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Abstract: Background: The previous COVID-19 lung diagnosis system lacks both scientific validation
and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study
presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class
activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two
sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design
consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet
model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and
distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169,
DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted
class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and
FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its
stability and reliability. The Friedman test was also performed on the scores of the three radiologists.
Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of
0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies
for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003,
~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99
(p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between
heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings.
Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for
lesion localization in lung CT scans.

Keywords: COVID-19 lesion; lung CT; Hounsfield units; glass ground opacities; hybrid deep learning;
explainable AI; segmentation; classification; GRAD-CAM; Grad-CAM++; Score-CAM; FasterScore-CAM

1. Introduction

COVID-19, the novel coronavirus or SARS-CoV-2, the severe acute respiratory syn-
drome coronavirus 2, has been a rapidly spreading epidemic that was declared a global
pandemic on 11 March 2020 by the World Health Organization (WHO) [1]. As of 20 May
2022, COVID-19 had infected over 521 million people worldwide and has killed nearly
6.2 million [2].

Molecular pathways [3] and imaging [4] of COVID-19 have proven to be worse in
individuals with comorbidities such as coronary artery disease [5,6], diabetes [7], atheroscle-
rosis [8], fetal programming [9], pulmonary embolism [10], and stroke [11]. Further, the
evidence shows the damage to the aorta’s vasa vasorum, leading to thrombosis and plaque
vulnerability [12]. COVID-19 can cause severe lung damage, with abnormalities primarily
in the lower region of the lung lobes [13–20]. It is challenging to distinguish COVID-19
pneumonia from interstitial pneumonia or other lung illnesses; as a result, manual classi-
fication can be skewed based on radiological expert opinion. As a result, an automated
computer-aided diagnostics (CAD) system is sorely needed to categorize and characterize
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the condition [21], as it delivers excellent performance due to minimal inter-and intra-
observer variability.

With the advancements of artificial intelligence (AI) technology [22–24], machine learning
(ML) and deep learning (DL) approaches have become increasingly popular for detection
of pneumonia and its categorization. There have been several innovations in ML and DL
frameworks, some of which are applied to lung parenchyma segmentation [25–27], pneumonia
classification [21,25,28], symptomatic vs. asymptomatic carotid plaque classification [29–33],
coronary disease risk stratification [34], cardiovascular/stroke risk stratification [35], classi-
fication of Wilson disease vs. controls [36], classification of eye diseases [37], and cancer
classification in thyroid [38], liver [39], ovaries [40], prostate [41], and skin [42–44].

AI can further help in the detection of pneumonia type and can overcome the shortage
of specialist personnel by assisting in investigating CT scans [45,46]. One of the key
benefits of AI is its ability to emulate manually developed processes. Thus, AI speeds
up the process of identifying and diagnosing diseases. On the contrary, the black-box
nature of AI offers resistance to usage in clinicians’ settings. Thus, there is a clear need
for human readability and interpretability of deep networks, which requires identified
lesions to be interpreted and quantified. We, therefore, developed an explainable AI system
in a cloud framework, labeled the “COVLIAS 2.0-cXAI” system, which was our primary
novelty [47–52]. The COVLIAS 2.0-cXAI design consisted of three stages (Figure 1): (i)
automated lung segmentation using the hybrid deep learning ResNet-UNet model using
automatic adjustment of Hounsfield units [53], hyperparameter optimization [54], and
the parallel and distributed nature of design during training; (ii) classification using three
kinds of DenseNet (DN) models (DN-121, DN-169, DN-201) [55–58]; and (iii) scientific
validation using four kinds of class activation mapping (CAM) visualization techniques:
gradient-weighted class activation mapping (Grad-CAM) [59–63], Grad-CAM++ [64–67],
score-weighted CAM (Score-CAM) [68–70], and FasterScore-CAM [71,72]. The COVLIAS
2.0-cXAI was validated by a trained senior radiologist for its stability and reliability. The
proposed study also considers different variations in COVID-19 lesions, such as ground-
glass opacity (GGO), consolidation, and crazy paving [73–82]. The COVLIAS 2.0-cXAI
design showed the reduction of model size by roughly 30% and an improvement of the
online version of the AI system by two times.
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To summarize, our prime contributions in the proposed study consist of six main
stages: (i) automated lung segmentation using the HDL-ResNet-UNet model; (ii) clas-
sification of COVID-19 vs. controls using three kinds of DenseNets such as DenseNet-
121 [55–57,83], DenseNet-169, and DenseNet-201; the combination of segmentation and
classification depicting the overall performance of the system; (iii) using explainable AI to
visualize and validate the prediction of the DenseNet models using four kinds of CAM,
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namely Grad-CAM, Grad-CAM++, Score-CAM, and FasterScore-CAM, for the first time.
This helps us understand the AI model’s learning in the input CT image [35,84–86]. (iv)
Mean alignment index (MAI) between heatmaps and the gold standard score from three
trained senior radiologists, a score of four out of five, establishing the system for clinical
applicability. Further, a Friedman statistical test was also conducted to present the statistical
significance of the scores from the three experts. (v) Application of the quantization for
the trained AI model to make the system light and further ensure faster online prediction.
Lastly, (vi) presents an end-to-end cloud-based CT image analysis system, including the CT
lung segmentation and COVID-19 intensity map using the four CAM techniques (Figure 1).

Our study is divided into six sections. The methodology, patient demographics, image
acquisition, description of the DenseNet models, and the explainable AI system used in this
work are described in Section 2. Section 3 presents the background literature. In Section 4,
the models’ findings and their performance evaluation are presented. The discussion and
benchmarking sections are in Section 4, and Section 5 presents the conclusions.

2. Methodology
2.1. Patient Demographics

Two distinct cohorts representing two different countries (Croatia and Italy) were used
in the proposed study. The experimental data set included 20 Croatian COVID-19-positive
individuals, 17 of whom were male, and the remainder of whom were three females. The
GGO, consolidation, and crazy paving had an average value of 4. The second data set
included 15 Italian control subjects, ten of whom were male, and the remainder of whom
were five females. To confirm the presence of COVID-19 in the selected cohort, an RT-PCR
test [87–89] was performed for both data sets.

2.2. Image Acquisition and Data Preparation
2.2.1. Croatian Data Set

A Croatian data set of 20 COVID-19-positive patients was employed in our investi-
gation (Figure 2). This cohort was acquired between 1 March and 31 December 2020, at
the University Hospital for Infectious Diseases (UHID) in Zagreb, Croatia. The patients
who underwent thoracic MDCT during their hospital stay showed a positive RT-PCR test
for COVID-19 and were also above the age of 18 years. These patients also had hypoxia
(oxygen saturation 92%), tachypnea (respiratory rate 22 per minute), tachycardia (pulse rate
> 100), and hypotension (systolic blood pressure 100 mmHg). The proposal was approved
by the UHID Ethics Committee. The acquisition of the CT data was conducted using a
64-detector FCT Speedia HD scanner (Fujifilm Corporation, Tokyo, Japan, 2017).
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2.2.2. Italian Data Set

The CT scans for the Italian cohort of 15 patients (Figure 3) were acquired using a
128-slice multidetector-row CT scanner (Philips Ingenuity Core, by Philips Healthcare). The
breath-hold procedure was used during acquisition and no contrast agent was administered.
To acquire a 1 mm thick slice, a lung kernel of a 768 × 768 matrix together with a soft-tissue
kernel was utilized. The CT scans were carried out with a 120 kV, 226 mAs/slice detector
configuration (using Philips’ automated tube current modulation—Z-DOM), a spiral pitch
factor of 1.08, and a 0.5 s gantry rotation time 64 × 0.625 detector was considered.
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2.3. Artificial Intelligence Architecture

Recent deep learning developments, such as hybrid deep learning (HDL), have yielded
encouraging results [26,27,90–95]. We hypothesize that HDL models are superior to SDL
models (e.g., UNet [96] and SegNet [97]) due to the joint effect of the two DL models.
As a result, we offer a hybrid DL (HDL) such as the ResNet-UNet model that has been
trained and tested for the COVID-19-based lung segmentation database in our current
study. The aim of the proposed study is directed mainly at the explainable AI (XAI) using
the classification models; therefore, we have only used one HDL model.
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2.3.1. ResNet-UNet Architecture

VGGNet [98–100] was highly efficient and speedy, but it had a problem with vanishing
gradients. During backpropagation, it results in substantially minimal or no weight training
because it is multiplied by the gradient at each epoch, and the update is very modest in
the initial layers. The residual network, or ResNet [101], was created to solve this problem.
Skip connections, a new link, were built into this architecture, allowing gradients to skip a
specific set of layers, thus overcoming the problem of vanishing gradient. Furthermore,
during the backpropagation step, the local gradient value was preserved by an identity
function network. In a ResNet-UNet-based segmentation network, the encoding part of
the base UNet network is substituted with ResNet architecture, thus proving a hybrid
approach.

2.3.2. Dense Convolutional Network Architecture

A dense convolutional network (CNN) has an architecture that uses shorter connec-
tions across layers, thereby making them highly efficient during training [102]. DenseNet
is a CNN where every layer is connected to the ones below it. The primary layer communi-
cates with the 2nd, 3rd, 4th, and so on, whereas the secondary layer communicates with the
3rd, 4th, 5th, and so on. The key idea here was to increase the flow of information between
the network layers.

To maintain the flow of the system, the input received by each layer is forwarded to
all the further layers in a feature map. Unlike ResNet, it does not combine features by
summarizing them; instead, it concatenates them. As a result, the “jth” layer contains J
inputs and comprises feature maps from all the convolutional blocks from the subsequent
“J − j” layers that receive their feature maps. Instead of only J connections, the network
now has “(J(J + 1))/2” links, like standard deep learning designs. This requires fewer
parameters than traditional CNN, avoiding meaningless feature maps to be learned. This
paper presents three kinds of DenseNet architectures, namely, (i) DenseNet-121 (Figure 4a),
(ii) DenseNet-169 (Figure 4b), and (iii) DenseNet-201 (Figure 4c). Table 1 presents the output
feature map sizes of the input layer, convolution layer, dense blocks, transition layers, and
fully connected layer followed by the SoftMax classification layer.

Table 1. Output feature map sizes of the three DenseNet architectures.

Layers Output Feature Size

Input 512 × 512

Conv. 256 × 256

Max Pool 128 × 128

Dense Block 1 128 × 128

Transition Layer 1
128 × 128

64 × 64

Dense Block 2 64 × 64

Transition Layer 2
64 × 64

32 × 32

Dense Block 3 32 × 32

Transition Layer 3
32 × 32

16 × 16

Dense Block 4 16 × 16

Classification Layer (SoftMax)
1024

2
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2.4. Explainable Artificial Intelligence System for COVID-19 Lesion

We are utilizing machine learning to address more complicated problems as the tech-
nology improves and models become more accurate. As machine learning (ML) technology
advances, it becomes increasingly sophisticated. This is one of the reasons to use cloud-
based explainable AI (cXAI) to help understand how the ML model predicts utilizing a set
of tools.

Instead of presenting individual pixels, cXAI is a new approach to displaying attributes
that highlight which prominent characteristics of an image had the most significant impact
on the model. The effect is seen here (image with heatmap red-yellow-blue), along with
which regions contributed to our model’s identification of this image as a husky. Based on
the color palette, cXAI highlights the most influential areas in red, the medium influential
part in yellow, and the least influential factors in blue. Understanding why a model
produced the forecast it did is helpful when debugging a model’s incorrect categorization
or determining whether to believe its prediction. Explainability can help (i) debug the AI
model, (ii) validate the results, and (iii) provide a visual explanation as to what drove the AI
model to classify the image in a certain way. As part of cXAI, we present four cloud-based
CAM techniques to visualize the prediction of the AI model and validate it using the color
palette as described above.

Four CAM Techniques in Cloud-Based Explainable Artificial Intelligence System

Grad-CAM (Figure 5) generates a localization map that shows the critical places in
the image representing the lesions by employing gradients from the target label/class
settling into the final convolutional layer. The input image is fed to the model which is then
transformed by the Grad-CAM heatmap (Equation (1)) to show the explainable lesions in
the COVID-19 CT scans. This image then follows the typical prediction cycle, generating
class probability scores before calculating the model loss. Following that, using the output
from our desired model layer, we compute the gradient in terms of model loss. Finally,
the gradient areas that contribute to the prediction are then preprocessed (Equation (3)),
thereby overlaying the heatmap on the original grayscale scans.
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Grad-CAM++ (Figure 6) is an improved version of Grad-CAM, providing a better
understanding by creating an accurate localization map of the identifying object and
explaining the same class objects having multiple occurrences. Grad-CAM++ generates a
pictorial depiction for the class label as weights derived from the feature map of the CNN
layer by considering its positive partial derivatives (Equation (2)). Then, a similar process
is followed as in Grad-CAM to produce the gradient’s saliency map (Equation (3)) that
contributes to the prediction. This map is then overlaid with the original image.
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Our third CAM technique is Score-CAM (Figure 7). In this technique, the produced
activation mask is used as a mask for the input image, masking sections of the image and
causing the model to forecast on the partially masked image. The target class’s score is
then used to represent the activation map’s importance. The main difference between
Grad-CAM and Score-CAM is that this technique does not incorporate the use of gradients,
as the propagated gradients introduce noise and are unstable. The technique is separated
into the following parts to obtain the class discriminative saliency map using Score-CAM.
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(i) Images are processed through the CNN model as a forward pass. The activations are
taken from the network’s last convolutional layer after the forward pass. (ii) Each activation
map with the shape 1xmxn produced from the previous layer is sampled to the same size
as the input image using bilinear interpolation. (iii) The generated activation maps are
normalized with each pixel within [0, 1] to maintain the relative intensities between the
pixels after upsampling. The formula given in Equation (4) is used for the normalization of
the data. (iv) After the activation maps have been normalized, the highlighted areas are
projected onto the input space by multiplying each normalized activation map (1 × X × Y)
with the original input image (3 × X × Y) to obtain a masked image M with the shape
3 × X × Y (Equation (5)). The resulting masked images M are then fed into a CNN with
SoftMax output (Equation (6)). (v) Finally, pixel-wise ReLU (Equation (7)) is applied to
the final activation map generated using the sum of all the activation maps for the linear
combination of the target class score and each activation map.

Ak
i, j =

Ak
i, j

maxAK − minAK (4)

Mk = Ak· I (5)

Sk = So f tmax (F(Mk)) (6)

Lc = ReLU (∑k wc
k·A

k) (7)
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Finally, the fourth technique is labeled FasterScore-CAM. The main innovation of
using FasterScore-CAM over the traditional Score-CAM technique is that it eliminates the
channels with small variance and only utilizes the activation maps with large variance
for heatmap computation and visualization. This selection of activation maps with large
variance helps improve the overall speed by nearly ten-fold compared to Score-CAM.

2.5. Loss Function for Artificial-Intelligence-Based Models

During model generation, our system uses the cross-entropy (CE)-loss [103–105]
function. If CE-loss can be represented by the notation αCE, probability of the AI model
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by pi, gold standard label 1 and 0 by gi and (1 − gi), respectively, then the loss function
equation can be mathematically expressed as shown in Equation (8).

αCE= −[(g i× log pi) + (1 − gi) × log(1 − p i)] (8)

2.6. Experimental Protocol

Our team has demonstrated several cross-validation (CV) protocols using the AI frame-
work; the study uses a standardized five-fold CV technique to train the AI models [106,107].
The data consisted of 80% training data and 20% testing data. K5 CV protocol was adapted
where the data were partitioned into five parts, each consisting of a unique training set and
testing set and rotated cyclically for all the parts that were used independently. Note that
we also used 10% of the data for validation.

The accuracy of the AI system is computed by evaluating the predicted output to the
ground-truth label. The output lung mask was just black or white; these measurements
were interpreted as binary (1 for white or 0 for black) values. If the symbols TP, TN, FN,
and FP represent true positive, true negative, false negative, and false positive, respectively,
Equation (9) may be used to evaluate the accuracy of the AI system.

Accuracy (%) =

(
TP + TN

TP + FN + TN + FP

)
× 100 (9)

Precision (Equation (10)) of an AI model is given as the ratio of the correctly labeled
classes by the model w.r.t total labels of the COVID-19 class including the false-positive
cases. Recall (Equation (11)) of an AI model is given as the ratio of the correctly labeled
COVID-19 positive class by the AI model to the total COVID-19 in the data set. F1-
score (Equation (12)) is the harmonic average of the precision and recall for the given AI
model [108–110].

Precision =

(
TP

TP + FP

)
(10)

Recall =

(
TP

TP + FN

)
(11)

F1 − Score = 2 ×
(

Recall × Precision
Recall + Precision

)
(12)

3. Results and Performance Evaluation

The proposed study uses the ResNet-UNet model for lung CT segmentation (see
Appendix A, Figure A1) and three DenseNet models, namely, DenseNet-121, DenseNet-169,
and DenseNet-201 to classify COVID-19 vs. control. The AI classification model was trained
on 1400 COVID-19 and 1050 control images, giving an accuracy of 98.21% with an AUC of
0.99 (p < 0.0001).

A confusion matrix (CM) is a table that shows how well a classification model performs
on a set of test data for which the real values are known. Table 2 presents CM for three kinds
of DenseNet (DN) models (DN-121, DN-169, and DN-201). For DN-121, a total of 1382 and
1020 images were correctly classified and 18 and 30 were misclassified as COVID-19 and
control. For DN-169, a total of 1386 and 1028 images were correctly classified and 14 and 22
were misclassified as COVID-19 and control. For DN-201, a total of 1388 and 1038 images
were correctly classified and 12 and 12 were misclassified as COVID-19 and control.
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Table 2. Confusion matrix.

DN-121 COVID Control

COVID 99% (1382) 3% (30)

Control 1% (18) 97% (1020)

DN-169 COVID Control

COVID 99% (1386) 2% (22)

Control 1% (14) 98% (1028)

DN-201 COVID Control

COVID 99% (1388) 1% (12)

Control 1% (12) 99% (1038)

3.1. Results Using Explainable Artificial Intelligence
Visual Results Representing Lesion Using the Four CAM Techniques

The trained classification model from DenseNet-121, DenseNet-169, and DenseNet-201
was taken, and then cXAI was applied to it to generate the heatmap representing the lesion,
thereby validating the prediction of the DenseNet models. These images which were used
to train the classification models followed the pipeline described in Figure 1, where we
first preprocess the CT volume with HU intensities followed by lung segmentation using
the ResNet-UNet model. These segmented lung images are then fed to the classification
network for the training and application of cXAI. As part of cXAI, we used four CAM
techniques, namely, (i) Grad-CAM, (ii) Grad-CAM++, (iii) Score-CAM, and (iv) FasterScore-
CAM to visualize the results of the classification model. Figure 8 shows the output from
the cXAI, which includes the expert’s lesion localization with black borders, representing
the AI model’s missed and correctly captured lesion.

Figures 9–14 show the visual results for the three kinds of DenseNet-based classifiers
wrapped up with four types of CAM models, namely Grad-CAM (column 2), Grad-CAM++
(column 3), Score-CAM (column 4), and FasterScore-CAM (column 5) on COVID-19 vs.
control segmented lung images, where the color map red shows the lesion localization
using cXAI, thereby validating the prediction of the DenseNet models. Table 3 presents a
comparative analysis of the three DenseNet models used in this study. The performance of
the models has been compared using accuracy, loss, specificity, F1-score, recall, precision,
and AUC scores. DenseNet-201 is the best-performing model when comparing the accuracy,
loss, specificity, F1-score, recall, and precision. However, due to the larger model’s size
of 233 MB and a total number of parameters of 203 million, training the batch size of the
model was kept at 4. While the batch size while training DenseNet-121 and DenseNet-169
was kept at 16 and 8 due to a smaller model size of 93 MB and 165 MB and further had a
lesser number of parameters of 81 million and 143 million, respectively.
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Table 3. Comparative table for three kinds of DenseNet classifier models.

SN Attributes DN-121 DN-169 DN-201

1 # Layers 430 598 710

2 Learning Rate 0.0001 0.0001 0.0001

3 # Epochs 20 20 20

4 Loss 0.003 0.0025 0.002

5 ACC 98 98.5 99

6 SPE 0.975 0.98 0.985

7 F1-Score 0.96 0.97 0.98

8 Recall 0.96 0.97 0.98

9 Precision 0.96 0.97 0.98

10 AUC 0.99 0.99 0.99

11 Size (MB) 93 165 233

12 Batch size 16 8 4

13 Trainable
Parameters 80 M 141 M 200 M

14 Total Parameters 81 M 143 M 203 M
DN-121: DenseNet-121; DN-169: DenseNet-169; DN-201: DenseNet-201; # = number of. Bold highlights the
superior performance of the DenseNet-201 (DN-201) model.
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Figure 9. Heatmap using four CAM techniques and three kinds of DenseNet classifiers on COVID-19
lesion images. The top row is the CT slice for patient 1, and the bottom row is the CT slice for
patient 2.
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19 lesion images. The top row is the CT slice for patient 1, and the bottom row is the CT slice for
patient 2.
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images. The top row is the CT slice for patient 1, and the bottom row is the CT slice for patient 2.
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Figure 14. Heatmap using four CAM techniques using three kinds of DenseNet classifiers on control
images. The top row is the CT slice for patient 1, and the bottom row is the CT slice for patient 2.

3.2. Performance Evaluation

The proposed study uses two techniques: (i) segmentation of the CT lung; and (ii)
classification of the CT lung between COVID-19 vs. controls. For the segmentation part,
we have presented mainly five kinds of performance evaluation metrics: (i) area error, (ii)
Bland–Altman [111,112], (iii) correlation coefficient [113,114], (iv) dice similarity [115], and
(v) Jaccard index. Figures 15–17 show the overlay of the ground truth lesions on heatmaps
as part of the performance evaluation. The four columns represent Grad-CAM (column
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2), Grad-CAM++ (column 3), Score-CAM (column 4), and FasterScore-CAM (column 5)
on the segmented lung CT image. For the three DenseNet-based classification models, we
introduce a new metric to evaluate the heatmap, i.e., mean alignment index (MAI). This
MAI requires grading from a trained radiologist, where the radiologist rates the heatmap
image between 1 and 5, with 5 being the best score. This study incorporates inter-observer
analysis using three senior trained radiologists from different countries for MAI scoring
on the cXAI-generated heatmap of the lesion localization on the images. The scores are
then presented in the form of a bar chart (Figure 18) with grading from expert 1 (Figure 18,
column 1), expert 2 (Figure 18, column 2), and expert 3 (Figure 18, column 3).
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kinds of DenseNet classifiers for COVID-19 lesion images as part of the performance evaluation.
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Figure 17. Overlay of ground truth annotation on heatmap using four CAM techniques on three
kinds of DenseNet classifiers for COVID-19 lesion images as part of the performance evaluation.
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3.3. Statistical Validation

This study uses the Friedman test to prove the statistically significant difference
between the means of three or more groups, all of which have the same subjects [116–118].
The Friedman test’s null hypothesis states that there are no differences between the sample
medians. The null hypothesis will be rejected if the p-value calculated is less than the
set significance threshold (0.05), and it can be determined that at least two of the sample
medians are substantially different from each other. Further analysis of the Friedman test
is presented in “Appendix A (Tables A1–A3)”. It was noted that for all the MAI scores of
three experts, the three classification models, namely, DenseNet-121, DenseNet-169, and
DenseNet-201, and using the four CAM techniques used in XAI showed significance of
p < 0.00001. Thus, this proves the reliability of the overall COVLIAS 2.0-cXAI system.

4. Discussion
4.1. Study Findings

To summarize, our prime contributions in the proposed study are six types of inno-
vation in the design of COVLIAS 2.0-cXAI: (i) automated HDL lung segmentation using
the ResNet-UNet model; (ii) classification of COVID-19 vs. controls using three kinds
of DenseNets, namely, DenseNet-121 [55–57,83], DenseNet-169, and DenseNet-201; the
combination of segmentation and classification improved the overall performance of the
system; (iii) using explainable AI to visualize and validate the prediction of the DenseNet
models using four kinds of CAM, namely Grad-CAM, Grad-CAM++, Score-CAM, and
FasterScore-CAM, for the first time. This helps us understand the AI model’s learning
in the input CT image [35,84–86]. (iv) Mean alignment index (MAI) between heatmaps
and the gold standard score from three trained senior radiologists, a score of four out of
five, establishing the system for clinical applicability. Further, a Friedman test was also
conducted to present the statistical significance of the scores from the three experts. (v)
Application of the quantization to the trained AI model while making the prediction help in
faster online prediction. Further, it also reduces the final trained AI model size, making the
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complete system light. Lastly, (vi) presents an end-to-end cloud-based CT image analysis
system, including the CT lung segmentation and COVID-19 intensity map using the four
CAM techniques (Figure 1).

The proposed study presents heatmaps using four CAM techniques, namely, (i) Grad-
CAM, (ii) Grad-CAM++, (iii) Score-CAM, and (iv) FasterScore-CAM. The CT lung segmen-
tation using ResNet-UNet was adapted from our previous publication [93]. This segmented
lung is then given as the input to the classification DenseNet models to train in distinguish-
ing between COVID-19-positive and control individuals. The preprocessing involved while
training the classification model consists of a Hounsfield unit (HU) adjusted to highlight the
lung region (1600, −400), causing the model to train efficiently by improving the visibility
of COVID-19 lesions [53]. Further, we have also designed a cloud-based AI system that
takes the raw CT slice as the input and then processes this image first for lung segmenta-
tion, followed by heatmap visualization using four techniques [119–123]. Figures 19–21
represent the output from the cloud-based COVLIAS 2.0-cXAI system (Figure 22, a web-
view screenshot). This COVLIAS 2.0-cXAI uses multithreading to process the four CAM
techniques in a parallel manner and produces results faster than sequential processing.

While it is intuitive to examine the relationship between demographics and COVID-19
severity [22,124–126], it is not always necessarily the case that (i) there can be a relationship
between demographics and COVID-19 severity, (ii) there can be data collection with
all demographics parameters and COVID-19 severity, (iii) there can be data collection
keeping comorbidity in mind, and/or (iv) the cohort sizes are large enough to establish the
relationship between demographics and COVID-19 severity. Such conditions are prevalent
in our setup and therefore no such relationship could be established; however, as part
of the research, one can establish such a relationship along with survival analysis. The
objective of this study was squarely not aimed at collecting demographics and relating
them to COVID-19 severity; however, we have attempted this in previous studies [127].

Multilabel classification is not new [21,124,128,129]. For multilabel classification, the
models are trained with multiple classes, for example, if there are two or more than two
classes, then the gold standard must consist of two or more than two classes [124,129].
Note that in our study, the only two classes used were COVID-19 and controls; however,
different kinds of lesions can be classified using a multiclass-based classification framework
(for example, GGO vs. consolidations vs. crazy paving), which was out of the scope of the
current work, but this can be part of the future study. Moreover, inclusion of unsupervised
techniques can also be attempted [130].

The total data size for ResNet-UNet-based segmentation was 5000. These trained mod-
els were used for segmentation followed by classification on 2450 test CT scans consisting
of 1400 COVID-19 cases and 1050 control CT scans. Three kinds of DenseNet classifiers
were used for classification of COVID-19 vs. controls. Further, the COVLIAS 2.0-cXAI used
the explainable AI using three kinds of Grad-CAM for heatmap generation. Thus, overall,
the system used 7450 CT images, which is relatively large. Due to the radiologists’ time
and cost reasons, the test data set was nearly 33% of the total data set of the system, which
is considered reasonable.
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4.2. Memorization vs. Generalization for Longitudinal Studies

Generalization is the process where the AI model does not purely depend upon the
data sample size for best performance [34,131]. Since the models were trained using K5
cross-validation (CV) protocol (80:20), and the accuracy was predicted on the test data set,
which was not part of the training data sets, the process of memorization was thus less likely
to happen. Note that for every CV protocol, the “memorization vs. generalization” needs
to be evaluated independently, especially keeping the treatment paradigm for longitudinal
data sets, which was out of scope for the current settings. From our past experiences,
the effect of generalization can be retained in the deep learning framework to a certain
degree. In our recent experiments, where we had applied “unseen test data” on our
trained AI models, it resulted in encouraging accuracy [27,132], which justifies “superior
generalization” in deep learning frameworks, unlike in machine learning frameworks.
Since COVLIAS 2.0-cXAI is a deep learning framework, we thus conclude that the cloud-
based “COVLIAS 2.0-cXAI” can be adopted for the longitudinal data sets during the
monitoring phase.

4.3. A Special Note on Training Data Set

We trained the segmentation model using ResNet-UNet on 5000 COVID-19 images. An
unseen data set of 2450 (1400 COVID-19 and 1050 control images) was used for testing. Since
the training data set was quite large, we did not use augmentation during training protocol.
Note that the unseen data (2450) was also not augmented. While several studies have been
published that used the augmentation protocol [36,90,94,133–135] during classification,
our DenseNet models for classification were never modified and never underwent change
in rotation, tilt, or orientation. Further, note that we used the DICOM image directly,
which contains orientation information. This information was used to solve the problem of
rotation, tilting, or any abnormal orientation. This orientation information in the DICOM
tag was used to fix the orientation of the image so that the lung is always vertically straight
in the image.
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4.4. A Special Note on Four CAM Models

While DL has demonstrated accuracy in image classification, object recognition, and
image segmentation, model interpretability, a key component in model explainability,
comprehension, and debugging, is one of the most significant issues. That poses an
intriguing question: how can you trust a model’s decisions if you cannot fully justify how it
got there? There has been the latest trend in the growth of XAI for a better understanding of
the AI black boxes [49,136–139]. Grad-CAM or Grad-CAM++ produces a coarse clustering
map showing the key regions in the picture for predicting any target idea (say, “COVID-19”
in a classification network) by using the gradients of any target concept (say, “COVID-19”
in a classification network) in the final convolutional layer. In contrast, Score-CAM is built
on the idea of perturbation-based approaches that mask portions of the original input and
measure the change in target score. The produced activation mask is handled as a mask for
the input image, masking sections of the input image and causing the model to predict the
partially masked image. The target class score is then used to reflect the significance of the
class activation map. While Score-CAM is an excellent method, it, however, takes more
time to process compared to other CAM methods. FasterScore-CAM makes Score-CAM
more efficient. This was achieved using only the dominating channels with significant
variances as the mask image. Thus, a CAM version that is ten times faster than Score-CAM
is produced.

4.5. Benchmarking the Proposed Model against Previous Strategies

We present the benchmarking strategy in Table 4, and this includes studies that utilized
the CAM technique for COVID-19-based lesion localization. Lu et al. [140] presented
CGENet, a deep graph model for COVID-19 detection on CT images. First, they established
the appropriate backbone network for the CGENet adaptively. The authors then devised
a novel graph-embedding mechanism to merge the spatial relationship into the feature
vectors. Finally, to improve classification performance, they picked the extreme learning
machine (ELM) [24] as the classifier for the proposed CGENet. Based on five-fold cross-
validation, the suggested CGENet obtained an average accuracy of 97.78% on a large
publicly available COVID-19 data set with ~2400 CT slices. They also compared the
performance of CGENet against five existing methods. In addition, based on COVID-19
samples, the Grad-CAM maps were used to offer a visual explanation of CGENet. The
authors did not report the AUC values and did not compare the other CAM methods such
as Grad-CAM++, Score-CAM, and FasterScore-CAM.

At Tlemcen Hospital in Algeria, Lahsaini et al. [141] first gathered a data set of
4986 COVID and non-COVID images validated by RT-PCR assays. Then, to conduct a
comparative analysis, they performed transfer learning on DL models that received the
highest results on the ImageNet data set, such as DenseNet-121, DenseNet-201, VGG16,
VGG19, Inception Resnet-V2, and Xception [142]. Finally, they proposed an explainable
model for detecting COVID-19 in chest CT images and explaining the output decision based
on the DenseNet-201 architecture. According to the results of the tests, the proposed design
has a 98.8% accuracy rate. It also uses Grad-CAM to provide a visual explanation. The
authors did not compare them with other CAM methods such as Grad-CAM++, Score-CAM,
and FasterScore-CAM.

Zhang et al. [143] investigated whether combining chest CT and chest X-ray data
can assist AI to diagnose more accurately. Approximately 5500 CT slices were collected
from 86 participants for this study. The convolutional block attention module was used
to create an end-to-end multiple-input deep convolutional attention network (MIDCAN)
(CBAM). One of our model’s inputs received a CT picture, while the other received an
X-ray image. Grad-CAM was also used to create an explainable heatmap. The suggested
MIDCAN had accuracy of 98.02%, sensitivity of 98.1%, and specificity of 97.95%. The
authors did not compare the other CAM methods such as Grad-CAM++, Score-CAM, and
FasterScore-CAM.
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Monta et al. [144] presented the Fused-DenseNet-Tiny, a lightweight DCNN model
based on a truncated and concatenated DenseNet. Transfer learning, partial layer freezing,
and feature fusion were used to train the model to learn CXR features utilizing 9208
CXR. The proposed model was shown to be 97.99% accurate during testing. Despite its
lightweight construction, the Fused-DenseNet-Tiny cannot outperform its larger cousin
due to its limited extraction capabilities. The authors also used Grad-CAM to explain the
trained AI model visually. The authors did not report the AUC values and did not compare
the other CAM methods such as Grad-CAM++, Score-CAM, and FasterScore-CAM.

Table 4. Benchmarking table.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

SN Author Year TP TS IS2 TM DL Model Modality XAI Heatmap
Models AUC SEN SPE PRE F1 ACC

1 Lu et al.
[140] 2021 2482 100 to

500 5 CGENet CT 7 Grad-CAM 7 97.9 97.7 97.7 97.8 97.8

2 Lahsaini
et al. [141] 2021 177 4968 7 6 Transferred

DenseNet201 CT 7 Grad-CAM 0.988 99.5 98.2 97.8 98 98.2

3 Zhang
et al. [143] 2021 86 5504

1024(CT)
2048(X-
Ray)

8 MIDCAN CT,
X-ray 7 Grad-CAM 0.98 98.1 98 97.9 98 98

4 Monta
et al. [144] 2021 9208 299 7 Fused-

DenseNet-Tiny X-ray 7 Grad-CAM 7 7 7 98.4 98.3 98

5 Proposed
Suri et al. 2022 80 5000 512 3

DenseNet-121
DenseNet-169
DenseNet-201

CT 3

Grad-CAM
Grad-

CAM++
Score-CAM
FasterScore-

CAM

0.99
0.99
0.99

0.96
0.97
0.98

0.975
0.98
0.985

0.96
0.97
0.98

0.96
0.97
0.98

98
98.5
99

TP: total patients; TS: total slice; IS: image size; TM: total models; AUC: area under the curve; SEN (%): sensitivity
(or recall); SPE (%): specificity; PRE (%): precision; ACC (%): accuracy.

4.6. Strengths, Weakness, and Extensions

The study presented COVLIAS 2.0-cXAI, a cloud-based XAI system for COVID-19
lesion detection and visualization. The cXAI system presented a comparison of four
heatmap techniques, (i) Grad-CAM, (ii) Grad-CAM++, (iii) Score-CAM, and (iv) FasterScore-
CAM for the first time using three DenseNet models, namely, DenseNet-121, DenseNet-169,
and DenseNet-201 for COVID-19 lung CT images. To improve the prediction of the three
DenseNet models, we first segment the CT lung using a hybrid DL model ResNet-UNet
and then pass it to the classification network. Applying quantization to the three trained
AI models, namely, DenseNet-121, DenseNet-169, and DenseNet-201, while making the
prediction, helps in faster online prediction. Further, it also reduces the final trained AI
model size, making the complete system light. The overall cXAI system incorporates
validation of the lesion localization using expert grading, thereby generating an MAI
score. Lastly, the study presents an end-to-end cloud-based CT image analysis system
(COVLIAS 2.0-cXAI), including the CT lung segmentation (ResNet-UNet) and COVID-19
lesion intensity map using cXAI techniques. This study uses inter-observer variability
similar to other variability measurements [145] to score the MAI for lesion localization,
which was further validated using the Friedman test.

Even though the three AI models, DenseNet-121, DenseNet-169, and DenseNet-201,
produced promising results on a data set from a single location, the study was limited to
one observer due to cost, time, and radiologists’ availability. Several kinds of DenseNet
systems have been developed which can be tried and the current DenseNet can be re-
placed by [146–148]; as part of the extension to this study, more AI models can be explored
and can incorporate the use of the HDL model for binary or multiclass-based classifica-
tion [128] framework. Explainable AI is an emerging field and many new strategies can
be incorporated [47,50,149–157]. New techniques have evolved such as SHAP [52,158]
and UMAP [159]. Heatmaps produced by Grad-CAM have been used for XAI in several
applications [64], where the generated heatmaps are the threshold to compute the lesions
which are then compared against the gold standard [49]. Choi et al. [48] used SHAP to
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demonstrate the high-risk factors responsible for higher phosphate. Further, to improve the
speed of the AI model, model optimization techniques such as weight clustering and AI
model pruning [160–164] can be applied [115,165–169]. Techniques such as storage reduc-
tion are necessary when dealing with AI solutions [51,54,170–172]. Fusion of conventional
image processing can be used with AI to improve the performance of the system [173,174].
These AI technologies are likely to benefit long-COVID [175].

5. Conclusions

The proposed study is the first pilot study that integrates a cloud-based explainable ar-
tificial intelligence system using four techniques, namely, (i) Grad-CAM, (ii) Grad-CAM++,
(iii) Score-CAM, and (iv) FasterScore-CAM-based lesion localization using three DenseNet
models, namely, DenseNet-121, DenseNet-169, and DenseNet-201. Thus, it compares the
methods and explainability of the four different CAM strategies for COVID-19-based CT
lung lesion localization. DenseNet-121, DenseNet-169, and DenseNet-201 demonstrated
an accuracy performance of 98%, 98.5%, and 99%, respectively. The study incorporated a
hybrid DL (ResNet-UNet) for COVID-19-based CT lung segmentation using independent
cross-validation and performance evaluation schemes. To validate the lesion, three trained
senior radiologists scored the lesion localization on the CT lung data set and then compared
it against the heatmap generated by cXAI, resulting in the MAI score. Overall, ~80% of
CT scans were above an MAI score of four out of five, demonstrating matching lesion
locations using cXAI vs. gold standard, thus proving the clinical applicability. Further, the
Friedman test was also performed on the MAI scores by comparing the three radiologists.
The online cloud-based COVLIAS 2.0-cXAI achieves (i) CT lung image segmentation and
(ii) generation of four CAM techniques in less than 10 s for one CT slice. The COVLIAS
2.0-cXAI demonstrated reliability, high accuracy, and clinical stability.
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Figure A1. ResNet-UNet architecture.

Table A1. Friedman test using DenseNet-121 model on the MAI score from three experts.

XAI Experts Min. 25th Percentile Med 75th Percentile Max DF-1 DF-2 p Value F

D
en

se
N

et
-1

21

Grad-CAM
Expert 1 2 4 5 5 5

2 2278 <0.00001 171.81Expert 2 3 4 5 5 5

Expert 3 2.7 4.2 4.6 4.8 5

Grad-CAM++
Expert 1 2 4 5 5 5

2 2278 <0.00001 244.9Expert 2 3 4 5 5 5

Expert 3 2.8 4.3 4.6 4.8 5

Score-CAM
Expert 1 1 5 5 5 5

2 2278 <0.00001 740.1Expert 2 3 5 5 5 5

Expert 3 2 4.5 4.7 4.9 5

FasterScore-CAM
Expert 1 1 5 5 5 5

2 2278 <0.00001 1072.54Expert 2 3 5 5 5 5

Expert 3 2.8 4.5 4.7 4.8 5

Min: minimum; Med: median; Max: maximum; F: Friedman statistics.

Table A2. Friedman test using DenseNet-169 model on the MAI score from three experts.

XAI Experts Min. 25th Percentile Med 75th Percentile Max DF-1 DF-2 p Value F

D
en

se
N

et
-1

69

Grad-CAM
Expert 1 2 5 5 5 5

2 2278 <0.00001 432.84Expert 2 3 4 5 5 5

Expert 3 2.7 4.4 4.6 4.8 5

Grad-CAM++
Expert 1 2 5 5 5 5

2 2278 <0.00001 689.05Expert 2 3 5 5 5 5

Expert 3 3.2 4.5 4.7 4.8 5

Score-CAM
Expert 1 1 4 5 5 5

2 2278 <0.00001 282.56Expert 2 3 4 5 5 5

Expert 3 2.8 4.5 4.7 4.8 5

FasterScore-CAM
Expert 1 1 4 5 5 5

2 2278 <0.00001 253.15Expert 2 3 4 5 5 5

Expert 3 2.7 4.4 4.4 4.8 5

Min: minimum; Med: median; Max: maximum; F: Friedman statistics.
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Table A3. Friedman test using DenseNet-201 model on the MAI score from three experts.

XAI Experts Min. 25th Percentile Med 75th Percentile Max DF-1 DF-2 p Value F

D
en

se
N

et
-2

01

Grad-CAM
Expert 1 2 5 5 5 5

2 2278 <0.00001 499.3Expert 2 3 5 5 5 5

Expert 3 2.8 4.5 4.7 4.9 5

Grad-CAM++
Expert 1 2 5 5 5 5

2 2278 <0.00001 1151.78Expert 2 3 5 5 5 5

Expert 3 2.7 4.6 4.7 4.9 5

Score-CAM
Expert 1 3 5 5 5 5

2 2278 <0.00001 1719.93Expert 2 3 5 5 5 5

Expert 3 3 4.6 4.7 4.9 5

FasterScore-CAM
Expert 1 3 5 5 5 5

2 2278 <0.00001 1239.82Expert 2 3 5 5 5 5

Expert 3 2.9 4.6 4.7 4.9 5

Min: minimum; Med: median; Max: maximum; F: Friedman statistics.
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