. Equation (17)
represents the mathematical expression of the model, where yt is
the differenced series, c and φ are the parameters of the model
and ε is the random error in time t (27, 28).

y′t = c+ φ1y
′
t−1 + ...+ φpy

′
t−p + θ1εt−1 + ...+ θqεt−q + εt (17)

The construction of the ARIMAmodel (p, d, q) occurs according
to the following steps (27, 28):

1. Evaluate the stationarity of the series (if it is not stationary, the
differencing is applied until the stationarity is achieved). The
results of the Dickey-Fuller test are shown in Table 1.

2. Estimate the p and q parameters based on the autocorrelation
function (ACF) and the partial autocorrelation function
(PACF) plots.

3. Evaluate the best fitted forecasting model using Akaike
Information Criterion (AIC) and the Bayesian Information
Criterion (BIC).

The function auto.arima() in the forecast package in R,
automatically calculates the p, d and q parameters and returns a
fitted model. The forecast() function of this same package can be
used to forecast based on the model adjusted by the auto.arima()
function (21). In this context, from the data collected regarding
the accumulated number of confirmed cases by state, we created
a database corresponding to the historical series of accumulated
confirmed cases of Covid-19 for Brazil and each of its federative
units. We considered the period from the first notification date
of the disease until May 5, 2020. From this historical series of
accumulated cases of Covid-19. To this end, we built three types
of ARIMA models: (1) one which was stratified by each state; (2)
another stratified by Distrito Federal; and lastly, (3) one for the
overall Brazil. To reiterate, these models were generated using
the function auto.arima() from forecast package in R (version
3.6.3)2. Each model built was used to carry out the projection of
the accumulated cases of the disease for 6 days, with a confidence
interval of 95%. In order to evaluate the performance of the
forecasts, we used accumulated data from May 6 to 11, which
were updated on May 13.

3.4. Metrics
We selected two metrics to evaluate the models: the correlation
coefficient and the Relative Quadratic Error (RMSE percentage).
The correlation coefficient is a statistical measure between
expected and forecasted values. This value varies from −1 to 1.
When it approaches 1, it indicates a strong positive correlation.
Conversely, when the correlation coefficient is close to −1, it
indicates that the variables have a strong negative correlation.

2https://www.r-project.org/

FIGURE 6 | Forecasts of the number of Covid-19 cases from 06-05-2020 to 11-05-2020 for states (A) Sergipe, (B) São Paulo, (C) Tocantins, and (D) the whole

country.
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TABLE 2 | Results of the correlation coefficients of Pearson, Spearman, and Kendall, and of the RMSE% for the ARIMA models built for Brazil and its 27 federative units.

State Model Pearson Spearman Kendall RMSE RMSE (%) MAPE MPE MAE ME Number of

observations

Acre ARIMA(2,2,0) 0.99890 0.99515 0.96645 9.30 4.78 7.50 1.48 6.34 1.56 50

Alagoas ARIMA(0,2,1) 0.99873 0.99371 0.96337 22.21 5.13 6.93 2.36 10.83 2.50 59

Amazonas ARIMA(0,2,1) 0.99928 0.99899 0.99194 87.65 4.10 6.56 3.77 54.04 20.92 54

Amapá ARIMA(0,2,1) 0.99647 0.99826 0.98327 43.04 8.78 10.59 3.77 21.64 8.31 47

Bahia ARIMA(2,2,1) 0.99971 0.99892 0.98795 28.59 2.56 7.78 1.30 18.40 7.36 61

Ceará ARIMA(0,2,1) 0.99408 1.00000 1.00000 351.5 11.31 5.69 4.65 122.61 75.44 51

Distrito Federal ARIMA(0,2,1) 0.99922 0.99937 0.99151 20.70 4.02 7.00 3.56 14.29 3.87 60

Espírito Santo ARIMA(0,2,1) 0.99874 0.99870 0.98565 51.50 5.09 7.82 3.70 26.9 8.60 62

Goiás ARIMA(0,2,1) 0.99884 0.99971 0.99596 13.55 4.91 5.50 2.62 8.54 2.67 55

Maranhão ARIMA(0,2,0) 0.99908 0.99867 0.98841 63.78 4.42 10.00 1.20 41.77 10.57 47

Minas Gerais ARIMA(1,2,2) 0.99945 0.99982 0.99766 24.16 3.46 6.88 3.40 15.64 4.57 59

Mato Grosso do Sul ARIMA(0,2,1) 0.99860 0.99966 0.99600 4.88 5.40 5.06 2.37 3.36 0.78 53

Mato Grosso ARIMA(0,2,1) 0.99828 0.99841 0.98654 6.76 6.03 7.75 3.54 4.96 1.58 47

Pará ARIMA(0,2,1) 0.99868 0.99941 0.99191 71.56 5.52 9.5 4.44 41.76 19.46 49

Paraíba ARIMA(3,2,0) 0.99931 0.99586 0.97577 15.11 3.91 13.92 3.37 8.52 3.42 55

Pernambuco ARIMA(0,2,1) 0.99949 0.99955 0.99360 89.79 3.28 7.58 3.08 48.25 19.18 55

Piauí ARIMA(1,2,0) 0.99928 0.99813 0.98266 10.28 4.00 7.2 1.12 6.41 2.55 48

Paraná ARIMA(0,2,2) 0.99942 0.99949 0.99392 18.18 3.47 4.96 2.90 12.96 2.67 55

Rio de Janeiro ARIMA(0,2,2) 0.99960 0.99918 0.99258 105.29 2.96 8.78 2.44 67.51 27.06 62

Rio Grande do Norte ARIMA(0,2,1) 0.99741 0.99727 0.97657 34.52 7.37 8.24 4.36 18.31 6.99 55

Rondônia ARIMA(0,2,0) 0.99819 0.99485 0.96633 14.40 6.20 10.61 −0.09 7.98 2.19 47

Roraima ARIMA(0,2,0) 0.97919 0.99321 0.94769 43.73 21.08 12.08 1.56 19.02 6.33 46

Rio Grande do Sul ARIMA(2,2,2) 0.99882 0.99940 0.99278 27.95 5.10 7.56 2.71 17.73 6.35 57

Santa Catarina ARIMA(0,2,1) 0.99254 0.99955 0.99562 96.88 12.41 6.72 4.25 38.95 17.18 55

Sergipe ARIMA(3,2,0) 0.99598 0.99631 0.97041 18.97 9.11 9.84 1.39 7.93 3.22 53

São Paulo ARIMA(0,2,2) 0.99917 0.99914 0.98688 411.73 4.14 9.96 4.26 243.34 74.83 71

Tocantins ARIMA(0,2,2) 0.99785 0.99308 0.95766 5.52 6.76 10.02 2.40 3.07 1.20 49

Brazil ARIMA(0,2,1) 0.99978 0.99718 0.97963 688.24 2.20 15.65 −0.06 401.29 142.02 71

Of course, when the correlation coefficient is close to zero, it
indicates that there is no correlation between the variables (29).
The value of the correlation coefficient serves as the global
evaluator for the model—thus, it is possible to obtain a high
correlation coefficient as well as at the same time obtain high
values for local errors. For this reason, it cannot be the only
metric for assessing model performance. In order to avoid a
superficial evaluation of the regressors, we therefore chose the
RMSE (%) as an evaluation metric. Equation (18) shows the
expression of the calculation of the relative quadratic error, where
p is the forecasted value and a is the actual value.

RMSE(%) =

√

(p1 − a1)2 + ...+ (pn − an)2

(a1 − am)2 + ...+ (an − am)2
× 100% (18)

In addition to the RMSE(%), we also calculated the Root
Mean Square Error (RMSE), the Mean Absolute Error (MAE),
the Mean Absolute Percentage Error (MAPE), and the Mean
Percentage Error (MPE) (Equations 19–22):

RMSE =

√

√

√

√

1

n

n
∑

t=1

et2, (19)

MAE =
1

n

n
∑

t=1

|et|, (20)

MAPE =
100%

n

n
∑

i=1

∣
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∣

∣

et

at

∣

∣

∣

∣

, (21)

MPE =
100%

n

n
∑

i=1

f − a

f
, (22)

where, f is the forecasted value, a is the actual value and e is the
difference between the actual value and the forecasted value.

4. RESULTS

In Figures 3–6 we can see the forecasts (6 days) of the number
of Covid-19 cases for all Brazilian States and the whole country
(from 06-05-2020 to 11-05-2020).

4.1. ARIMA Forecasting
The models built were evaluated by taking into account,
as global quality, the correlation coefficients of Pearson,
Spearman, and Kendall. The RMSE (%) was used with a local
quality metric. In this work, a high correlation coefficient is
considered to be above 0.9 and a low RMSE below 5%. Table 2
shows the evaluation metrics of the results for the models
using ARIMA.

Tables 3–7, present the results for the forecast using the
ARIMAmodels for Brazil and each of its 27 federative units. The
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TABLE 3 | Results of projections of confirmed cases of Covid-19 between May 6 and 11, 2020 for the states of the Northeast Region.

State Date Forecasted

value

Lower

limit

Upper

limit

Actual

cases

Absolute

percentage error*

Absolute

percentage error**

MAPE

2020-05-06 1,687 1,642 1,732 1,703 0.95 –

2020-05-07 1,769 1,686 1,851 1,867 5.27 0.84

2020-05-08 1,851 1,725 1,976 2,033 8.97 2.81

2020-05-09 1,932 1,759 2,105 2,170 10.95 2.98

2020-05-10 2,014 1,789 2,239 2,258 10.80 0.83

Alagoas

2020-05-11 2,096 1,815 2,377 2,343 10.54 –

7.91

2020-05-06 4,288 4,230 4,347 4,301 0.29 –

2020-05-07 4,515 4,416 4,614 4,528 0.29 –

2020-05-08 4,821 4,672 4,969 4,818 0.05 –

2020-05-09 5,023 4,807 5,239 5,174 2.91 –

2020-05-10 5,320 5,044 5,596 5,558 4.28 –

Bahia

2020-05-11 5,555 5,200 5,910 5,808 4.35 –

2.24

2020-05-06 12,119 11,409 12,829 12,310 1.55 –

2020-05-07 12,768 11,677 13,858 13,888 8.07 0.21

2020-05-08 13,416 11,973 14,860 15,134 11.35 1.81

2020-05-09 14,065 12,272 15,858 15,879 11.42 0.13

2020-05-10 14,714 12,567 16,861 16,692 11.85 –

Ceará

2020-05-11 15,363 12,854 17,872 17,599 12.71 –

9.66

2020-05-06 5,526 5,398 5,654 5,389 2.54 –

2020-05-07 6,024 5,738 6,310 5,909 1.95 –

2020-05-08 6,522 6,044 7,000 6,765 3.59 –

2020-05-09 7,020 6,320 7,720 7,599 7.62 –

2020-05-10 7,518 6,571 8,465 8,144 7.69 –

Maranhão

2020-05-11 8,016 6,797 9,235 8,526 5.98 –

5.18

2020-05-06 1,586 1,555 1,617 1,657 4.26 2.39

2020-05-07 1,750 1,701 1,799 1,849 5.35 2.68

2020-05-08 1,860 1,782 1,938 2,030 8.39 4.55

2020-05-09 1,987 1,870 2,104 2,156 7.85 2.43

2020-05-10 2,136 1,983 2,289 2,341 8.75 2.21

Paraíba

2020-05-11 2,243 2,044 2,443 2,525 11.15 3.26

7.11

2020-05-06 9,767 9,586 9,948 9,881 1.16 –

2020-05-07 10,208 9,894 10,522 10,824 5.69 2.79

2020-05-08 10,650 10,193 11,107 11,587 8.09 4.14

2020-05-09 11,092 10,479 11,705 12,470 11.05 6.14

2020-05-10 11,534 10,753 12,314 13,275 13.12 7.24

Pernambuco

2020-05-11 11,975 11,015 12,935 13,768 13.02 6.05

8.69

2020-05-06 1,032 1,012 1,053 1,051 1.78 –

2020-05-07 1,111 1,074 1,147 1,131 1.81 –

2020-05-08 1,192 1,133 1,250 1,233 3.36 –

2020-05-09 1,271 1,188 1,354 1,278 0.54 –

2020-05-10 1,351 1,242 1,461 1,332 1.45 –

Piauí

2020-05-11 1,431 1,292 1,570 1,443 0.82 –

1.47

2020-05-06 1,724 1,654 1,794 1,739 0.86 –

2020-05-07 1,804 1,695 1,913 1,821 0.93 –

2020-05-08 1,884 1,737 2,031 1,919 1.82 –

(Continued)
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TABLE 3 | Continued

State Date Forecasted

value

Lower

limit

Upper

limit

Actual

cases

Absolute

percentage error*

Absolute

percentage error**

MAPE

2020-05-09 1,964 1,779 2,149 1,919 2.35 –

2020-05-10 2,044 1,819 2,269 1,919 6.52 –

2020-05-11 2,124 1,858 2,390 1,989 6.79 –

3.42

Rio Grande do Norte

2020-05-06 977 938 1,016 998 2.08 –

2020-05-07 1,055 999 1,111 1,214 13.12 8.52

2020-05-08 1,171 1,083 1,260 1,438 18.55 12.39

2020-05-09 1,236 1,108 1,363 1,588 22.18 14.16

2020-05-10 1,341 1,178 1,504 1,771 24.29 15.09

Sergipe

2020-05-11 1,431 1,220 1,642 1,800 20.49 8.77

17.64

The * symbol is the error between the forecasted values and the current cases, while ** indicates the percentage error between the current value and one of the limits (lower or higher).

performance of the models was evaluated by taking into account
erro quadrático médio de between the forecasted values and the
actual cases of the accumulated cases of Covid-19, as well as the
absolute error between the actual cases and the lower or limit of
the forecast. The values highlighted in red represent the situations
in which the value of the actual cases are outside of the forecasted
interval and the absolute error in between the lower or upper
limit is <5%.

The findings in Table 3 show the resulting outputs from the
ARIMAmodels for the Northeast Region of Brazil. For the states
of Bahia, Maranhão, Piauí, and Rio Grande do Norte, the actual
cases were within the range of the forecast limits from 06 to
11 May. The ARIMA model for the State of Piauí showed the
best performance. The errors obtained for actual and estimated
cases substantially varied from 0.54 to 3.36%. On the other hand,
the model that had the worst performance for this region was
the State of Sergipe. For that state in particular and from its 6
days of forecast, we observed that the cases estimated for May
6 were within the forecast interval. On the remaining days, we
found that the actual cases accumulated for Covid-19 exceeded
the maximum limits of the projections, with errors of 8.52, 12.39,
14.16, 15.09, and 8.77% (see absolute percentage error of Sergipe
in Table 2).

Table 4 show the forecasted findings for all states in the
Brazilian Northern Region. The models that presented the
best performance were the ones for the states of Amapá
and Rondônia. For the 6 days of forecast, the actual cases
were within the minimum and maximum limits. The worst
performances were for the states of Roraima and Tocantins.
For those states, the errors between the actual cases and the
minimum and maximum limits, respectively, reached more than
55 and 25%.

The forecasted findings for the states of the Midwest Region
and the Distrito Federal are presented in Table 5. The models
referring to the states of Mato Grosso do Sul and Goiás presented
the best performances for the region. In the case of the State of
Goiás, only the forecast for May 6 was not within the forecast’s
interval. However, the absolute percentage error between the
actual cases and the upper limit did not exceed the 5% mark.
In contrast, for the State of Mato Grosso do Sul, the cumulative

sum of the actual cases of Covid-19 was not within the forecast’s
interval. However, the errors considering the actual cases and
the upper limit were not <5%. Meanwhile, both models for the
state of Mato Grosso and the Distrito Federal presented a low
performance, with the latter showing to be the worst for the
region. It should be noted that for the 6 days of forecast, all of
them were outside the interval between the lower limit and the
upper limit. Additionally, only the cumulative sum of the actual
cases for May 6 obtained an error below 5% in relation to the
upper limit.

The results of the forecasts for the states of the Southeast
Region are presented in Table 6. Among the four models
generated, only the model from the State of Rio de Janeiro did not
show a good performance. From the 6 days of forecast, only two
met the criteria of a good performance. For the states of Espírito
Santo and Minas Gerais, the forecasts for the 6 days were within
the forecast interval. In these two states, the absolute percentage
errors between the actual cases and the forecasted values varied
between 0.10 and 5.36%, for the State of Espírito Santo, and
between 0.03 and 5.74%, for the State of Minas Gerais. The actual
cases for the State of São Paulo, for most of the forecast days,
were outside the lower limit and upper limit interval. However,
for those days (May 6th–10th), the errors between the actual cases
and the upper limits ranged from 2.40 to 3.57%.

The ARIMA models generated for the South Region, as
shown in Table 7, obtained good results for the forecasts of the
cumulative sum of Covid-19 cases for this region. For both the
State of Santa Catarina and the State of Paraná, the actual cases
were within the forecast interval and very close to the estimated
values. The absolute percentage errors between the real cases of
the Covid-19 accumulated cases for the two states varied between
0.26 and 3.21%, and 0.19 and 3.30%, respectively. In the case of
the forecasts for Rio Grande do Sul, the actual cases of May 8
and 9 are outside the forecast interval range, however the errors
between the actual case number and the upper limit were 3.17
and 1.66%, respectively.

The results of the forecasts for Brazil are shown in Table 8.
From May 6th to 10th, the actual cases were outside the forecast
range (they were higher than the upper limit). However, the
absolute percentage error between the upper limit and the actual
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TABLE 4 | Results of projections of confirmed cases of covid-19 between May 6 and 11, 2020 for the states of the Northern Region.

State Date Forecasted

value

Lower

limit

Upper

limit

Actual

cases

Absolute

percentage error*

Absolute

percentage error**

MAPE

2020-05-06 889 870 908 943 5.73 3.69

2020-05-07 968 931 1,005 1,014 4.54 0.90

2020-05-08 1,041 977 1,105 1,177 11.56 6.13

2020-05-09 1,118 1,025 1,211 1,335 16.26 9.27

2020-05-10 1,192 1,064 1,320 1,447 17.63 8.77

Acre

2020-05-11 1,268 1,102 1,434 1,460 13.16 1.81

11.48

2020-05-06 8,833 8,656 9,010 9,243 4.43 –

2020-05-07 9,557 9,218 9,897 10,099 5.36 2.00

2020-05-08 10,282 9,754 10,809 10,727 4.15 –

2020-05-09 11,006 10,267 11,744 11,925 7.71 1.52

2020-05-10 11,730 10,759 12,701 12,599 6.90 –

Amazonas

2020-05-11 12,454 11,231 13,677 12,919 3.60 –

5.38

2020-05-06 2,140 2,052 2,227 2,046 4.58 –

2020-05-07 2,348 2,189 2,508 2,199 6.79 –

2020-05-08 2,557 2,316 2,798 2,322 10.11 –

2020-05-09 2,765 2,435 3,096 2,493 10.93 –

2020-05-10 2,974 2,545 3,403 2,613 13.82 –

Amapá

2020-05-11 3,183 2,647 3,718 2,671 19.16 –

11.31

2020-05-06 5,136 4,991 5,281 5,524 7.03 4.40

2020-05-07 5,516 5,267 5,765 5,935 7.06 2.87

2020-05-08 5,896 5,536 6,256 6,519 9.56 4.04

2020-05-09 6,276 5,796 6,756 7,018 10.58 3.74

2020-05-10 6,656 6,046 7,265 7,348 9.42 1.13

Pará

2020-05-11 7,035 6,288 7,783 8,069 12.81 3.54

8.65

2020-05-06 966 937 995 943 2.44 –

2020-05-07 1,071 1,007 1,135 1,098 2.46 –

2020-05-08 1,176 1,068 1,284 1,222 3.76 –

2020-05-09 1,281 1,123 1,439 1,263 1.43 –

2020-05-10 1,386 1,172 1,600 1,302 6.45 –

Rondônia

2020-05-11 1,491 1,216 1,766 1,398 6.65 –

7.54

2020-05-06 1,160 1,072 1,248 932 24.46 15.06

2020-05-07 1,451 1,255 1,647 1,020 42.25 23.04

2020-05-08 1,742 1,414 2,070 1,124 54.98 25.81

2020-05-09 2,033 1,553 2,513 1,202 69.13 29.20

2020-05-10 2,324 1,674 2,974 1,290 80.16 29.77

Roraima

2020-05-11 2,615 1,779 3,451 1,295 101.93 37.37

62.15

2020-05-06 381 370 392 423 9.90 7.24

2020-05-07 420 405 434 494 15.00 12.07

2020-05-08 459 437 481 572 19.81 15.97

2020-05-09 497 465 530 688 27.70 22.97

2020-05-10 536 491 581 747 28.21 22.17

Tocantins

2020-05-11 575 516 634 828 30.55 23.37

23.19

The * symbol is the error between the forecasted values and the current cases, while ** indicates the percentage error between the current value and one of the limits (lower or higher).

cases did not exceed the 5% limit. On May 11, the value of the
actual cases was within the forecast interval, showing an error of
5.63% between the forecasted value and the actual cases.

4.2. Web Application
The prototype of the developed system can be accessed by the
link (https://www.cin.ufpe.br/covidsgis). On the home screen,
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TABLE 5 | Results of projections of confirmed cases of Covid-19 between May 6 and 11, 2020 for the states of the Midwest Region of Brazil and the Distrito Federal.

State Date Forecasted

value

Lower

limit

Upper

limit

Actual

cases

Absolute

percentage error*

Absolute

percentage error**

MAPE

2020-05-06 1,910 1,868 1,951 2,046 6.66 4.63

2020-05-07 1,982 1,914 2,051 2,258 12.21 9.17

2020-05-08 2,055 1,959 2,151 2,442 15.85 11.90

2020-05-09 2,128 2,002 2,253 2,576 17.40 12.52

2020-05-10 2,200 2,044 2,357 2,682 17.96 12.11

Distrito Federal

2020-05-11 2,273 2,083 2,463 2,799 18.79 12.01

14.81

2020-05-06 958 931 986 1,024 6.43 3.76

2020-05-07 994 951 1,038 1,027 3.18 –

2020-05-08 1,031 971 1,090 1,053 2.13 –

2020-05-09 1,067 991 1,143 1,069 0.21 –

2020-05-10 1,103 1,010 1,196 1,093 0.91 –

Goias

2020-05-11 1,139 1,028 1,250 1,100 3.56 –

1.77

2020-05-06 290 280 300 288 0.62 –

2020-05-07 297 282 311 311 4.64 –

2020-05-08 303 284 323 326 6.95 1.00

2020-05-09 310 286 334 346 10.37 3.50

2020-05-10 317 289 345 362 12.46 4.69

Mato Grosso do Sul

2020-05-11 324 291 356 385 15.93 –

8.68

2020-05-06 378 365 392 385 1.74 –

2020-05-07 391 370 411 419 6.78 –

2020-05-08 403 375 430 464 13.17 7.26

2020-05-09 415 381 449 502 17.29 10.55

2020-05-10 427 387 468 519 17.63 9.87

Mato Grosso

2020-05-11 440 393 487 545 19.31 10.70

14.84

The * symbol is the error between the forecasted values and the current cases, while ** indicates the percentage error between the current value and one of the limits (lower or higher).

it is possible to visualize information about spatial forecasts
(Figure 7A). The projections of the cumulative cases of Covid-
19 can be accessed in the “More information” option, in which
the user will be directed to the page with the graphics. In
this screen, graphs of the temporal forecasts (Figure 7B), as
well as graphs referring to the distribution of daily cases and
deaths in Brazil (Figure 7C) are also available. In addition, it
is available daily and cumulative cases (Figure 7D), as well as
daily and cumulative deaths (Figure 7E). For these graphs, the
user can select from which state they wish to evaluate these
information. The software’s backend is freely available for non-
commercial purpose on our Github repository: https://github.
com/Biomedical-Computing-UFPE/Covid-SGIS.

5. DISCUSSION

In this study, we evaluated the forecast of the cumulative cases
of Covid-19 for Brazil, and its 27 federative units in Brazil,
using ARIMA models in the period between May 6 and 11.
To our knowledge, this is the first study to integrate ARIMA
models, GIS and data health sciences into a computerized system
for the forecast and surveillance of Covid-19 within a Brazilian

context. Our findings showed that the overall cases of Covid-
19 in Brazil were on the rise during the observed periods,
as shown in Figure 6D, whereby such rises were confirmed
through the analyses of actual Covid-19 cases for the same
time period as shown in Table 8 which shows evidence of the
growth in the number of cases. Furthermore, our approach
is able to detect the peaks of the disease within this period
as shown in Table 8, which was not possible to observe in
prior studies.

In Figures 3–6; the images show the forecasts’ curves of
Covid-19 cases for each of the states in those observed period
and how they all tended to increase. This fact was confirmed
with the results in the section 4. Both for Brazil and its federative
units, the ARIMA(p, d, q) models managed to capture the trend
patterns in the curves. This can be useful for health managers
and governments in promoting public policies for combating the
burden of Covid-19.

One of the limitations of this work is related to the fact that the
ARIMA models analyze only univariate time series. Therefore,
factors, such as population distribution, the influence of isolation
policies and factors linked to population dynamics were not taken
into account. Data related to the geographic space and climate
of the federative units were also excluded from the model. The
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TABLE 6 | Results of projections of confirmed cases of Covid-19 between May 6 and 11, 2020 for the states of the Southeast Region of Brazil.

State Date Forecasted

value

Lower

limit

Upper

limit

Actual

cases

Absolute

percentage error*

Absolute

percentage error**

MAPE

2020-05-06 3,710 3,607 3,814 3,714 0.10 –

2020-05-07 3,880 3,709 4,052 3,988 2.70 –

2020-05-08 4,050 3,809 4,291 4,242 4.52 –

2020-05-09 4,221 3,906 4,535 4,412 4.34 –

2020-05-10 4,391 3,998 4,784 4,599 4.53 –

Espírito Santo

2020-05-11 4,561 4,085 5,037 4,819 5.36 –

3.59

2020-05-06 2,596 2,547 2,646 2,605 0.34 –

2020-05-07 2,760 2,691 2,830 2,770 0.35 –

2020-05-08 2,938 2,845 3,031 2,943 0.17 –

2020-05-09 3,124 3,000 3,248 3,123 0.03 –

2020-05-10 3,315 3,150 3,481 3,237 2.43 –

Minas Gerais

2020-05-11 3,511 3,295 3,727 3,320 5.74 –

1.93

2020-05-06 12,911 12,697 13,124 13,295 2.89 –

2020-05-07 13,506 13,230 13,782 14,156 4.59 2.64

2020-05-08 14,101 13,728 14,474 15,741 10.42 8.05

2020-05-09 14,696 14,200 15,191 16,929 13.19 10.26

2020-05-10 15,291 14,652 15,929 17,062 10.38 6.64

Rio de Janeiro

2020-05-11 15,885 15,885 15,088 16,683 17,939 7.00

9.30

2020-05-06 35,672 34,841 36,503 37,853 5.76 3.57

2020-05-07 37,010 35,483 38,537 39,928 7.31 3.48

2020-05-08 38,348 36,214 40,482 41,830 8.32 3.22

2020-05-09 39,686 36,958 42,414 44,411 10.64 4.50

2020-05-10 41,024 37,694 44,353 45,444 9.73 2.40

São Paulo

2020-05-11 42,362 38,416 4,6308 46,131 8.17 –

8.83

The * symbol is the error between the forecasted values and the current cases, while ** indicates the percentage error between the current value and one of the limits (lower or higher).

authors are aware that this may have contributed to the high
errors in the states of Acre, Tocantins and Rondônia.

The low performance of the forecasts for some Brazilian
states may be associated with the underreporting of cases.
That is, the amount of tests for the diagnosis is not sufficient
to meet the populational demand. Thus, people who are
asymptomatic or have symptoms of the disease, but have
not been tested, are not counted in the reported cases.
This problem makes the data substantial underestimated. In
addition to this problem linked to underreporting, the authors
acknowledge that the forecasting from these models may
potentially lack statistical power, a problem which is typically
associated with lower sample size which is again due to
the undocumented and/or underreported cases in some areas
of Brazil.

Another factor that may be associated with higher errors in
the forecasts is the time taken to update the databases from the
Departments of Health. This directly affects the historical series
of the states’ accumulated cases, and also the time it takes for
the models to process large volumes of data. Indeed, the ARIMA
algorithm are quite computationally expensive in terms of time
and power needed to crunch large stores of historical data in time
series format, and thus such delay in updating the databases are

inevitable which, in turn, directly affect the real-time forecasts. In
addition, the high forecast errors can also be associated with the
historical series itself. As the day of the first notification varies
from state-to-state.

Usingmore features could contribute to improve the forecasts.
However, since the main vectors for Covid-19 spreading are
the human beings, we believe these new features should emerge
from a population model complex enough to include the local
population behavior due to economical needs, for instance, since
the unemployed population has significantly increased since the
beginning of the social distancing measures. Such a population
model should be consistent with seasonal variations as well, since
these aspects influence economical dynamics in a country as
large as Brazil with large environmental diversity. However, since
the construction of a sufficient population model to generate
additional features for Covid-19 forecasting is out of the scope of
this work, we preferred to keep ARIMA due to its computational
advantages (essentially, low memory usage and no intensive
processing) and relatively good forecasting results in most of
cases as discussed above.

Brazil’s Covid-19 epidemiological data are very likely to be
underestimated. Since 2018, the country has been experiencing a
real plague of false news that circulates freely on social networks,
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TABLE 7 | Results of projections of confirmed cases of Covid-19 between May 6 and 11, 2020 for the states of the South Region of Brazil.

State Date Forecasted

cases

Lower

limit

Upper

limit

Actual

cases

Absolute

percentage error*

Absolute

percentage error**

MAPE

2020-05-06 1,643 1,606 1,680 1,647 0.26 –

2020-05-07 1,682 1,616 1,748 1,678 0.23 –

2020-05-08 1,721 1,629 1,813 1,734 0.75 –

2020-05-09 1,760 1,642 1,879 1,809 2.70 –

2020-05-10 1,799 1,654 1,944 1,859 3.21 –

Paraná

2020-05-11 1,838 1,666 2,011 1,873 1.85 –

1.50

2020-05-06 2,911 2,716 3,107 2,917 0.19 –

2020-05-07 3,028 2,735 3,321 3,082 1.75 –

2020-05-08 3,144 2,764 3,524 3,205 1.89 –

2020-05-09 3,261 2,797 3,724 3,372 3.30 –

2020-05-10 3,377 2,831 3,923 3,429 1.51 –

Santa Catarina

2020-05-11 3,494 2,865 4,123 3,529 1.00 –

2.10

2020-05-06 2,167 2,109 2,224 2,100 3.17 –

2020-05-07 2,233 2,138 2,328 2,182 2.35 –

2020-05-08 2,283 2,166 2,401 2,493 8.41 3.71

2020-05-09 2,367 2,233 2,500 2,542 6.90 1.66

2020-05-10 2,492 2,340 2,645 2,576 3.25 –

Rio Grande do Sul

2020-05-11 2,640 2,458 2,821 2,808 6.00 –

4.94

The * symbol is the error between the forecasted values and the current cases, while ** indicates the percentage error between the current value and one of the limits (lower or higher).

TABLE 8 | Result of the projections of the accumulated confirmed cases of Covid-19 for Brazil between May 6th to 11th, 2020.

State Date Forecasted

value

Lower

limit

Upper

limit

Actual

cases

Absolute

percentage error*

Absolute

percentage error**

MAPE

2020-05-06 123,706 122,328 125,085 126,957 2.56 1.47

2020-05-07 131,001 128,154 133,747 136,689 4.16 2.15

2020-05-08 138,295 133,946 142,644 147,093 5.98 3.02

2020-05-09 145,589 139,424 151,755 155,329 6.27 2.30

2020-05-10 152,883 144,709 161,057 163,509 6.50 1.50

Brazil

2020-05-11 160,178 149,819 170,537 169,733 5.63 0.47

5.18

The * symbol is the error between the forecasted values and the current cases, while ** indicates the percentage error between the current value and one of the limits (lower or higher).

especially among people with lower education. This aspect, as
well as the action of negationist movements, contributes to
disorient the population regarding measures of social distancing
and contamination prevention (30). Another important aspect
is the high level of social inequality and the low sanitary
conditions that affect the lowest income population. According
to Prado (30) 13 million Brazilians live in Favelas (i.e., urban
settlements which are under-developed and greatest levels of
socioeconomic deprivation), where its widespread to see a
single room inhabited by more than three people, and where
access to clean water and security are precarious. These are
factors which we were unable to include in our ARIMA
models for Covid-19 due to such paucity of data also due to
limitations of modeling with ARIMA. The authors therefore
acknowledge the lack of these risk factors and its inclusion
to the model may have led to some residual confounding in
our analysis.

6. CONCLUSION

Several countries are greatly affected by the increased burden of
Covid-19. With a high number of infected people and the public
health systems operating at maximum capacity, the situation is
becoming increasingly critical. For this reason, it is important
to have a tool that performs the forecast of Covid-19 cases
so as able support government officials, health managers, and
general stakeholders to be informed to execute health policies and
targeted interventions. Therefore, it is possible to make short-
term decisions, develop public policies, and direct resources to
health professionals and hospitals. In addition, the forecasting
tool can assist governments in controlling measures of social
isolation and lockdown. The evaluation of these forecasts allows
to intensify the restrictions of social agglomerations, as well as
to evaluate the effect of these measures in the contagion of
the population.
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FIGURE 7 | (A) COVID SGIS web application home screen. (B) Accumulated cases of Covid-19 forecast graph. The forecast with ARIMA is represented by the green

line. The worst case scenario (indicated by the upper limit of the forecast) is represented by the line in red. The best scenario (indicated by the lower limit of the

forecast) is represented by the blue line. (C) Screen of the graph of the distribution of confirmed cases and deaths by Covid-19. In this graph the user can have an

overview of the accumulated confirmed cases and death cases in all states of Brazil and the Distrito Federal. In COVID SGIS, the user can follow the daily and

accumulated confirmed cases (D) and deaths (E) of Covid-19 for each Brazilian state and the Distrito Federal, separately.

With that in mind, our motivation is to provide a robust,
flexible, and rapid forecasting method. Thus, we combined the
ARIMAmodel for time series analysis with Artificial Intelligence

techniques. ARIMA was an excellent choice for the purpose,
being efficient in forecasting Covid-19, which has a rapid
proliferation and changes to the daily scenarios. The method is
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capable of presenting the forecast if the context of the forecast
moment remains constant, as well as presenting the best and
worst scenarios, with their 95% confidence interval limits.

The developed models achieved good performance when
taking into account their percentage errors. Among the 26
Brazilian states analyzed plus Distrito Federal, the majority
presented satisfactory results, with low error rates. Some states,
such as Roraima, Tocantins, and Distrito Federal showed higher
errors. Some hypotheses can be raised for this: many cases of
Covid-19 are not reported, as in cases of asymptomatic people or
who remained in isolation at home; in addition, database updates
can be slow, directly affecting the forecast of the following days.
This fact becomes even worse when taking into account the
measures of the Brazilian Ministry of Health to limit testing to
severe cases attested by clinical diagnosis.

Besides that, some specific issues in Brazil directly affected
the course of the pandemic. One fundamental challenge resides
on the strong social inequality in the country (31), and the lack
of government planning to deal with this reality (32). Many
Brazilian citizens do not have a fixed income and a formal
job (33). Furthermore, the impact of the pandemic on income-
generating activities is most severe for unprotected workers and
for the most vulnerable groups in the informal economy (33, 34).
Although the Federal Government has been providing monthly
aid to the most financially affected families, there are several
difficulties in accessing this aid. In addition, in many cases, it is
not enough to guarantee basic survival needs. It is also important
to highlight the lack of access to hygiene information and basic
protection items, such as masks and alcohol, by the less favored
population (35). As a consequence, these people need to work and
thus break the imposed social isolation policies. In this way, there
is a considerable portion of the population circulating on the
streets, increasing the population susceptible to contamination
by SARS-CoV-2.

Despite this, our method provides a possibility of dynamic
forecasting: the proposed model is retrained and adapted to
the real scenario in a daily basis. The proposed model is
trained everyday with a maximum window of 3 days, achieving
low errors in most forecasts, and acceptable errors (inside the
confidence interval) in the worst scenarios. This forecasting
window is dynamic, since it is chosen by automatic ARIMA
models. Another advantage of our proposal is the use of multiple
databases. In this way, several countries can benefit from this
solution, adapting the model to their databases, incorporating
dedicated web crawlers, for instance. Our system can be an
important tool to guide the course of this pandemic.

The scope of our proposal comprises the forecast of Covid-19
cases in real time. As a case study, the tool developed, COVID-
SGIS, was applied to the forecast of cases in Brazil, in each
of the 27 units of the Federation, and in each of the 5,570
municipalities. Brazil is a continental country, with a population
of 209.5 million people and involving an area larger than that
of Western Europe. Every 24 h, the proposed system collects
information from the state health departments for each federative
unit and each municipality. And every day the model is retrained
with all the data obtained since the official start of the pandemic
in the country: March 2020. Thus, a model that could provide

good accuracy at a low computational cost of training, with
a low demand for memory and processing, is a prerequisite
for this problem. Among the low computational cost models
investigated, the standard ARIMA has met this prerequisite with
an accuracy that can be considered very good or acceptable in
most cases.

The situation at Covid-19 is somewhat different from that
of other diseases. In arboviruses, for example, vectors and
population must be modeled as completely different entities.
In addition, the epidemiological dynamics is also influenced by
climatic and environmental factors, in addition to socioeconomic
factors. In these models, population modeling can help increase
accuracy. In the case of Covid-19, we believe that it is quite
reasonable to assume that geographic location and the number
of cases is the most relevant factors, given that Covid-19
spreads very quickly and that climatic and environmental factors
are unrelated to the disease. In Covid-19, the vector and the
population coincide, given that the contamination occurs from
human to human. The good results obtained by the model we
propose show that our hypothesis of focusing on the number
of cases, given that the predictors have each municipality and
each federative unit as a reference, is correct. Thus, if we
wanted to increase the model’s accuracy by increasing the
number of attributes, these attributes could emerge from a
population model. This would be a reasonably complex model,
one that could be able to deal with socioeconomic differences
that lead to increasing the mobility of low-income populations
and to violating social distancing measures. However, there is
no guarantee that such a model could contribute to increased
accuracy, although this would be an interesting point for
future works.
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