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Since the COronaVIrus Disease 2019 (COVID-19) outbreak, developing a digital

diagnostic tool to detect COVID-19 from respiratory sounds with computer audition

has become an essential topic due to its advantages of being swift, low-cost, and

eco-friendly. However, prior studies mainly focused on small-scale COVID-19 datasets.

To build a robust model, the large-scale multi-sound FluSense dataset is utilised to help

detect COVID-19 from cough sounds in this study. Due to the gap between FluSense and

the COVID-19-related datasets consisting of cough only, the transfer learning framework

(namely CovNet) is proposed and applied rather than simply augmenting the training

data with FluSense. The CovNet contains (i) a parameter transferring strategy and (ii) an

embedding incorporation strategy. Specifically, to validate the CovNet’s effectiveness, it

is used to transfer knowledge from FluSense to COUGHVID, a large-scale cough sound

database of COVID-19 negative and COVID-19 positive individuals. The trainedmodel on

FluSense and COUGHVID is further applied under the CovNet to another two small-scale

cough datasets for COVID-19 detection, the COVID-19 cough sub-challenge (CCS)

database in the INTERSPEECH Computational Paralinguistics challengE (ComParE)

challenge and the DiCOVA Track-1 database. By training four simple convolutional neural

networks (CNNs) in the transfer learning framework, our approach achieves an absolute

improvement of 3.57% over the baseline of DiCOVA Track-1 validation of the area under

the receiver operating characteristic curve (ROC AUC) and an absolute improvement of

1.73% over the baseline of ComParE CCS test unweighted average recall (UAR).

Keywords: transfer learning, COVID-19, cough, FluSense, COUGHVID

1. INTRODUCTION

Since the year 2019, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic1. As of August 2021,
there have been more than 202, 000, 000 confirmed cases of COVID-19 worldwide, including
more than 4, 000, 000 deaths, reported by the World Health Organization (WHO)2. The daily

1https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-

(covid-2019)-and-the-virus-that-causes-it; retrieved 10 August 2021.
2https://covid19.who.int/; retrieved 10 August 2021.
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increasing COVID-19 cases and deaths have resulted in global
lockdown, quarantine, and many restrictions (1). Along with
the above measures, a set of following problems have appeared,
including the economic downturn (2) and mental health
problems (e.g., depression and stress) (1).

Swift and accurate diagnosis of COVID-19 is essential to
give patients appropriate treatments and effectively control
its transmission (3). The reverse transcription PCR (RT-PCR)
from oral-nasopharyngeal swabs identifies viral RNA and is
a commonly used instrument for the diagnosis of COVID-
19. Nevertheless, high false negative rate and stability issues
have been reported (4). In contrast to RT-PCR, chest CT
was proven to have high sensitivity and be expedited for
diagnosing COVID-19(4). Serological instruments are utilised to
diagnose/confirm late COVID-19 cases by measuring antibody
responses to the corresponding infection (5). Compared to the
above laboratory instruments, which require professionals and
special medical equipment, rapid antigen and molecular tests
using nasopharyngeal swabs are commercially available due
to their swift and simple test procedures, reduced mortality
of COVID-19 patients, internal hospital costs, and in-hospital
transmission (6). However, rapid tests are still hard-to-follow for
non-specialists and are not environment-friendly.

Artificial intelligence has been widely applied to respiratory
sounds in the healthcare area (7–9). In a study by (8), a multilayer
perceptron based classifier was developed on features extracted
from respiratory sounds to screen lung health. Random forests
are applied on the filter bank energy-based features to pre-
screen the lung health abnormalities (9). COVID-19 patients
were reported to have seven common symptoms, including
fever, cough, sore throat, headache, myalgia, nausea/vomiting,
and diarrhea (10). Among these symptoms, the first two
symptoms of COVID-19 are fever and cough (10). As a fast
and non-invasive way to detect potential infections in public
areas, body temperature measurement has been commonly
employed (11). Traditional body temperature measurement
with a thermometer usually requires relatively close contact
with potential COVID-19 positive individuals (12). Although
infrared (IR) thermal cameras provide a non-contact way for
mass fever detection, they may not be valid because of the
absence of calibration, non-homogeneous devices/protocols, and
poor correlation between skin temperature and core body
temperature (11). The reading of IR thermal cameras could
also be affected by the environmental temperature (11). On the
other hand, cough, as a common symptom in many respiratory
diseases, is a worthwhile consideration when diagnosing a
disease (13). Cough sounds have been used to diagnose asthma,
bronchitis, pertussis, pneumonia, etc. (13). Recent studies have
also investigated the feasibility of detecting COVID-19 infections
from cough sounds. For instance, cough sounds were shown
to contain latent features distinguishable between COVID-19
positive individuals and COVID-19 negative individuals (i.e.,
normal, bronchitis, and pertussis) (14). In Brown et al.’s study
(15), cough sounds from COVID-19 positive individuals were
reported to have a longer duration, more onsets, higher periods,
lower RMS, and MFCC features with fewer outliers. Due to
the development of the internet-of-things (IoT), the algorithms

for detecting potential COVID-19 positive individuals from
cough sounds can be integrated into mobile phones, wearable
devices, and robots. Such a rapid, easy-to-use, and environment-
friendly instrument will be helpful for real-time and remote
pre-screening of COVID-19 infections, thereby supplementing
clinical diagnosis and reducing the medical burden.

Since the outbreak of COVID-19, several studies have
collected cough samples from COVID-19 positive patients
(and COVID-19 negative individuals) to detect COVID-19
infections. Coswara (16) is a crowd-sourced database consisting
of various kinds of sounds, including breathing (shallow
and deep), coughing (shallow and deep), sustained vowel
phonation (/ey/ as in made, /i/ as in beet, /u:/ as in cool),
and number counting from one to twenty (normal and fast-
paced). Another crowd-sourced database, COUGHVID with
cough sounds only (17), was collected via a web interface. To
date, the latest version of COUGHVID is publically released
with 27, 550 cough recordings.3 The crowd-sourced University
of Cambridge COVID database was reported to have more
than 400 cough and breathing recordings (15). The Virufy
datasets consist of a Latin American crowd-sourced dataset (31
individuals) and two South Asian clinical datasets (362 and
63 individuals, respectively). Due to the difficulty of collecting
cough sounds of confirmed COVID-19 patients and multi-sound
(non-cough)/noise in crowd-sourced datasets, most of the above
databases are small-scale, leading to a challenge for training
robust machine learning models.

With this in mind, we propose a hybrid transfer learning
framework for robust COVID-19 detection, where several
convolutional neural networks (CNNs) are trained on large-scale
databases and fine-tuned on several small-scale cough sound
databases for verification. Note that the focus of this paper is not
to outperform the state-of-the-art neural networks models for
COVID-19 detection from cough sounds; rather, the aim of this
study is to provide a framework for mitigating the effect of noise
or irrelevant sounds in the crowd-sourcing datasets applied to
COVID-19 by training robust CNN models with the transferred
knowledge from Flusense and/or COUGHVID. The workflow
of this study is indicated in Figure 1. The code of this paper is
publicly available on GitHub4.

• The FluSense database (18) was collected in a platform to track
influenza-related indicators, such as cough, sneeze, sniffle, and
speech. Since it contains various types of sounds existing in
crowd-sourced cough datasets, the FluSense dataset is applied
in this study.

• Due to the gap in sound type between FluSense and
databases with cough sounds only, the COUGHVID database
is considered as the target data when CNNs are trained
on FluSense as the source data. The trained models on
COUGHVID are further adapted to the other two smaller
test databases, i.e., Computational Paralinguistics challengE
(COMPARE) 2021 COVID-19 cough sub-challenge (CCS) (19)
and DiCOVA 2021 Track-1 (20).

3https://zenodo.org/record/4498364#.YRKa3IgzbD4
4https://github.com/ychang74/CovNet
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FIGURE 1 | The workflow of this study. CovNet is the proposed transfer

learning framework, which includes transferring parameters and incorporating

embeddings. CovNet is first applied on the Flusense as the source data,

COUGHVID as the target data. Afterwards, to further validate the effectiveness

of CovNet, the CovNet based pre-trained COUGHVID models are applied on

two smaller Computational Paralinguistics challengE (ComParE) 2021

COVID-19 cough sub-challenge (CCS) dataset and DiCOVA 2021

Track-1 dataset.

• We propose two transfer learning pipelines, i.e., transferring
parameters from the source database to the target database
for fine-tuning models and incorporating embeddings for
expanding models’ capability of extracting useful features.

In the following sections, the transfer learning framework is
first introduced in section 2, followed by the architecture of
the models for COVID-19 detection in section 3. Next, the
experimental details are described, and the results are presented
and discussed in section 4. Finally, our study is summarised, and
the outlook is given in section 5.

2. TRANSFER LEARNING FRAMEWORKS

Transfer learning aims at applying the knowledge learnt from
source data to different but related target data and achieving
better performance in a cost-effective way (21–23). The source
data and target data should be similar, otherwise negative transfer
may happen (22, 24). Transfer learning has been successfully
applied to COVID-19 detection based on acoustic data (14, 15).
In Imran et al.’s study (14), the knowledge was transferred from
the cough detection model to the COVID-19 diagnosis model.
Brown et al. (15) discovered that VGGish pre-trained on a large-
scale YouTube dataset was utilised to extract audio features from
raw audio samples for COVID-19 diagnosis.

In this study, two ways of transfer learning are applied. One
is to fine-tune the parameters of the networks with the target
data. The other is extracting the embeddings from the pre-
trained network and applying the embeddings when training
the new network for the target dataset. Since the crowd-sourced
cough recordings usually contain non-cough audio signals other
than cough sounds, such as speech and breathing, the FluSense
dataset and the COUGHVID dataset contain similar sound types.
Therefore, the knowledge learnt from FluSense data can be
employed to improve the performance of models trained on the
COUGHDVID dataset. In Figure 2, DFluSense is the FluSense
dataset, and DCOUGHVID means the COUGHVID dataset; convs0
and convs1 represent the convolutional layers/blocks in the
neural networks on the FluSense dataset and the COUGHVID

dataset, respectively; FCFluSense and FCCOUGHVID denotes the
fully-connected (FC) layer of corresponding models. When
separating the left part with the right part in Figures 2A,B, with
the training data (x0, y0) and (x1, y1), we separately train the
CNNs on the FluSense and COUGHVID datasets to produce the
predicted values ŷ0 and ŷ1, respectively.

With the parameters and embeddings from the pre-trained
FluSense models, as highlighted in blue in Figure 2, the
COUGHVID models are given the potential to discriminate
between the various audio signals, which further helps its
COVID-19 detection from crowd-sourced cough signals.
Notably, the predicted value ŷ1 is the final output of the proposed
transfer learning framework.

To further investigate the generalisation ability of CovNet,
we apply it to some other small-scale crowd-sourced datasets
for COVID-19 detection. In the following, we introduce the two
transfer learning methods in greater detail.

2.1. Transferring Parameters
Fine-tuning pre-trained models is an effective transfer learning
method by sharing some parameters across tasks (21, 22). In
the computer vision area, parameters of pre-trained models on
ImageNet (25) are often applied for transfer learning on a wide
range of image-related tasks (26–29). Similarly, parameters of
pre-trained models on the Audio Set are transferred to many
audio-related tasks (30–32). Parameters of pre-trained CNN
models on the Audio Set are transferred to the adapting networks
for acoustic event recognition (30, 31). Several pre-trained audio
neural networks trained on the Audio Set dataset were proposed
for other audio pattern recognition tasks (32).

In this study, as indicated in Figure 2A, the parameters of
the first n convolutional layers/blocks, convs11,2,...,n, of models
trained on the COUGHVID dataset, are initialised by the
corresponding layers/blocks convs01,2,...,n of models pre-trained
on FluSense dataset. The parameters of convs11,2,...,n are frozen
and not trained, and only the remaining randomly initialised
parameters of convs1n+1,n+2,...,N and FCCOUGHVID are updated
during the training procedure.

2.2. Incorporating Embeddings
The embeddings generated by the convolutional layers carry
either low-level edge information or high-level discrimination-
related features (22, 23). Moreover, the performance of
embeddings appears to be highly scalable with the amount
of training data (33). In this study, the pre-trained FluSense
models produce embeddings representing high-level or low-level
characteristics of various audio types, which can be applied as an
additional input to help develop the target model.

Specifically, we feed the crowd-sourced cough recordings
from the COUGHVID into the pre-trained Flusnese model and
extract the embeddings after certain convolutional layers/blocks.
Figure 2B exhibits this strategy. Data-point (x1, y1) enters the
pre-trained FluSense model, and the output embeddings of
the n-th convolutional layer/block convs0n are extracted to
be concatenated (on the channel dimension) or added with
the embeddings generated by the corresponding convs1n. The
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FIGURE 2 | The proposed transfer learning framework :CovNet. (A) Parameters of the first n convolutional layers/blocks (convs1) of the current COUGHVID model are

frozen and initialised by the corresponding first n convolutional layers/blocks (convs0) of the pre-trained FluSense model. (B) Embeddings are extracted after the n-th

convs0 of the pre-trained FluSense model. The extracted embeddings are concatenated or added to the current embeddings generated after the n-th convs1 of the

COUGHVID model.

concatenated or added embeddings enter the next convolutional
layer/block convs1n+1 for the task of COVID-19 detection.

3. AUTOMATIC COVID-19 DETECTION

Convolutional neural networks have been successfully applied
in image-related areas, such as image classification (34–37).
When processing audio signals, CNNs have demonstrated their
capabilities in extracting effective representations from the log
Mel spectrograms (38, 39). In this study, we choose four typical
CNN models: base CNN (34), VGG (40), residual network
(ResNet) (41), and MobileNet (42). We focus on the proposed
transfer learning framework, CovNet, instead of competing with
the state-of-the-art models on COVID-19 detection. Therefore,
in order to highlight the effectiveness of CovNet, we construct
four simple CNN models (i.e., CNN-4, VGG-7, ResNet-6, and
MobileNet-6), each of which only has three convolutional
layers/blocks. A detailed description of each model is given and
analysed in the following subsections.

The log Mel spectrograms are calculated by Mel filter banks
and logarithmic operation worked on the spectrograms, which
are produced by the Short-Time Fourier Transforms (STFTs)
on the original waveforms. In this section, to better evaluate
the effectiveness of the proposed transfer learning framework
and compare the performance differences among different
CNN architectures, four CNNs are employed to deal with the
extracted log Mel spectrograms: CNN-4, VGG-7, ResNet-6, and
MobileNet-6. Log Mel spectrograms (T,F) are extracted from the
audio signals as the input to the CNNs, where T represents the

sequence length, and F denotes the log Mel frequency. Before
entering the final FC layer, the matrix has the dimension (CN ,N),
where CN is the output channel number of the last convolutional
layer, and N is the class number. Specifically, for the FluSense
database, N is set to be 9; for the other datasets used in this
study, N equals 2. For comparison convenience, we regard the
convolutional layers and blocks equally when ordering them in a
specific model. In this notation, ResNet-6 and MobileNet-6 have
“block2” following the first convolutional layer.

3.1. CNN-4
As shown Figure 3A, we propose a simple 4-layer CNN, CNN-
4, constructed by three 5 × 5 convolutional layers. To speed up
and stabilise the training procedure, each convolutional layer is
followed by batch normalisation (43) and the Rectified Linear
Unit (ReLU) activation function (44). Afterwards, we apply max
pooling for downsampling. The first three local max pooling
operations are conducted over a 2 × 2 kernel, and the last max
pooling is a global one to summarise the features along the
dimension of the sequence length and frequency. Before the final
FC layer for the final predicted result, a dropout (45) layer is
utilised to address the overfitting issue.

3.2. VGG-7
Very deep CNN, known as VGG, were originally designed with
up to 19 weight layers and achieved great performance on the
large-scale image classification task (40, 46). VGG or VGG-
like architectures were applied to extract audio features from
respiratory sound data for COVID-19 detection and obtained
good performances (15, 47).

Frontiers in Digital Health | www.frontiersin.org 4 January 2022 | Volume 3 | Article 799067

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Chang et al. CovNet

FIGURE 3 | Models’ architecture: (A) Convolutional neural network-4 (CNN-4), (B) VGG-7, (C) residual network-6 (ResNet-6), (D) MobileNet-6. “conv” stands for the

convolutional layer, and “block” indicates the convolutional block. The number before the “conv” is the kernel size; the number after the “conv” is the output channel

number. The number after “FC” is the input neurons’ size.

As indicated in Figure 3B, we adapt the VGG (40) with 7
layers, VGG-7, which is composed of three convolutional blocks
and a final FC layer. Although the VGG-7 is simple, different
from its original “deep” design, it is still worthwhile to include
it for fair comparison with other CNNs in this study. Each
block contains two 3 × 3 convolutional layers, each of which is
followed by batch normalisation (43) and the ReLU function (44)
to stabilise and speed up the training process. Afterwards, a local
max pooling layer with a kernel size of 2×2 is applied. Following
the three blocks, there is also a global max pooling layer working
on the sequence length and logMel frequency dimensions. Before
the FC layer, a dropout (45) layer is applied.

3.3. ResNet-6
TheDeep ResNet is proposed to address the degradation problem
existing in training deeper networks (41) by incorporating
shortcut connections between convolutional layers. In Hershey
et al.’s (48) study,ResNet has outperformed other CNNs for audio
classification on the Audio Set (49). A ResNet based model is
constructed for COVID-19 detection from breath and cough
audio signals (50).

In this study, we mainly adopt the above mentioned
shortcut connections to construct a 6-layer ResNet, ResNet-6. In

Figure 3C, after the first convolutional layer with a kernel size
of 7 × 7 followed by batch normalisation (43) and the ReLU
function (44), we apply two convolutional blocks, each of which
contains the “shortcut connections” to add the identity mapping
with the outputs of two stacked 3× 3 convolutional layers.

Inside “block2” and “block3,” after the first 3×3 convolutional
layer, the batch normalisation (43) and ReLU function (44) are
applied, whereas only the batch normalisation is utilised after
the second 3 × 3 convolutional layer. For the channel number
consistency, the identity is processed by a 1 × 1 convolutional
layer followed by batch normalisation (43); after the addition of
the identity and the output of two stacked convolutional layers,
we apply the ReLU function (44). The max pooling after the 7×7
convolutional layer is a local one with a kernel size of 3×3 and the
max pooling layers in “block2” and “block3” are also local with a
kernel size of 2×2; similarly, the last max pooling is a global one,
followed by a dropout (45) layer and the FC layer.

3.4. MobileNet-6
Based on depthwise separable convolutions, light-weight
MobileNets have been widely applied in mobile and embedded
image related applications (42, 51). MobileNets are cost-effective
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and are explored herein for potential solutions embedded in
mobile devices for COVID-19 detection.

We adapt the MobileNet with 6 layers only. As shown in
Figure 3D, after the first 3 × 3 convolutional layer followed by
batch normalisation (43) and the ReLU function (44), each of
“block2” and “block3” contains a 3 × 3 depthwise convolutional
layer and a 1 × 1 pointwise convolutional layer, respectively.
Similarly, batch normalisation (43) and ReLU function (44) are
applied after each convolutional layer. Similar to the original
MobileNet architecture, we only set one global max pooling layer
before the dropout (45) layer and the final FC layer.

4. EXPERIMENTAL RESULTS

With the aforementioned transfer learning framework, the
experiments will be presented in this section, including the
databases, experimental setup, results, and discussions.

4.1. Databases
To verify the proposed transfer learning framework in this study,
the following four datasets are employed.

4.1.1. FluSense

The FluSense (18) project applied a part of the original Audio
Set dataset (49), which includes weakly labelled 10-s audio clips
from YouTube. After the re-annotation by two human raters
for more precise labels in the FluSense (18) project, there are a
total of 45, 550 seconds samples in Audio Set that are considered
in this study, and they are labelled with the classes of breathe,
burp, cough, gasp, hiccup, other, silence, sneeze, sniffle, snore,
speech, throat-clearing, vomit, and wheeze. To mitigate the effect
of data imbalance on the classification performance, those classes
with a number of samples less than 100 are not considered in
our experiments. Therefore, the audio samples labelled with the
following nine classes are employed: breathe, cough, gasp, other,
silence, sneeze, sniffle, speech, and throat-clearing. For all audio
recordings in the above nine classes, we first re-sampled them
into 16 kHz. Second, as the audio samples have various time
lengths, we split the original samples with a length of greater than
or equal to 0.5 s into one or more 1 s segment(s). In particular, for
audio samples with a length between 0.5 and 1 s, the audio repeats
itself until a full 1 s segment is reached. For those samples with
a length greater than 1 s, after a certain number of 1 s segments
are split, the remaining signals repeat themselves until a full
segment is reached if the remaining one has a length of greater
than or equal to 0.5 s; otherwise, the remaining signals are simply
abandoned. Furthermore, we split the segments into train/val
subsets with a ratio of 0.8/0.2 in a stratified manner. The data
distribution of FluSense before and after the pre-processing is
shown in Table 1.

4.1.2. COUGHVID

The on-going crowd-sourced COUGHVID dataset (17) is
collected via a web interface5. All participants voluntarily record
and upload their cough sounds lasting for up to 10 s. In

5https://COUGHVID.epfl.ch/; retrieved 09 July 2021.

TABLE 1 | Data distribution of the FluSense data.

Original Pre-Processing

# Train Val
∑

Breathe 167 238 58 297

Cough 2,486 6,148 1,537 7,685

Gasp 337 315 79 394

Other 3,863 15,059 3,765 18,824

Silence 832 1,116 279 1,395

Sneeze 611 540 135 675

Sniffle 589 604 151 755

Speech 2,615 16,614 4,154 20,768

Throat clearing 102 118 29 147
∑

11,602 40,752 10,188 50,940

The “original” column indicates the number of audio samples; whereas the “pre-

processing” columns show the number of segments with unified length of 1 s.

TABLE 2 | Data distribution of the COUGHVID data.

# Train Test
∑

Negative 5,660 1,415 7,075

Positive 559 140 699
∑

6,219 1,555 7,774

the meantime, the COVID-19 status of each cough sample is
self-reported by each participant: healthy, symptomatic without
COVID-19 diagnosis, and COVID-19. The information of each
participant is optionally self-reported, including the geographic
location (latitude, longitude), age, gender, andwhether she/he has
other pre-existing respiratory conditions, and muscle pain/fever
symptoms. As there might be some low-quality audio samples
(e.g., noise, speech, etc.), the data collectors trained an extreme
gradient boosting (XBG) classifier on 215 audio samples (121
cough and 94 non-cough) to predict the probability of a
recording containing cough sounds. For all audio recordings, the
sampling frequency is 48 kHz.

In this study, only the classes of healthy (i.e., COVID-
19 negative) and COVID-19 (i.e., COVID-19 positive) are
considered, as the audio samples with symptomatic status were
not explicitly reported by the participants as to whether they
were diagnosed with COVID-19 or not. Furthermore, only
audio samples with cough sound probabilities greater than
0.9 are included to ensure each audio sample contains cough
sounds. Finally, 7, 774 audio samples (COVID-19 negative:
7, 075, COVID-19 positive: 699) are selected for our experiments.
Similarly, we split the selected samples into train/test subsets
with a ratio of 0.8/0.2, respectively in a stratified manner. Table 2
shows the data distribution of COUGHVID.

4.1.3. ComParE 2021 CCS

In the INTERPSEECH 2021 ComParE (19), the CCS provides a
dataset from the crowd-sourced Cambridge COVID-19 Sound
database (15). The participants are asked to provide one to three
forced coughs in each recording via one of the following multiple
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TABLE 3 | Data distribution of the Computational Paralinguistics challengE

(ComParE) COVID-19 cough sub-challenge (CCS) data.

# Train Val Test
∑

Negative 215 183 169 567

Positive 71 48 39 158
∑

286 231 208 725

TABLE 4 | DiCOVA Track-1 data distribution of each fold of cross-validation.

# Train Val
∑

Negative 772 193 965

Positive 50 25 75
∑

822 218 1040

platforms: Aweb interface, an Android app, and an iOS app.6 The
CCS dataset consists of 929 cough recordings (1.63 h) from 397
participants. The data distribution of CCS is shown inTable 3. All
recordings from the CCS dataset were resampled and converted
into 16 kHz. The official training, validation, and test sets in the
COMPARE challenge are used in this study.

4.1.4. DiCOVA 2021 Track-1

The Track-1 of the DiCOVA challenge 2021 (20) provides
cough recordings from 1, 040 participants (COVID-19 negative:
965, COVID-19 positive 75). In the challenge, the dataset was
split into five train-validation folds. Each training set consists
of 822 cough samples (COVID-19 negative: 772, COVID-
19 positive: 50), and each validation set contains 218 cough
samples (COVID-19 negative: 193, COVID-19 positive: 25). The
additional test set is not used in this study, as it is blind. All
cough recordings are sampled at 44.1 kHz. The data distribution
of DiCOVA 2021 Track-1 is indicated in Table 4.

4.2. Experimental Setup
For faster progress (38), all audio files in the four datasets are
re-sampled into 16 kHz. The log Mel spectrograms are extracted
with a sliding window size of 512, an overlap of 256 units, and 64
Mel bins.

As for the evaluation metrics, we mainly use unweighted
average recall (UAR), since it is more adequate for evaluating
the classification performance on imbalanced datasets than
accuracy,—the weighted average recall (52, 53). Apart from the
UAR, we also calculate the area under the receiver operating
characteristic curve (ROC AUC) score.

The proposed CNNs consist of three convolutional
layers/blocks. The number of output channels for the three
convolutional layers/blocks is 64, 128, and 256, respectively.
During the training procedure of the neural networks, the
cross-entropy loss is utilised as the loss function. To overcome
the class imbalance issue, we re-scale the weight parameter for
each class in the loss function. Since this study focuses on the

6https://www.covid-19-sounds.org/; retrieved 15 July 2021

transfer learning framework, we do not further mitigate the class
imbalance issue through down-/up-sampling.

For single learning (i.e., training from scratch) on the FluSense
and the COUGHVID datasets, the optimiser is set to “Adam”
with an initial learning rate of 0.001, which is scheduled to
be reduced by a factor of 0.4 when there is less than 0.01
improvement of the UAR after every 4 of 30 epochs in total.
When transferring parameters, we set the initial learning rate as
0.0001; for incorporating embeddings, the initial learning rate is
set to be 0.001.

When applying the strategy of transferring parameters
introduced in section 2.1 to training the COUGHVID model, we
experiment with only setting the following layer(s) trainable: the
FC layer, the convolutional layer/block (conv/block) 3 & FC layer,
conv/block 2 − 3 & FC layer, and conv/block 1 − 3 & FC layer,
respectively. The remaining layer(s)/block(s) are initialised based
on the pre-trained FluSense models’ corresponding parameters
and are frozen during the whole training procedure. As for the
incorporating embeddings strategy described in section 2.2, we
investigate the concatenation and addition of two embeddings
generated from the conv/block 3, conv/block 2, and conv/block
1, respectively. One embedding is from the pre-trained FluSense
model, and the other one is the COUGHVID model trained
from scratch.

To further validate the effectiveness of the CovNet, we
apply the pre-trained COUGHVID models on the COMPARE
CCS dataset and the DiCOVA Track-1 dataset. Specifically, we
train the four CNNs introduced in section 3 from scratch.
Afterwards, we choose up to two COUGHVID models with the
best performance (best AUC or best UAR) as the pre-trained
models. With the chosen pre-trained COUGHVID models and
their strategies (layer(s)/block(s) number and transfer learning
strategies), we transfer the parameters or embeddings of the
above chosen COUGHVID models to the current train-from-
scratch models on the COMPARE and DiCOVA datasets during
the training. Finally, we choose the best results to compete
with official baselines: the average validation AUC 68.81% (20)
for the DiCOVA Track-1 dataset, and test UAR without fusion
64.7% (19) for COMPARE CCS. Similarly, when training models
from scratch or applying the incorporating embeddings method,
we set the initial learning rate as 0.001, whereas if the transferring
parameters are utilised, the initial learning rate is set as 0.0001.

4.3. Results
In Table 5, we focus on performance differences on the
COUGHVID test dataset between single learning (training from
scratch) models and the models produced by the proposed
transfer learning strategies in section 2. For convenience, the
best test AUC and test UAR of every model under three transfer
learning strategies are shown in bold face. We can see that
there are some improvements in test AUC/UAR, especially for
the VGG-7 and MobileNet-6. In the following analysis, we
compare the absolute difference between performances. On the
COUGHVID test dataset, with the transfer learning, the VGG-7
obtains an improvement of 2.62% AUC (p < 0.1 in a one-tailed
z-test) and an improvement of 3.75% UAR (p < 0.05 in a one-
tailed z-test); the MobileNet-6 achieves 3.77% improvement in
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TABLE 5 | Models’ performances [AUC/UAR %] on FluSense and COUGHVID test datasets.

Layers CNN-4 ResNet-6 VGG-7 MobileNet-6

Single Learning
FluSense — 93.55/65.27 93.91/64.76 93.23/63.86 91.26/58.24

COUGHVID — 66.14/59.43 68.86/60.43 65.15/56.42 64.17/54.83

Transfer Learning

Parameters

FC 58.59/53.68 61.35/57.50 54.68/54.14 56.91/53.93

conv/block 3 & FC 68.04/57.04 67.01/57.97 64.97/57.15 67.88/59.71

conv/block 2-3 & FC 69.05/60.98 67.89/59.25 64.92/59.79 67.94/58.93

conv/block 1-3 & FC 69.43/55.54 66.23/56.31 67.31/56.17 65.21/55.64

Embeddings Cat

conv/block 3 67.73/60.65 67.21/59.45 65.85/58.27 64.32/56.46

conv/block 2 67.30/57.81 66.17/55.59 65.58/52.30 67.36/52.31

conv/block 1 65.15/59.30 65.35/59.77 58.67/51.92 66.37/53.77

Embeddings Add

conv/block 3 66.76/59.30 64.27/58.88 66.08/60.17 65.94/58.24

conv/block 2 66.39/58.82 64.55/57.27 67.77/58.55 64.37/57.19

conv/block 1 65.91/57.17 64.63/58.21 63.85/58.97 64.17/56.60

Single learning indicates training from scratch and transfer learning includes “Parameters” (transferring parameters), “Embeddings Cat,” and “Embeddings Add” (incorporating

emebdddings). The Models’ performances with transfer learning are based on the COUGHVID dataset. For “Parameters,” the “Layers” column indicates the layers that are randomly

initialised and trainable during the training procedure, and the remaining layers are frozen and initialised by the pre-trained FluSense models; for “Embeddings Cat,” “Embeddings Add,”

and “Layers,” the column lists the convolutional layer/block (conv/block), after which embeddings incorporation happens. For convenience, the best test AUC and test UAR of every

model under three transfer learning strategies are shown in bold face.

AUC (p < 0.05 in a one-tailed z-test) and 4.88% improvement
in UAR (p < 0.005 in a one-tailed z-test). Moreover, for all
constructed CNN models, only setting the FC layer trainable
and freezing other layers with parameters transferred from pre-
trained FluSense models achieves almost the lowest AUC/UAR
among all transfer learning settings.

For the transferring parameters strategy, we can see that
most best test AUC/UAR cases are obtained by only setting
the convolutional layer/block (conv/block) 2 − 3 & FC layer
trainable or the conv/block 1 − 3 & FC layer trainable. With
the embeddings cat method, models’ performances are mostly
better than single learning models’ and the most best results
are achieved by concatenating the embeddings output by the
conv/block 3. With the embeddings addition method, models
also mostly outperform the single learning ones, and similarly,
most best results are obtained by adding embeddings after the
conv/block 3.

In Table 6, first, we can see that with the proposed transfer
learning strategies on the pre-trained COUGHVID models

generated by the CovNet, most of the models’ performances

improve a lot compared with the single learning models’
performance. Specifically, transferring parameters improves the

test UAR on COMPARE by 9.05% for the VGG-7 (p < 0.05
in a one-tailed z-test); the transferring parameters improves the
validation AUC on DiCOVA by 1.12, 3.86, and 5.22% for the
CNN-4, ResNet-6, and VGG-7, respectively (in a one-tailed z-
test, not significant, p < 0.05, and p < 0.005, respectively). The
incorporating embeddings improves the test UAR on COMPARE
data by 1.47, and 1.11% for the CNN-4, and VGG-7, respectively;
the incorporating embeddings improves the validation AUC
of DiCOVA by 3.62%, 8.85, 7.46, and 2.20% for the CNN-
4, ResNet-6, VGG-7, and MobileNet-6, respectively (in a one-
tailed z-test, p < 0.05, p < 0.001, p < 0.001 and not
significant, respectively).

Second, as the numbers in bold indicate better performance
than the baseline, we can see that most models learnt through
the transfer learning framework outperform the official baselines,
even though the models here are quite simple. Notably, the best
test UAR 66.43% onCOMPARECCS data is achieved by the VGG-
7 with transferring parameters, which is 1.73% above the official
baseline; the CNN-4 with incorporating embeddings the achieves
the best validation AUC 72.38% on the DiCOVA Track-1, which
is 3.57% higher than the baseline (p < 0.05 in a one-tailed z-test).
Figure 4 displays the confusion matrices for above-mentioned
best UAR on the COMPARE CCS dataset and best validation AUC
on the DiCOVA Track-1 dataset. We can see that the models
recognise negative samples very well, but the positive ones are
frequently confused with the negative ones.

4.4. Discussion
In Table 5, if comparing the performance of single learning
CNNs and transfer learning CNNs, we find that there is
no improvement or even slightly worse performance of
transfer learning methods on the ResNet-6 model. ResNet
gains accuracy from increased neural network depth (41),
which may explain the performance of the simple ResNet-
6 in this study. Apart from fine-tuning the parameters of
FC layers only, almost all other CNN models obtain better
performance after the transfer learning, proving the usefulness
of the knowledge transferred from the FluSense dataset for
recognising COVID-19 on the COUGHVID dataset. Setting FC
layers trainable only limits the generalisation of the pre-trained
FluSense models.

For fine-tuning parameters of different layers, fine-tuning the
weights of the convolutional layers/blocks 2 − 3 & FC layer
obtains better performance. Since the target dataset COUGHVID
is not large-scale enough compared with the FluSense one, fine-
tuning the entire network (convolutional layers/blocks 1 − 3 &
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FIGURE 4 | Confusion matrices for the best performance on the COMPARE CCS test set and the DiCOVA validation set. For the DiCOVA dataset, since its test dataset

is not accessible, the numbers are averaged over the five cross-validation folds.

TABLE 6 | Models’ performances [%], validation AUC on the DiCOVA Track-1 dataset, and test UAR on the ComParE dataset, with single learning (train from scratch),

and the proposed transfer learning strategies.

Dataset Baseline CNN-4 ResNet-6 VGG-7 MobileNet-6

Single Learning –
ComParE 64.70 63.35 61.78 57.38 63.80

DiCOVA 68.81 68.76 62.53 64.88 64.27

Transfer Learning

Parameters
ComParE – 61.24 60.01 66.43 57.22

DiCOVA – 69.88 66.39 70.10 63.29

Embeddings
ComParE – 64.82 60.67 58.49 63.37

DiCOVA – 72.38 71.38 72.34 66.47

Pre-trained COUGHVID models and their corresponding transfer learning settings are chosen based on the best performance in Table 5. “Embeddings” here include

addition/concatenation. The numbers in bold are higher than the baseline.

FC layer) might encounter an overfitting issue (23). Specifically,
earlier layers/blocks generate low-level, generic features, which
do not change significantly during the training procedure (23).
Conversely, the convolutional layer/block 3 herein generates
more high-level, domain-dependent representations. As for
the embeddings incorporation, concatenation and addition of
the embeddings achieve similar results, which indicates that
both operations equally transfer the knowledge learnt from
the FluSense dataset. Furthermore, we find that incorporating
the embeddings after the convolutional layer/block 3 mostly
outperforms the operations on other layers/blocks. This can be
caused by more discrimination power obtained by applying the
pre-trained FluSense models.

From Table 6, we further validate the generalisation ability of
the proposed CovNet with the DiCOVA Track-1 and COMPARE
CCS datasets. By competing with the official baselines, even
simple CNNs can also achieve better performance with the
proposed transfer learning methods. Therefore, the considered
CovNet appears robust and can provide useful knowledge when
detecting COVID-19 from crowd-sourced cough recordings.
However, the performance improvement over the COMPARE
CCS baseline by incorporating the embeddings method is

not obvious, which might be caused by the inherent data
difference between the FluSense and COUGHVID datasets
and the COMPARE CCS dataset. Moreover, the CovNet works
very well on the DiCOVA track-1 dataset, especially the
incorporating embeddings. Perhaps, the embeddings from
the pre-trained COUGHVID models carry more beneficial
knowledge compared with parameters of convolutional layers on
the DiCOVA dataset.

The main purpose of this study is to introduce and prove the
usefulness of the transfer learning framework CovNet, instead of
competing with the state-of-the-art performance on the DiCOVA
Track-1 dataset (54–56) and COMPARE CCS dataset (19). The
constructed four CNN models are so simple that each of them
only contains three convolutional layers/blocks; we do not apply
any data augmentation techniques and the only input to the
networks are the original log Mel spectrograms.

5. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a transfer learning framework,
CovNet, containing transferring parameters and incorporating
embeddings. Transferring parameters indicate fine-tuning the
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models by initialising and freezing some parameters with the pre-
trainedmodel; incorporating embeddings describe concatenating
or adding the embeddings generated by a pre-trained model with
the embeddings produced by the current model.

The effectiveness and generalisation ability of the proposed
transfer learning framework was demonstrated when developing
simple CNNs for COVID-19 detection from crowd-sourced
cough sounds. In the future, one should consider deeper neural
networks to further improve performance through transfer
learning. Moreover, other knowledge transfer architectures, such
as multi-task learning (57) and domain adaption (58) can
be explored.
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