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Abstract

Giardia duodenalis, the causative agent of giardiasis, is among the most important causes

of waterborne diarrheal diseases around the world. Giardia infection may persist over

extended periods with intestinal inflammation, although minimal. Cyclooxygenase (COX)-2

is well known as an important inducer of inflammatory response, while the role it played in

noninvasive Giardia infection remains elusive. Here we investigated the regulatory function

of COX-2 in Giardia-induced pro-inflammatory response and defense-related nitric oxide

(NO) generation in macrophage-like cell line, and identified the potential regulators. We ini-

tially found that Giardia challenge induced up-regulation of IL-1β, IL-6, TNF-α, prostaglandin

(PG) E2, and COX-2 in macrophages, and pretreatment of the cells with COX-2 inhibitor

NS398 reduced expressions of those pro-inflammatory factors. It was also observed that

COX-2 inhibition could attenuate the up-regulated NO release and inducible NO synthase

(iNOS) expression induced by Giardia. We further confirmed that Giardia-induced COX-2

up-regulation was mediated by the phosphorylation of p38 and ERK1/2 MAPKs and NF-κB.

In addition, inhibition of reactive oxygen species (ROS) by NAC was shown to repress Giar-

dia-induced activation of MAPK/NF-κB signaling, up-regulation of COX-2 and iNOS,

increased levels of PGE2 and NO release, and up-expressions of IL-1β, IL-6, and TNF-α.

Collectively, in this study, we revealed a critical role of COX-2 in modulating pro-inflamma-

tory response and defense-related NO production in Giardia-macrophage interactions, and

this process was evident to be controlled by ROS-dependent activation of MAPK/NF-κB sig-

naling. The results can deepen our knowledge of anti-Giardia inflammatory response and

host defense mechanisms.
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Author summary

During microbial infections, COX-2 has been well documented as a pro-inflammatory

factor, while little is known about its regulatory function and mechanism. Here we

described a novel role of COX-2 in regulating Giardia-induced pro-inflammatory

response and defense-related NO enhancement, and this process was confirmed to be

associated with ROS-dependent MAPK/NF-κB activation. The findings provide invalu-

able insights into the mechanisms underlying anti-Giardia host inflammatory responses,

however, more research efforts should be directed to clarify why Giardia infection only

induces mild inflammation in the small intestine of the host, so as to fully understand the

pathogenesis of giardiasis. Anyway, in combination with the anti-apoptotic role of COX-2

in enterocytes during Giardia infection as noted recently, we could infer that COX-2

might have clinical implications for giardiasis treatment.

Introduction

Giardia duodenalis is one of the most common gastrointestinal parasites on a global scale [1],

which causes an estimated 280 million cases of human infections per year [2]. The parasite

also infects a broad variety of nonhuman mammals and birds and is of zoonotic concern, pos-

ing a significant threat to public health [3,4]. The life cycle of Giardia includes two stages: the

disease-causing vegetative form, trophozoite, and the environmentally resistant and infective

form, cyst [5]. Giardia proliferates in the small intestine and establishes an extracellular infec-

tion [6]. The majority of Giardia infections resolve spontaneously as a result of an effective

host response, but some lead to chronic disease that typically manifests as diarrhea, abdominal

pain, flatulence, weight loss, intestinal lesions, and malabsorption syndrome [2,5]. Failures in

the treatment of giardiasis are becoming increasingly common and there seems to be an asso-

ciation between Giardia infection and development of irritable bowel syndrome or food aller-

gies even after resolution [2]. The progression of giardiasis involves complex interactions

between Giardia and the host, and current knowledge about its pathogenesis is very limited

[5–7].

Infection of pathogenic microorganisms or tissue damage activates innate immune system,

which recruits granulocytes including macrophages to clear microbial pathogens and injured

tissue, releases inflammatory mediators such as pro-inflammatory cytokines TNF-α, IL-1β,

and IL-6, reactive oxygen species (ROS), nitric oxide (NO), prostaglandins (PGs), and inflam-

matory enzymes including inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, and

arouses cellular inflammatory response to pathogens or tissue damage [8–10]. Macrophages

are well known as effector cells in human and animal Giardia infections, which can engulf tro-

phozoites both in vitro and during infection [5,11]. TNF-α and IL-6 have been reported to be

essential for effective clearance of Giardia [12–15]. There is also a significant pyroptosis-

related IL-1β and IL-18 increase induced by Giardia as described recently [16]. ROS contrib-

utes to a key mechanism in which phagocytic cells induce inflammation or clear pathogens

[17], and it has also been recognized as an important player in Giardia-induced intestinal epi-

thelial cell (IEC) apoptosis [1,18]. It is noteworthy that Giardia-infected individuals exhibit

increased levels of NO concentration in serum [19], which might be attributed to the enhanced

NO release from immune cells, possibly macrophages. Additionally, NO exhibits significant

inhibition effects on Giardia trophozoite growth and excystation process in vitro [20]. There

are two main COX isoforms, COX-1 and COX-2, encoded by different genes [21]. COX-1 is
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constitutively expressed in most tissues and appears to be responsible for the production of

PGs that mediate normal physiologic functions [21]. By contrast, inducible COX-2 is

expressed in most immune cells, notably macrophages, and generally considered as an impor-

tant inducer of inflammation through converting arachidonic acid into pro-inflammatory

PGs, majorly PGE2, and inducing generation of other pro-inflammatory chemokines and

cytokines [21]. In spite of the common inflammation-inducing function of COX-2, it remains

to be investigated whether COX-2 can act as an effective modulator affecting the levels of pro-

inflammatory cytokines and NO that are necessary for Giardia clearance, and if this occurs,

the potential upstream controllers for COX-2 regulation are also worthy of being explored,

such as MAPK, NF-κB, and ROS signaling.

MAPK pathways are critical for regulating expressions of COX-2, pro-inflammatory cyto-

kines, and iNOS, and play a role in initiating and sustaining inflammatory response and pro-

viding defense against certain pathogens [22,23]. The inflammatory response mediated by NF-

κB signaling is essential for host defense against pathogens [24]. During parasitic infections,

NF-κB activation was known to influence the relationship between host and pathogens

through regulating innate immunity and inflammation [25]. NF-κB activity was proved to be

involved in the regulation of COX-2 and iNOS expression [26,27]. However, in the context of

Giardia infection, nothing is known about the involvement of MAPK/NF-κB signaling in reg-

ulation of COX-2 expression and potential COX-2-mediated pro-inflammatory cytokine and

NO production in macrophages. In addition to the regular role of ROS as described earlier, it

is also able to operate as both a signaling molecule and a mediator of inflammation [17]. It has

been reported that ROS-dependent activation of MAPK/NF-κB signaling provides contribu-

tions to Propionibacterium acnes-induced COX-2/PGE2 and iNOS/NO in macrophages [28].

Thus, it is also worth studying the correlation of ROS signaling with MAPK/NF-κB activation,

as well as its influence on the potential COX-2-mediated anti-Giardia host defense responses

in macrophages.

To date, the regulators in inflammatory response of macrophages to Giardia infection are

still largely unknown. The objective of this study is to analyze the potential function of COX-2

in mediating Giardia duodenalis-induced pro-inflammatory response and defense-related NO

production in macrophage-like cell line, and to determine if this process is regulated by ROS-

dependent MAPK/NF-κB signaling.

Methods

Cell culture

The macrophage J774A.1 and RAW264.7 cell lines [29] used to interact with Giardia tropho-

zoites in this study were purchased from the Cell Bank of the Chinese Academy of Sciences

(Shanghai, China). J774A.1 and RAW264.7 cells were cultured in high-glucose DMEM

(Hyclone, Logan, USA) containing 10% heat-inactivated FBS (Cellmax, Beijing, China) and

maintained in a 37˚C humidified incubator with 5% CO2. Cell lines were passaged using

0.25% trypsin (Beyotime, Shanghai, China) on reaching nearly 80% confluency. Cells from

passages 3–6 were used.

Parasite culture

G. duodenalis WB strain genotyped as assemblage A was used in this study (ATCC 30957,

Manassas, USA). Trophozoites were axenically cultivated at 37˚C in 15 mL conical tubes in

modified TYI-S-33 culture medium containing 10% FBS and 0.1% bovine bile supplemented

with 0.1% gentamycin and 1% penicillin/streptomycin [30]. Parasite cultures were harvested

by chilling on ice for 15 min. Detached trophozoites were centrifuged, washed with PBS,
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resuspended in cell culture medium, counted using a hematocytometer, and used to interact

with macrophages at a ratio of 10 parasites/cell. In time-course experiments, trophozoites were

added at different time points and cells harvested together.

qPCR analysis

Cells were seeded in 12-well plates (5 × 105 cells/well), incubated for 12 h, exposed to Giardia
for the indicated time periods, and washed with ice-cold PBS to remove parasites. Total RNA

was isolated using Trizol reagent (Invitrogen, Carlsbad, USA). cDNA was synthesized from

the total RNA (~1 g) by reverse transcription using a HiScript II 1st Strand cDNA Synthesis

Kit (Vazyme, Nanjing, China). Primers used for qPCR (S1 Table) were designed using NCBI

primer BLAST tool and synthesized by SangonBiotech (Shanghai, China). qPCR was per-

formed using a SYBR-Green PCR Master Mix Kit (Vazyme, Nanjing, China) on a LC480

Lightcycler system (Roche, Indianapolis, USA). The expression of target genes relative to the

housekeeping gene, β-actin, was analyzed according to the 2-ΔΔCt method.

Western blot analysis

Cells were seeded in 6-well plates (1 × 106 cells/well), incubated for 12 h, exposed to Giardia
for the indicated time periods, and washed with ice-cold PBS to remove parasites. Total cellu-

lar proteins were extracted from each group of cells using RIPA lysis buffer (Beyotime, Shang-

hai, China) containing protease inhibitor (1% PMSF; Beyotime, Shanghai, China). Protein

concentration was determined by an enhanced BCA Protein Assay Kit (Beyotime, Shanghai,

China). Protein expression levels were measured by western blot analysis. In brief, proteins

were separated by 12% SDS-PAGE and electro-transferred to PVDF membranes. Membranes

were blocked with 5% skim milk in PBST for 2 h at room temperature (RT), followed by over-

night exposure to primary antibodies against IL-1β (1:500 dilution in PBST), IL-6 (1:500),

TNF-α (1:500), β-actin (1:1000), COX-2 (1:500), iNOS (1:500), p38 (1:1000), p-p38 (1:1000),

ERK1/2 (1:1000), p-ERK1/2 (1:1000), NF-κB (1:1000), and p-NF-κB (1:1000) at 4˚C. Primary

antibodies were acquired from two main commercial sources (ABclonal, Wuhan, China;

Bioss, Beijing, China). Membranes were washed three times in PBST and probed with HRP-

conjugated secondary antibody (1,5000; ABMART, Shanghai, China) for 1 h at RT. Images

were obtained with a GeneGnome XRQ chemiluminescence imaging system (Syngene, Cam-

bridge, UK) and the intensity of the detected bands quantified with the NIH Image J software.

PGE2 measurement

Cells were cultured in 6-well plates (1 × 106 cells/well), incubated for 12 h, and exposed to

Giardia for the indicated time periods. PGE2 concentration in the culture supernatants was

detected by a mouse PGE2 ELISA Kit (CUSABIO, Wuhan, China) according to the manufac-

turer’s instructions. The optical density of each well was measured using a microplate reader at

450 nm wavelength within 10 min.

Protein inhibition

COX-2 inhibitor NS398 (50 μM, final concentration), p38 inhibitor SB202190 (10 μM), ERK1/

2 inhibitor SCH772984 (10 μM), and NF-κB inhibitor JSH-23 (50 μM) (Selleckchem, Houston,

USA), as well as ROS inhibitor NAC (10 μM; APEXBIO, Houston, USA) were used to inhibit

target proteins in this study. All inhibitors were applied 1 h prior to Giardia exposure.
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NO measurement

Cells were seeded in 96-well plates (1 × 104 cells/well), cultured for 12 h, and exposed to Giar-
dia for the indicated time periods. NO production represented by nitrite concentration in

supernatants of cultured macrophages was assayed with Griess reaction using a NO Assay Kit

(Beyotime, Shanghai, China). The absorbance was measured at the wavelength of 540 nm.

ROS measurement

Cells were seeded in 24-well plates at a density of 1 × 105 per well. After 12 h incubation, cells

were exposed to Giardia for the indicated time periods and washed with ice-cold PBS to

remove parasites. The intracellular ROS levels were measured using an oxidation-sensitive

fluorescent probe DCFH-DA Kit, and Rosup was included as a positive control (Beyotime,

Shanghai, China). The DCF fluorescence intensity in cells was measured using a Lionheart FX

Automated Microscope (BioTek, Winooski, USA). Intracellular ROS levels were also detected

by flow cytometry on a BD FACS Canto II (BD Biosciences, San Jose, USA). Data were ana-

lyzed using the BD FACSDiva software program (BD Pharmingen, San Diego, USA), and then

processed using the Flowjo software (Tree Star, Ashland, USA).

Immunofluorescence assays

Cells in 24-well plates (1 × 105 cells/well) were challenged with parasites for the indicated time

periods, washed with ice-cold PBS to remove parasites, fixed with 4% paraformaldehyde in

PBS for 30 min at RT, and permeabilized with 0.25% Triton-X 100 in PBS for 10 min at RT.

Nonspecific binding sites were blocked by incubation in 1% BSA in PBS for 1 h at RT. Cells

were incubated with anti-NF-κB antibody (dilution 1:200) with 1% BSA in PBST overnight at

4˚C, and then FITC-AffiniPure Goat Anti-Rabbit IgG (H + L) (dilution 1:200; Jackson, West

Grove, USA) at 37˚C for 1 h in the dark. Cell nucleus was stained by DAPI (2 μg/mL; Alpha-

bio, Tianjin, China). Fluorescence images were captured and analyzed using a Lionheart FX

Automated Microscope.

Statistical analysis

Statistical analyses were performed using the GraphPad Prism 7.0 program. Data from tripli-

cate wells from a representative of at least three independent experiments are presented as

means ± standard deviation (SD). The statistical significance of the differences was evaluated

by the use of Student’s t-test in comparison of two groups or one-way ANOVA in comparison

of three or more groups. p-values less than 0.05 were considered to be statistically significant (�

p< 0.05, �� p< 0.01).

Results

Giardia induced pro-inflammatory cytokine expression

We performed qPCR and western blot analyses to assess the effects of Giardia challenge on the

induction of pro-inflammatory cytokine expression in macrophages. The levels of mRNA

transcription and protein expression of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-

α were markedly increased in all Giardia-exposed groups compared with the controls

(p< 0.01, Fig 1). The mRNA levels of these cytokines in RAW264.7 cells increased more obvi-

ously than those in J774A.1 cells and peaked at different time points between the two cell types

(Fig 1A to 1C). The change trends of protein levels of IL-1β and TNF-α at different time points

were similar between J774A.1 and RAW264.7, while this is not the case for IL-6 (Fig 1D). In

addition, we often observed large fold differences in mRNA levels with much more minor
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effects on protein levels (Fig 1). Taken together, the data implied that Giardia exposure exerted

a pro-inflammatory effect on different macrophage-like cell lines.

COX-2 regulated pro-inflammatory cytokine expression

COX-2 has been studied generally as an inflammatory inducer [31], the role it played in regu-

lating inflammatory responses to microbial infections is still largely not understood. In the

present study, we initially assessed if Giardia challenge could induce PGE2 production and

COX-2 expression. Released PGE2 was detected by enzyme immunoassay, and COX-2 expres-

sion levels were analyzed by qPCR and western blotting. The results exhibited that Giardia
triggered a significant time-dependent increase in PGE2 production in J774A.1 cells (p< 0.01,

Fig 2A). Significant up-regulation of COX-2 expression was observed at both mRNA and pro-

tein levels in J774A.1 and RAW264.7 cells exposed to Giardia as early as 3 h after exposure,

and in both cell types, maximal expression was observed almost at 9 h post-exposure (p< 0.01,

Fig 2B and 2C). We further evaluated the role of COX-2 in regulating macrophage pro-inflam-

matory response during Giardia infection by the use of COX-2 inhibitor NS398. As expected,

COX-2 inhibition significantly attenuated the up-regulated production of PGE2 in J774A.1

cells (p< 0.01, Fig 2D) and the elevated mRNA and protein expression levels of IL-1β, IL-6,

and TNF-α in both cell types (p< 0.01, Fig 2E–2H) induced by Giardia. The data implied that

Fig 1. Giardia induced pro-inflammatory cytokine expression. (A-D) Upon Giardia trophozoite exposure for the indicated time periods, the mRNA and

protein levels of IL-1β, IL-6, and TNF-α in J774A.1 and RAW264.7 cells were measured by qPCR, western blot, and gray value analyses. All results were

normalized against the level of β-actin. Data from triplicate wells from a representative of at least three independent experiments are presented as means ± SD.
�� p< 0.01.

https://doi.org/10.1371/journal.pntd.0010402.g001
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Fig 2. COX-2 regulated pro-inflammatory cytokine expression. Unless otherwise specified, J774A.1 and RAW264.7 cells were challenged with Giardia
trophozoites for the indicated time periods. (A) Giardia exposure induced PGE2 level changes as examined by enzyme immunoassay. (B,C) Upon Giardia
challenge, the mRNA and protein levels of COX-2 were measured by qPCR, western blot, and gray value analyses. (D) COX-2 inhibition by its inhibitor NS398

affected Giardia-induced PGE2 enhancement as assessed by enzyme immunoassay. (E-G) COX-2 inhibition affected Giardia-induced changes of IL-1β, IL-6,

and TNF-α mRNA levels. (H) At 9 h after Giardia challenge, COX-2 inhibition affected the up-regulated protein levels of IL-1β, IL-6, and TNF-α as assessed by

western blot and gray value analyses. The results of qPCR and western blot analyses were normalized against the level of β-actin. Data from triplicate wells from

a representative of at least three independent experiments are presented as means ± SD. � p< 0.05, �� p< 0.01. “GiTr” reads Giardia trophozoite.

https://doi.org/10.1371/journal.pntd.0010402.g002
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COX-2 could be an important inflammatory regulator in macrophages during Giardia
infection.

COX-2 regulated NO production and iNOS expression

NO expression by iNOS is a vital host defense mechanism against Giardia infection [5], thus it

is quite interesting to identify its upstream regulator. In this study, NO release was measured

by means of the Griess reaction, which was significantly increased following exposure of

J774A.1 and RAW264.7 cells to Giardia within hours, whereas COX-2 inhibition by NS398

resulted in a remarkable decrease in NO release (p< 0.01, Fig 3A). In addition, inhibition of

COX-2 activity by NS398 dramatically weakened the increased mRNA and protein levels of

iNOS in J774A.1 and RAW264.7 cells exposed to Giardia (p< 0.01, Fig 3B and 3C), support-

ing the role of COX-2 as a positive NO regulator.

MAPK/NF-κB signaling regulated COX-2 expression

Activation of MAPK/NF-κB signaling is well known to be essential for host defense against

microbial pathogens by inducing the production of pro-inflammatory cytokines [32,33], while

whether it can act as a COX-2 controller during Giardia infection is still not clear. In this

study, we initially observed the activation of MAPK (p38 and ERK1/2) and NF-κB signaling in

J774A.1 cells interacting with Giardia. The phosphorylation of p38, ERK1/2, and NF-κB was

continuously increased following exposure (p< 0.01, Fig 4A). As shown in Fig 4B, Giardia
challenge also promoted nuclear translocation of NF-κB. In addition, inhibitions of p38 with

its inhibitor SB202190, ERK1/2 with its inhibitor SCH772984, and NF-κB with its inhibitor

Fig 3. COX-2 regulated NO production and iNOS expression. Unless otherwise specified, J774A.1 and RAW264.7 cells were exposed to Giardia trophozoites

for the indicated time periods. (A) COX-2 inhibition affected Giardia-induced increase of NO release as measured with Griess reagent method. (B) COX-2

inhibition affected the up-regulated iNOS mRNA level induced by Giardia. (C) At 9 h Giardia post-exposure, COX-2 inhibition affected the up-regulated

protein level of iNOS as assessed by western blot and gray value analyses. The results of qPCR and western blot analyses were normalized against the level of β-

actin. Data from triplicate wells from a representative of at least three independent experiments are presented as means ± SD. �� p< 0.01. Giardia trophozoite

is abbreviated as “GiTr”.

https://doi.org/10.1371/journal.pntd.0010402.g003
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Fig 4. MAPK/NF-κB signaling regulated COX-2 expression. Unless otherwise specified, J774A.1 cells were challenged with Giardia
trophozoites for the indicated time periods. (A) Giardia challenge affected the phosphorylation levels of p38, ERK, and NF-κB as assessed by

western blot and gray value analyses. (B) Giardia exposure affected NF-κB nuclear translocation as assayed by indirect immunofluorescence

staining (scale bar = 100 μm). (C-H) p38 inhibition by SB202190, ERK inhibition by SCH772984, and NF-κB inhibition by JSH-23 affected

Giardia-induced up-regulation of COX-2. (C,E,G) p38, ERK, or NF-κB inhibition affected Giardia-induced up-regulated mRNA level of
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JSH-23 all significantly repressed Giardia-induced up-regulation of COX-2 expression at both

mRNA and protein levels (p< 0.05, Fig 4C to 4H), while p38 inhibition appeared to display a

minimal effect compared to ERK/NF-kB inhibition. The results implicated that MAPK/NF-κB

signaling involved regulation of COX-2 in the present context.

ROS influenced the activation of MAPK/NF-κB signaling

As measured using DCFH-DA method and observed in Fig 5A and 5B, ROS levels were obvi-

ously increased in J774A.1 cells as early as 3 h after Giardia exposure, and NAC (ROS inhibi-

tor) pretreatment could inhibit Giardia-induced ROS accumulation. In addition, ROS

inhibition by NAC markedly repressed Giardia-induced MAPK/NF-κB activation (p< 0.01,

COX-2. (D,F,H) At 9 h after Giardia challenge, p38, ERK, or NF-κB inhibition influenced the up-regulated protein level of COX-2 as

assessed by western blot and gray value analyses. The results of qPCR and western blot analyses were normalized against the level of β-actin.

Data from triplicate wells from a representative of at least three independent experiments are presented as means ± SD. � p< 0.05, ��

p< 0.01. “GiTr” reads Giardia trophozoite.

https://doi.org/10.1371/journal.pntd.0010402.g004

Fig 5. Giardia triggered ROS accumulation in J774A.1 cells. Prior to exposure to Giardia for the indicated time periods, cells were incubated with or without

ROS inhibitor NAC for 1 h. Mock groups were included. (A) ROS level was examined by fluorescence microscopy (scale bar = 1000 m). (B) ROS level was

examined by flow cytometry. Data from triplicate wells from a representative of at least three independent experiments are presented. Giardia trophozoite is

abbreviated as “GiTr”.

https://doi.org/10.1371/journal.pntd.0010402.g005
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Fig 6A), with more significant effects seen on p38 than on ERK1/2 or NF-Kb at 3 h after expo-

sure as well as on p38 or ERK1/2 than on NF-Kb at 9 h after exposure. It was also observed

that ROS inhibition could suppress Giardia-induced NF-κB nuclear translocation (Fig 6B).

The results suggested that ROS played an imperative role in regulating MAPK/NF-κB signal-

ing in Giardia-macrophage interactions.

ROS mediated regulation of COX-2, PGE2, iNOS, NO, IL-1β, IL-6, and

TNF-α
In addition to the impact of ROS on MAPK/NF-κB activation just assessed, we also examined

the potential function of ROS in modulating macrophage inflammatory mediators during

Giardia infection. It was shown that ROS inhibition by NAC remarkably suppressed the up-

regulated COX-2 and iNOS expressions and PGE2 and NO release in Giardia-exposed

J774A.1 cells (p< 0.05, Fig 7A–7C and 7E). Giardia-induced up-expression of pro-inflamma-

tory cytokines IL-1β, IL-6, and TNF-α was found to be strikingly inhibited by NAC application

(p< 0.01, Fig 7D and 7E). Interestingly, when NAC was applied, a more significant decrease

in the mRNA and protein expressions of COX-2, iNOS, IL-1β, IL-6, and TNF-α was seen at 9

h after Giardia exposure than at 3 h after exposure (Fig 7A, 7D, and 7E). Considering the ear-

lier findings, it can be inferred that ROS functioned vitally in Giardia-induced macrophage

inflammation.

Discussion

In the present study, we explored if Giardia-induced pro-inflammatory response and NO

enhancement can be modulated by COX-2, and if this process is controlled by tightly regulated

signaling networks in macrophages. The results indicated that COX-2 operated as a promising

modulator for promoting IL-1β, IL-6, and TNF-α expressions and PGE2 and NO production

in Giardia-macrophage interactions. Further investigations revealed that COX-2-mediated

anti-Giardia pro-inflammatory response and NO enhancement were under tight control of

ROS-dependent MAPK/NF-κB activation (Fig 8).

Efficient immune response achieved by continuous interplay between innate and adaptive

immunity is of major importance in controlling infection, and inflammation is an important

and necessary part of the normal host responses to pathogens [34]. Macrophages are widely

distributed innate immune cells throughout the body, which play vital roles in immunity as

early effectors, initiating inflammatory response, modulating adaptive immune response,

defending against microbial infections, and restoring tissue homeostasis after infection clear-

ance [35]. Macrophages normally cooperate with neutrophils in combating microbial infec-

tions and maintaining inflammation via producing enough pro-inflammatory cytokines like

TNF-α, IL-1β, IL-6, IL-12, IL-18, or IL-23 [36]. TNF-α and IL-6 expressions are elevated dur-

ing Giardia infection, their deficiency facilitates delayed elimination of the parasite [12–15].

Here we confirmed that macrophages up-expressed IL-1β, IL-6, and TNF-α in response to

Giardia affection. It has been noted that gut epithelial and immune cells are able to release NO

that possesses antimicrobial, immunomodulatory, and cytotoxic activities [5]. NO derived

from iNOS produces an inhibiting effect on Giardia trophozoite growth and excystation pro-

cess [20], and NO derived from neuronal NOS (nNOS) induces intestinal peristalsis to pro-

mote the process of pathogen clearance [37,38]. Competitive consumption of arginine by

Giardia declines NO release from IECs and might induce apoptosis, protecting the parasite

from being eliminated [39]. Yet, in answer to Giardia infection, macrophages expressing argi-

nase 1 and iNOS are recruited to the small intestine [40]. It is of interest to note in this study

that, unlike IECs, macrophages triggered in vitro by Giardia showed a time-dependent
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Fig 6. ROS influenced the activation of MAPK/NF-κB signaling. Prior to exposure to Giardia for the indicated time

periods, J774A.1 cells were incubated with or without ROS inhibitor NAC for 1 h. Mock groups were included. (A) ROS

inhibition affected Giardia-induced p38, ERK, or NF-κB activation as assessed by western blot and gray value analyses.

(B) ROS inhibition affected Giardia-induced NF-κB nuclear translocation as examined by indirect immunofluorescence

staining (scale bar = 100 μm). The results of western blot analysis were normalized against the level of β-actin. Data from
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increase in NO release, possibly serving as an auxiliary defense mechanism against Giardia
infection.

During microbial infections, COX-2 is studied generally as a pro-inflammatory factor,

COX-2/PGE2 has been proved to be associated with inflammasome activation and M1 polari-

zation in Salmonella Typhimurium- and Yersinia enterocolitica-infected macrophages [41]. To

the best of our knowledge, here is the first study showing Giardia-induced COX-2/PGE2

enhancement in macrophages. However, some studies have indicated that COX-2/PGE2 can

induce anti-inflammatory profiles in cells including macrophages or tissues infected by some

intracellular protozoan parasites including Toxoplasma gondii, Trypanosoma cruzi, or Leish-
mania [42–46]. The difference might be due to different modes of parasitism (extracellular ver-

sus intracellular). To date, little is known about the regulatory function and mechanism of

COX-2 during microbial infections, here we demonstrated an important role of COX-2 in reg-

ulating Giardia-induced pro-inflammatory response and defense-related NO enhancement in

macrophages.

Reflecting on our exploration, we also discovered that p38/ERK/NF-κB signaling was

activated by noninvasive Giardia and the pathways contributed to regulation of COX-2

expression in macrophages. It has been demonstrated that invasive non-typeable Haemo-
philus influenza-induced COX-2 and PGE2 up-regulation in lung epithelial cells is corre-

lated with p38/NF-κB activation [47]. Up-regulated COX-2 expression and PGE2

production in enterovirus type 71-infected human neuroblastoma cells are mediated via

activation of MAPK/NF-κB/AP-1 signaling [48]. ROS commonly functions as a cytotoxic

agent secreted from inflammatory cells to kill off invading pathogens [49]. An interesting

finding of this study is that ROS accumulated in Giardia-exposed macrophages was bio-

logically linked to activation of p38/ERK/NF-κB signaling and regulation of COX-2-medi-

ated IL-1β, IL-6, TNF-α, and NO production. In reality, recombinant Treponema
pallidum protein Tp0768 has been shown to promote generation of IL-1β, IL-6, and IL-8

by macrophages through ER stress and ROS-NF-κB pathway [50]. In addition, it was

known that ROS can be activated in J774A.1 cells, peritoneal macrophages, and IECs as

early as 3 h after Giardia exposure [16,18], and inhibition of ROS by NAC can affect mac-

rophage pyroptotic outcome after a 12-h exposure [16] and IEC apoptotic outcome after a

6-h exposure [18]. In contrast, here we demonstrated that ROS inhibition was able to

influence macrophage pro-inflammatory and defense-related responses after a 3-h or pro-

longed Giardia exposure. It is also of interest to note the function of ROS in regulating

MAPK/NF-kB/COX-2 signaling as early as 3 h after Giardia exposure here. Giardia-

secreted peptidyl-prolyl cis-trans isomerase B has been verified as a trigger for TLR4-de-

pendent ROS activation and pyroptotic cell death in macrophages [16]. Likewise, contin-

ued efforts are needed to identify the potential trigger for ROS-dependent regulation

observed here.

In conclusion, we reported a novel role of COX-2 in mediating Giardia-induced pro-

inflammatory response and defense-related NO enhancement, as well as revealed its associa-

tion with ROS-dependent activation of MAPK/NF-κB signaling. The findings reached in this

study provide well founded insights into the complex regulatory networks of anti-Giardia host

inflammatory responses. However, in reality, only minimal intestinal inflammation is trig-

gered by noninvasive Giardia infection [5], and the exact underlying mechanism remains elu-

sive and thus needs to be further elucidated.

triplicate wells from a representative of at least three independent experiments are presented as means ± SD. �� p< 0.01.

Giardia trophozoite is abbreviated as “GiTr”.

https://doi.org/10.1371/journal.pntd.0010402.g006
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Fig 7. ROS mediated regulation of COX-2, PGE2, iNOS, NO, IL-1β, IL-6, and TNF-α. Prior to exposure to Giardia for the indicated time periods, J774A.1

cells were incubated with or without ROS inhibitor NAC for 1 h. Mock groups were included. (A) ROS inhibition affected the up-regulated mRNA levels of

COX-2 and iNOS induced by Giardia. (B) ROS inhibition affected Giardia-induced PGE2 enhancement as examined by enzyme immunoassay. (C) ROS

inhibition affected the increased NO level induced by Giardia. (D) ROS inhibition influenced the up-regulated mRNA levels of IL-1β, IL-6, and TNF-α induced

by Giardia. (E) ROS inhibition affected the up-regulated protein levels of COX-2, iNOS, IL-1β, IL-6, and TNF-α induced by Giardia as assessed by western blot

and gray value analyses. The results of qPCR and western blot analyses were normalized against the level of β-actin. Data from triplicate wells from a

representative of at least three independent experiments are presented as means ± SD. � p< 0.05, �� p< 0.01. Giardia trophozoite is abbreviated as “GiTr”.

https://doi.org/10.1371/journal.pntd.0010402.g007
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