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Abstract

Artificial neural networks (ANN) are computing architectures with many interconnections of

simple neural-inspired computing elements, and have been applied to biomedical fields

such as imaging analysis and diagnosis. We have developed a new ANN framework called

Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10

TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy com-

pared to other methods, including Cox-proportional hazards regression (with LASSO, ridge,

and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also

reveals richer biological information, at both the pathway and gene levels. The outputs from

the hidden layer node provide an alternative approach for survival-sensitive dimension

reduction. In summary, we have developed a newmethod for accurate and efficient progno-

sis prediction on high throughput data, with functional biological insights. The source code is

freely available at https://github.com/lanagarmire/cox-nnet.

Author summary

The increasing application of high-througput transcriptomics data to predict patient

prognosis demands modern computational methods. With the re-gaining popularity of

artificial neural networks, we asked if a refined neural network model could be used to

predict patient survival, as an alternative to the conventional methods, such as Cox pro-

portional hazards (Cox-PH) methods with LASSO or ridge penalization. To this end, we

have developed a neural network extension of the Cox regression model, called Cox-nnet.

It is optimized for survival prediction from high throughput gene expression data, with

comparable or better performance than other conventional methods. More importantly,

Cox-nnet reveals much richer biological information, at both the pathway and gene levels,

by analyzing features represented in the hidden layer nodes in Cox-nnet. Additionally, we

propose to use hidden node features as a new approach for dimension reduction during

survival data analysis.

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1006076 April 10, 2018 1 / 18

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Ching T, Zhu X, Garmire LX (2018) Cox-

nnet: An artificial neural network method for

prognosis prediction of high-throughput omics

data. PLoS Comput Biol 14(4): e1006076. https://

doi.org/10.1371/journal.pcbi.1006076

Editor: Florian Markowetz, University of

Cambridge, UNITED KINGDOM

Received:December 16, 2016

Accepted:March 7, 2018

Published: April 10, 2018

Copyright: © 2018 Ching et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement:Data used in this

publication come from The Cancer Genome Atlas,

managed by NIH (https://cancergenome.nih.gov/).

Readers can access the TCGA RNA-Seq data by

visiting https://portal.gdc.cancer.gov/legacy-

archive/search/f, selecting “gene expression data”

and downloading using the downloading

application. The data from TCGA is detailed in the

methods section of the manuscript. Code used in

this publication is freely available at https://github.

com/lanagarmire/cox-nnet.

https://github.com/lanagarmire/cox-nnet
https://doi.org/10.1371/journal.pcbi.1006076
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006076&domain=pdf&date_stamp=2018-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006076&domain=pdf&date_stamp=2018-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006076&domain=pdf&date_stamp=2018-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006076&domain=pdf&date_stamp=2018-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006076&domain=pdf&date_stamp=2018-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006076&domain=pdf&date_stamp=2018-04-20
https://doi.org/10.1371/journal.pcbi.1006076
https://doi.org/10.1371/journal.pcbi.1006076
http://creativecommons.org/licenses/by/4.0/
https://cancergenome.nih.gov/
https://portal.gdc.cancer.gov/legacy-archive/search/f
https://portal.gdc.cancer.gov/legacy-archive/search/f
https://github.com/lanagarmire/cox-nnet
https://github.com/lanagarmire/cox-nnet


Introduction

With the wide application of genomics technologies, gene expression data of patients are often

used as inputs to predict patients’ survival. Computationally, survival prediction is usually

framed as a regression problem to model patients’ survival time (or other event time). The

most common method is the Cox-PH model, a semi-parametric proportional hazards model,

where the covariates of the models explain the relative risks of the patients, termed hazard

ratios [1]. Given the large amount of input features in gene expression data, penalization meth-

ods such as LASSO (L1 norm), ridge (L2 norm) and MCP [2] regularizations are often used to

help select representative feature in Cox-PH models. A modification of Cox-PH model is Cox-

Boost [3]. It is an iterative “gradient boosting” method, where the parameters are separated

into individual partitions. The partition that leads to the largest improvement in the penalized

partial log likelihood is selected and in subsequent iterations, the model selects another block

and refits those parameters by maximizing the penalized partial log likelihood [3]. Random

Forests Survival (RF-S) is a tree-based, non-linear, ensemble method [4], rather than a propor-

tional hazards model. For each tree in the forest, data is bootstrapped, and nodes are split by

maximizing the log-rank statistic. The cumulative hazard function (CHF) is estimated in each

tree and a patient’s CHF is calculated as an average over all the trees in the ensemble.

Besides these methods above, Artificial Neural networks (ANNs), a type of model that is

based on the idea of neurons in processing information, could be trained to predict survival as

well. Developed in 1943, ANNs were used to model non-linear behavior [5]. In an ANN, hid-

den units, termed as neurons or nodes, may be activated or deactivated, depending on the

input signals, based their own linear weight and bias parameters. The data are fed forward

through the network, and for each hidden unit these weight and bias parameters are learned

through back propagation along the gradient of the loss function. In recent years, ANNs have

caught renewed attention to solve problems in genomics field [6, 7], thanks to increased paral-

lel computing power and the promise of deep learning [8]. For example, Alipanhi et al. used

deep learning in order to better predict the bind of RNA and DNA to proteins [9]. Ciresan

et al. used convolutional neural networks to detect cell mitosis in histological breast cancer

images [10]. However, relative to these new areas, survival prediction using ANN has been lag-

ging behind.

The first ANNmodel to predict survival was done by Faraggi and Simon, who used four

clinical input parameters to model prostate cancer survival[11]. However, their simple model

was not suitable for high throughput input data, where tens of thousands of features are pres-

ent per patient. Subsequently, other authors attempted to implement ANNmethods to predict

patient survival. One study applied ANNs to high dimensional survival data by simplifying the

regression as a binary classification problem [12, 13], and another study fit continuous vari-

ables of survival time to discrete variables through binning [12, 13]. These approaches poten-

tially led to loss of accuracy in prediction. Another study used time as an additional input in

order to predict patient survival or censoring status [14], which will overfit when the survival

and censoring are correlated. Thus far, an ANNmodel based on proportional hazards to ana-

lyze high throughput data in the genomics era is lacking.

To address all the issues of ANN based predictions as mentioned earlier, we have developed

a new software package, named Cox-nnet. We use a two layer neural network: one hidden

layer and the output layer. Rather than approximating survival as a classification problem, we

used the output layer to perform Cox regression based on the activation levels of the hidden

layer. Cox-nnet also computes feature importance scores, so that the relative importance of

specific genes to prognosis outcome can be assessed. More importantly, the hidden layer node

structure in the ANN can be analyzed to reveal more useful information regarding relevant
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genes and pathways, compared to other methods in the study. A similar idea for classification

(rather than survival analysis) was recently explored in dimension reduction of single cell

RNA-Seq data, in which a set of input genes with high weights to the hidden nodes of the neu-

ral network, in single cell RNA-Seq was analyzed using GO analysis [15]. Overall, Cox-nnet is

a desirable survival analysis method with both excellent predictive power and ability to eluci-

date biological functions related to prognosis.

Results

Cox-nnet structure and optimization

The neural network model used in this paper is shown in Fig 1 and an overview of modules in

the Cox-nnet package is shown in S1 Fig. The current ANN architecture is composed of the

input, one fully connected hidden layer (143 nodes) and an output “proportional hazards”

layer. Cox-nnet performs cross-validation (CV) to find the optimal regularization parameter.

Due to the large number of parameters, overfitting is a potential problem in ANNs, particu-

larly for small datasets. Thus for regularization, we experimented with a range of regularization

methods, including ridge, dropout [16], and the combination of ridge and dropout (see details

Fig 1. An overview of the optimized Cox-nnet neural network architecture used in this study. Cox-nnet is composed of one hidden layer and an
output “Cox-regression” layer. It is optimized to work on high dimensional gene expression data. The model is trained to minimize the partial log
likelihood using back-propagation.

https://doi.org/10.1371/journal.pcbi.1006076.g001
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in Methods). We found that dropout regularization offered overall the best model (S2A and

S2B Fig). Furthermore, we compared Cox-nnet structures within no hidden layer (a standard

Cox-PH model), one hidden layer (143 nodes) and two hidden layers (143 nodes in both lay-

ers) under dropout regularization (S3 Fig). We found that a single hidden layer Cox-nnet per-

formed slightly better than those with no hidden layer (standard Cox-PH) or two hidden

layers (S3A and S3B Fig). Thus, we used the single hidden-layer Cox-nnet with dropout regu-

larization (average dropout rate = 7.75 +/- 0.042), for comparison with other survival methods

in all following analyses.

Many other functions are implemented to improve the usability of the package (S1 Fig).

Among them, the optimizers for adapting the learning rate include momentum gradient

descent [17] and Nesterov accelerated gradient [18]. A comparison of these descent methods is

shown in S4A Fig. We chose Nesterov accelerated gradient search method for this report.

Other parameterization details of Cox-nnet are described in the Methods section.

Performance comparison of survival prediction methods

We compared four methods, including Cox-nnet, Cox-PH (including Ridge, LASSO and

MCP penalizations), CoxBoost and RF-S on 10 datasets from The Cancer Genome Atlas

(TCGA). These datasets were selected for having at least 50 death events (S1 Table). For each

dataset, we trained the model on 80% of the randomly selected samples and determined the

regularization parameter using 5-fold CV on the training set. We evaluated the performance

on the remaining 20% holdout test set. We replicated this evaluation 10 times in order to assess

the average distribution of each method.

We used four accuracy metrics to evaluate the performance of the model. The first one is

C-IPCW (inverse probability of censoring weighted) [19]. This metric aims to overcome the

inaccuracy of the unweighted concordance index when censoring time is correlated with the

patient’s hazard score. The second metric is Harrell’s concordance index (C-harrel) [20],

which is an unweighted concordance index that evaluates the relative ordering of the samples,

comparing the prognostic index (i.e., log hazard ratio) of each patient with the survival times.

The third metric is the log-ranked p-value from Kaplan-Meier survival curves of two different

survival risk groups. This is done by using the median Prognosis Index (PI), the output of

Cox-nnet, to dichotomize the patients into high risk and low risk groups, similar to our earlier

reports [21, 22]. A log-ranked p-value is then computed to differentiate the Kaplan-Meier sur-

vival curves from these two groups. It is worth noticing that the dichotomization of patients

ignores the differences within each dichotomized group, thus may lead to less accuracy com-

pared to C-index and IPCWmetrics. Finally, the Integrated Brier Score (Brier) was also calcu-

lated. This score calculates the squared error between the predicted survival probability and

the actual survival of patients at each time point [22–24].

The comparison of C-IPCW among the four methods over the 10 TCGA datasets is shown

in Fig 2. Based on the C-IPCW score, Cox-nnet has better overall rankings than other methods

(Fig 2B), but the improvement over Cox-PH is lacking statistically significance in most cases

(Fig 2A). Note among the three penalization methods applied to Cox-PH, ridge penalization

has the best overall accuracy (S5 Fig), and thus Cox-PH with ridge penalization is chosen to

compare with the other methods. However, when using C-harrel (S6 Fig) and the log-rank p-

value metrics (S7 Fig), Cox-nnet had significantly improved performance compared to all

other methods. Based on the Brier score metric, Cox-nnet had significantly higher predictive

accuracy compared to RF-S (S8 Fig). Overall, the other non-linear method (RF-S), an ensem-

ble-based method consistently ranks worse than Cox-nnet and Cox-PH (Fig 2, S6, S7 and S8

Figs).
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Hidden layer nodes of Cox-nnet are surrogate prognostic features

To explore the biological relevance of the hidden nodes of Cox-nnet, we used the TCGA Kid-

ney Renal Cell Carcinoma (KIRC) dataset as an example. We first extracted the contribution

of each hidden node to the PI score for each patient (Fig 3A). The contribution was calculated

as the output value of each hidden node weighted by the corresponding coefficient at the Cox

regression output layer. As expected, the value of the hidden nodes strongly correlated to the

PI score. However, there is still significant heterogeneity among the nodes, suggesting that

individual nodes may reflect different biological processes.

Fig 2. A. Boxplot of the C-IPCW of the 10 TCGA datasets using four prognosis-predicting methods: Cox-nnet (dropout), CoxBoost, Cox-PH (ridge) and RF-S.
The data were randomly split into 80% training and 20% testing sets, and repeated 10 times. Average C-IPCWs are presented as the metric. For “overall”
condition, all 10 TCGA cancer datasets are combined as one “cancer” dataset. Sign � indicates statistical significance (p< 0.05). B. Heatmap of the performance
rank of each dataset, based on the order of the average C-IPCW scores. Ranks 1, 2, 3, and 4 indicate the descending performance of each computational method.

https://doi.org/10.1371/journal.pcbi.1006076.g002
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We hypothesize that the top (most variable) nodes may serve as surrogate features to dis-

criminate patient survival. To explore this idea, we selected the top 20 nodes with the highest

variances and presented the patients PI scores using t-SNE (Fig 3B). t-SNE is a non-linear

dimensionality reduction method that embeds high-dimensional datasets into a low dimen-

sional space (usually two or three dimensions). This method has been widely used to visualize

data with large number of features, by enhancing the separation among samples[25]. The hid-

den nodes represent a dimension reduction of the original data and they clearly discriminate

samples by their PI scores, as shown by the t-SNE plot (Fig 3B, left). As comparison, we per-

formed t-SNE using all differentially expressed genes of patients with low prognostic index

and high prognostic index (Fig 3B, right). The t-SNE plots demonstrates that the nodes in

Cox-nnet effectively capture the survival information. Therefore, the top node PI scores can be

used as features for dimension reduction in survival analysis.

Fig 3. A. Hidden node activation weighted by the corresponding Cox layer coefficients of the TCGA KIRC dataset. The columns represent individual patient scores,
ordered by their Prognostic Index. The rows represent the node activations. B. t-SNE plot of the top 20 nodes (left) and t-SNE of differentially expressed genes between
the two groups with low and high prognostic index, respecitively (right). C. Gene Set Enrichment Analysis: significantly enriched KEGG pathways of the top 20 hidden
nodes (adjusted p-value< 0.05).

https://doi.org/10.1371/journal.pcbi.1006076.g003
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Hidden layer nodes of Cox-nnet are associated with biological functions

To further explore the biological relevance of the top 20 hidden nodes, we conducted Gene

Set Enrichment Analysis (GSEA) [26] using KEGG pathways [27], as described in the Meth-

ods section. Briefly, we calculated significantly enriched pathways using Pearson’s correla-

tion between the log transformed gene expression input and the output score of each node

across all patients in the KIRC dataset (Fig 3C and S2 Table). We compared these enriched

pathways to those from GSEA of the Cox-PH (ridge) model (S3 Table), the competing

model with the second best prognosis prediction. A total of 110 (out of 187) significantly

enriched pathways (S2 Table) were identified in at least one node, including seven pathways

enriched in all 20 nodes that were not found by the Cox-PH method (Table 1). In contrast,

Cox-PH only identified 30 significantly enriched pathways using the same significance

threshold. We also used the genes values from CoxBoost and RF-S, however they did not

produce any significantly enriched pathways. Among the seven pathways enriched in all 20

nodes from Cox-nnet, the p53 signaling pathway stands out as an important biologically rel-

evant pathway (S9 Fig), since it was shown to be highly prognostic of patient survival in kid-

ney cancer [28].

Next, we estimated the predictive accuracies of the leading edge genes [27] enriched in the

GSEA from Cox-nnet vs. those enriched in Cox-PH model. Leading edge genes are those

genes in the pathway of interest that contribute positively to the enrichment score in GSEA.

We used the C-IPCW of each leading edge gene, obtained from single-variable analysis (Fig 4).

Collectively, leading edge genes from Cox-nnet have significantly higher C-IPCW scores

(p = 1.253e-05) than those from Cox-PH, suggesting that Cox-nnet has selected more informa-

tive features. In order to visualize these gene level and pathway level differences between Cox-

nnet and Cox-PH, we reconstructed a bipartite graph between leading edge genes for Cox-

nnet or feature genes (for Cox-PH) and their corresponding enriched pathways (Fig 5).

Besides the p53 pathway mentioned earlier that is specific to Cox-nnet, several other pathways,

such as insulin signaling pathway, endocytosis and adherens junction, also have many more

genes enriched in Cox-nnet. Among these genes specific to Cox-nnet, many have been previ-

ously reported to relevant to renal carcinoma development and prognosis, such as CASP9[27],

TGFBR2[30], KDR (VEGFR)[31]. These results suggest that Cox-nnet model reveals richer

biological information than Cox-PH.

Additionally, we compared the partial derivative of the hidden nodes (rather than the Cox-

nnet output), with respect to the input genes. We first calculated the gradient for each patient

and calculated the average partial derivatives and replicated the GSEA analysis as for the previ-

ous analysis. However, we found that fewer pathways are significant, and are less relevant to

cancer using this approach.

Table 1. Cox-nnet node-associated pathways. Significantly enriched pathways from common to all 20 hidden nodes
that are not found in the Cox-PH Gene Set Enrichment Analysis (Adjusted P< 0.05).

Pathway P.value P.adjusted Nodes

KEGG adherens junction 0.000 0.001 1-20

KEGG endocytosis 0.000 0.001 1-20

KEGG insulin signaling pathway 0.000 0.001 1-20

KEGG lysine degradation 0.000 0.003 1-20

KEGG p53 signaling pathway 0.000 0.003 1-20

KEGG pyruvate metabolism 0.000 0.001 1-20

KEGG sphingolipid metabolism 0.001 0.005 1-20

https://doi.org/10.1371/journal.pcbi.1006076.t001
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Evaluation of gene input relative to survival in Cox-nnet

To further examine the importance of each gene relative to the survival outcome, we calculated

the average partial derivative of the output of the model (i.e., the log hazard ratio) with respect

to each input gene value across all patients. As demonstrated by the leading edge genes in

seven common pathways of all nodes in Cox-nnet, the feature importance scores from Cox-

nnet appear to be more biologically insightful compared to the feature importance values from

the Cox-PH model (S9 Fig). For example, the feature importance for the BAI1 gene in the p53

pathway is much higher in the Cox-nnet model compared to the Cox-PH model. Correspond-

ing to our finding, the BAI gene family was found to be involved in several types of cancers

including renal cancer [32]. BAI1 acts as an inhibitor to angiogenesis and is transcriptionally

regulated by p53 [33–36]. Its expression level was significantly decreased in tumor vs. normal

kidney tissue, and was even lower in advanced stage renal carcinoma[37]. Mice kidney cancer

Fig 4. Single variable C-IPCW scores of the leading edge genes from Cox-nnet and Cox-PH. The leading edge genes are obtained using Gene-Set Enrichment
Analysis, and they are genes contributing positively to the maximum value of the pathway enrichment score[29]. Cox-nnet has significantly higher C-IPCW
scores (p = 1.253e-05).

https://doi.org/10.1371/journal.pcbi.1006076.g004
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models treated with BAI1 showed slower tumor growth and proliferation [36]. Additionally,

the MAPK1 gene (also known as ERK2), annotated in two pathways identified by Cox-nnet

(the Adherens Junction and Insulin Signaling pathway), has a much higher feature importance

score in Cox-nnet compared to Cox-PH. MAPK1 is one of the key kinases in intra-cellular

transduction, and was found constitutively activated in renal cell carcinoma [38]. Drugs inhib-

iting the MAPK cascade have been targeted for development[39]. We list the top 20 genes

from each method in S4 Table.

Discussion

We have implemented Cox-nnet, a new ANNmethod, to predict patient survival from high

throughput omics data. Cox-nnet is an alternative to the standard Cox-PH regression,

enabling automatic discovery of biological features at both the pathway and gene levels. The

hidden nodes in the Cox-nnet model have distinct activation patterns, and can serve as surro-

gate features for survival-sensitive dimension reduction. More significantly enriched KEGG

pathways that correlate with top nodes in Cox-nnet are identified, as compared to those from

Fig 5. Enriched pathway-gene bipartite network from the leading edge genes and significantly enriched pathways. Significantly enriched pathways common
to all 20 hidden nodes are labeled in green. Leading edge genes found uniquely in Cox-nnet are labeled in orange, and genes found in both Cox-nnet and Cox-PH
are labeled in blue.

https://doi.org/10.1371/journal.pcbi.1006076.g005
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the Cox-PH model, suggesting that Cox-nnet reveals more relevant biological information.

We show how a critical pathway for renal cancer development, p53 pathway is identified only

by cox-nnet but not Cox-PH model in TCGA KIRC dataset. Other pathways, including insulin

signaling pathway, endocytosis and adherens junction, have many more genes enriched by

Cox-nnet. Moreover, leading edge genes obtained from these KEGG pathways identified as

enriched by Cox-nnet (which are a fraction of the gene features considered by the model) have

collectively higher associations with survival. Enrichment analysis on the top genes from Ran-

dom Forest and CoxBoost did not produce any significant pathways. As a promising new pre-

dictive method for prognosis, the current Cox-nnet implementation has some limitations. Its

architecture is relatively simple, including one or two hidden layers and an output Cox regres-

sion layer. It is possible to incorporate other more sophisticated architecture into the model,

such as including more layers of neurons or more sophisticated hidden layers. However,

deeper ANN is not necessarily more beneficial (S3 Fig), when compared to the regularization

methods. This suggests that ANNmay overfit the small size of the genomics data tested. New

variations of neural networks, such as convolutional neural network approach or a recurrent

network approach as those reported showed good performance in processing imaging or other

types of positional data [40], and they could be used as input to a proportional hazards output

layer. Additionally, it is possible to embed a priori biological pathway information into the net-

work architecture, e.g., by connecting genes in a pathway to a common node in the next hid-

den layer of neurons [15]. In the future, we plan to further analyze how different neural

network architectures affect the performance of Cox-nnet and compare the biological insights

from the various models.

Methods

Datasets

We analyzed 10 TCGA datasets which were combined into a pan-cancer dataset. The TCGA

datasets included the following cancer types: Bladder Urothelial Carcinoma (BLCA), Breast

invasive carcinoma (BRCA), Head and Neck squamous cell carcinoma (HNSC), Kidney renal

clear cell carcinoma (KIRC), Brain Lower Grade Glioma (LGG), Liver hepatocellular carci-

noma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Ovar-

ian serous cystadenocarcinoma (OV) and Stomach adenocarcinoma (STAD). RNA-Seq

expression and clinical data were downloaded from the Broad Institute GDAC [41]. Overall

survival time and censoring information were extracted from the clinical follow-up data. Raw

count data were normalized using the DESeq2 R package [17] and then log-transformed. Data-

sets were selected from TCGA based on the following criteria:> 300 samples with both RNA-

Seq and survival data and> 50 survival events. In total, 5031 patient samples were used (see S1

Table for a patient tabulation by individual dataset).

Cox-PH, CoxBoost and Random Forest Survival (RF-S) models

Cox-nnet is an extension to the Cox-PH model. Individual hazard, an instantaneous measure

of the likelihood of an event, is estimated based on a set of features [17]. The hazard function

is:

hðtjxiÞ ¼ h
0
ðtÞ exp yi ð1Þ

yi ¼ xT
i β ð2Þ
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Where θi is the log hazard ratio for patient i. This model uses partial log-likelihood as the

cost function

plðβÞ ¼
P

CðiÞ¼1
ðθi � log

P

ti�tj
expðθjÞÞ ð3Þ

Since gene expression data have tens of thousands in initial features, penalization methods

are usually implemented along with Cox-PH. We experimented with 3 penalization methods,

namely LASSO (L1 norm), ridge (L2 norm), and mimimax concave penalty (MCP). MCP

attempts to moderate the biased large penalty for large coefficients in LASSO [17] (S5 Fig).

MCP reduces the regularization for large coefficients and plateaus at a value selected through

cross-validation. LASSO and ridge regularization were performed using the Glmnet R package

[42] and the MCP regularization was performed with the Ncvreg R package [43].

CoxBoost, is an iterative “gradient boosting” method modified from the Cox-PH model

[44]. In CoxBoost, parameters are separated into individual partitions, and the partition that

leads to the largest improvement in the penalized partial log likelihood is selected for that itera-

tion. In subsequent boosting iteration, the model selects another block and refits those param-

eters by maximizing the penalized likelihood function. In this method, the number of boosting

iterations is used as the complexity parameter in CoxBoost and optimized via cross-validation

(CV).

Random Forests Survival (RF-S) is a tree-based, non-linear, ensemble method [1], rather

than a proportional hazards model. For each tree in the forest, samples are boostrapped, and at

each node in a tree, features are boostrapped, and the node is split by selecting the feature that

maximizes the log-rank statistic. At the leaf nodes, the cumulative hazard function (CHF) is

estimated and a patient’s CHF is calculated as an average over all the trees in the ensemble.

Cox-nnet

Cox-nnet is a neural network whose output layer is a cox regression. In a Cox-nnet model, xi
in Eq (2) is replaced by the output of the hidden layer, and the linear predictor is:

yi ¼ GðWxi þ bÞ
Tβ ð4Þ

WhereW is the coefficient weight matrix between the input and hidden layer with the size

H x J, b is the bias term for each hidden node and G is the activation function (applied ele-

ment-wise on a vector).

In this manuscript, the tanh activation function is used:

G zð Þ ¼
expðzÞ � expð�zÞ

expðzÞ þ expð�zÞ
ð5Þ

Subsequently, the partial log likelihood in Eq (3) is extended by a ridge regularization term:

Costðβ;WÞ ¼ plðβ;WÞ þ lðkβk
2
þ kWk

2
Þ ð6Þ

In addition to ridge regularization, we also employ dropout regularization (2). This

approach has been shown to reduce overfitting and improve performance over other regulari-

zation schemes[45]. In dropout, a hyperparameter p is the probability of retaining nodes dur-

ing each iteration of training. I.e., the activation of each node is set to zero with probability 1-p.

The optimal parameter is determined through CV on the training set, using C-index as the

performance metric [2]. A complete description of the hyperparameters and optimization

approaches for each method is shown in S5 Table. Briefly, we used 5-fold cross-validation and

grid search to optimize parameters in Cox-nnet.
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In neural networks, because of the large amount of parameters and hyperparameters, over-

fitting is a potential problem. In Cox-nnet, we experimented with three regularization

approaches given previous guidelines: ridge, dropout and combination of ridge and dropout.

Ridge regularization is one of the most common methods to reduce overfitting, recommended

by Demuth et al. [3]. In this scheme, the L2 norm of all the weights are added to the cost func-

tion of the model, leading to a “weight decay” term in the gradient. Dropout is a recent regular-

ization method for networks, inspired by Bayesian analysis on weighted averages of different

network architectures to improve the model performance [4]. In dropout networks, each train-

ing iteration uses different network architecture; nodes are randomly deactivated from the net-

work during training based on a probability hyperparameter between 0 and 1. Instead of

entire models being reweighted, the output of each node is reweighted during evaluation. This

method was previously shown to perform better than other regularization methods, such as

ridge regularization [17]. Our results on Cox-nnet confirmed this earlier conclusion. Also sim-

ilar to a previous study, we found that additional complexity of combining dropout and ridge

regularization does not yield better performance [17].

Implementation of Cox-nnet

We implement Cox-nnet in Python with Theano package, a package for automatic differentia-

tion that is widely used for designing neural networks. Cox-nnet is trained through back prop-

agation. The partial log likelihood is usually written as two summations (one nested within the

other) conditioned on survival time and censoring status (Eq 3). Because the partial log likeli-

hood is usually written as a nested summation, one may write a program to calculate the partial

log likelihood using nested loops. However, these types of operations are very slow in Theano,

whereas matrix operations are very fast. Therefore, it is imperative to convert the usual form of

the partial log likelihood into a mathematically equivalent form using matrix multiplication.

First, we define an indicator matrix R with elements:

Rij ¼
1; ti � tj

0; ti > tj
ð7Þ

(

We also define an indicator vector C with elements given by the censoring of each patient.

An operation using R replaces the conditional sum over ti� tj, and an operation using C

replaces the conditional sum over C(i) = 1 in Eq 4. For the models trained in this manuscript,

the number of iterations was fixed at 1e4. The learning rate was initialized at 0.1, and decayed

exponentially by a factor of 0.9 if the loss did not decrease. The number of hidden nodes in the

hidden layer is chosen to be the square root of the number of input nodes, following the “pyra-

mid” rule of thumb [21]. The optimization strategy used was Nesterov accelerated gradient

[41]. For the two hidden layer neural network, we used the same number of hidden nodes as

the single hidden layer model in both the first and second hidden layers.

Many functions are implemented to make it easier to train and evaluate models for survival

analysis, including CVSearch, CVProfile, CrossValidation, and TrainCoxMlp (S1 Fig).

CVSearch, CVProfile, CrossValidation are methods that perform CV to find the optimal regu-

larization parameter. TrainCoxMlp performs optimization of coefficients on the regularized

partial log likelihood function.

The source code of cox-nnet can be found at: https://github.com/lanagarmire/cox-nnet,

and can be installed through the Python Package Index (PyPI). Documentation of package can

be found at http://garmiregroup.org/cox-nnet/docs/. An example of analyzing Cox-nnet

through R can be found at: http://garmiregroup.org/cox-nnet/docs/examples/#interfacing-

and-analysis-with-r
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Cox-nnet can be run on multiple threads or a Graphics Processing Unit (GPU), an advan-

tage of the Theano framework. We measured the running time on the KIRC dataset and re-

measured it 5 times. The computational time for Cox-nnet included model compilation time

and cross validation time to optimize dropout.

Model evaluation

To evaluate the performance of all methods, we resampled the data 10 times. In each resam-

pling iteration, we trained each model on 80% of the samples for each dataset (chosen ran-

domly) and evaluated the performance on the 20% holdout test set. The output of Cox-PH,

Cox-nnet and CoxBoost are the log hazard ratios (i.e., Prognosis Index, or PI) for each patient.

The hazard ratio describes the relative risk of a patient compared to a non-parametric baseline.

In contrast, the output of RF-S is an estimation of the survival time for each patient. We use C-

index, IPCW [17], log-ranked p-value and Brier score to measure the accuracy performance of

each model. We also compare running time of each model (S4B Fig).

C-index: is a measure of how well the model prediction corresponds to the ranking of the

survival data [17]. It is calculated for censored survival data, which evaluates a value between 0

and 1, with 0.5 equivalent to a random process. The C-index can be computed as a summation

over all events in the dataset, where patients with a higher survival time and lower log hazard

ratios (and conversely patients with a lower survival time but higher log hazard ratios) are con-

sidered concordant.

C-IPCW (Inverse Probability of Censoring Weighting): it is a method that takes into

account the censoring probability in the concordance index, by weighting pairs of patients in

the calculation based on the inverse of their individual probabilities to be censored [17]. In this

manuscript, we use the Kaplan-Meier estimate of censorship.

log-ranked p-value: a PI cutoff threshold is used to dichotomize the patients in the data set

into higher and lower risk groups, similar to our earlier report [46]. A log-ranked p-value is

then computed to differentiate the Kaplan-Meier survival curves between the higher vs. lower

risk groups. In this report, we used the median log hazard ratio as the cutoff threshold.

Brier-score: the Brier-score is the mean square error of the difference between the probabil-

ity of an event and the event value (1 or 0). The integrated Brier score was used as the perfor-

mance metric, which is the Brier score averaged over the time interval of the dataset.

Running-time: Cox-nnet can be run on multiple threads or a Graphics Processing Unit

(GPU), an advantage of the Theano framework. We measured the running time on the KIRC

dataset, and re-measured it 5 times. The computational time for Cox-nnet included model

compilation time and cross validation time to optimize dropout.

Feature evaluation

For computing the importance of a feature in Cox-nnet, we use a method of partial derivatives

[19]. For each patient, we compute the partial derivatives of each linear output of the model

(e.g., the log hazard ratio) with respect to the input. The average of the partial derivatives over

each input across all patient samples is calculated as the feature score. As comparison, we also

compute the partial derivatives of each hidden layer node with respect to the inputs.

t-SNE clustering

T-distributed stochastic neighbor embedding (t-SNE) is a non-linear dimensionality reduction

method that is commonly used for visualizing high-dimensional data [20]. We selected the top

20 nodes of the Cox-nnet model with the highest variances, and clustered the patient samples

using t-SNE. To do this, we used the tsne package in R [47]. As comparison, we also plot t-
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SNE based on the top 33% and bottom 33% of patients as determined by the prognostic index.

A total of 8467 and 5805 genes were deemed significantly up and down regulated respectively

in the KIRC dataset, using DESeq2 for differential expression analysis.

Gene Set Enrichment Analysis (GSEA)

We performed GSEA on the correlation of normalized log gene expression to the node output

(for Cox-nnet) or the model output (for Cox-PH, Random Forest and CoxBoost), across all

patients in the KIRC dataset. Using the fgsea package in R [48], we calculated statistical signifi-

cance of the KEGG pathways by performing 10,000 permutations, followed by multiple

hypothesis testing with Benjamini Hochberg adjustment.

Statistical testing between model performances

To test for statistical significance between the performance of Cox-nnet and other methods,

we use the “multcomp” package in R to perform multiple linear hypothesis testing, with the

method as the factor of interest, and the iteration number (used to control the random sam-

pling seed in each 80%/20% split) as a covariate. We then perform multiple comparisons that

compare Cox-nnet with the other methods, and adjust for multiple hypothesis testing with the

Benjamini Hochberg procedure [20]. We apply this statistical approach to all performance

metrics (C-harrell, C-IPCW, log-rank, and brier score).

Simulation

overfitting in Cox-nnet may come from patient censoring. To investigate this, we ran a simula-

tion RNA-Seq dataset. We used the ssizeRNA package in R to generate simulated RNA-Seq

data counts in R [23, 24]. We generated four sub-groups of 200 patients each (a total of 800

patient samples) with 1000 genes, among which 20% of the genes are differentially expressed

for each group. The prognosis index for patients in each group was randomly generated based

on expression of 100 randomly selected genes, and the survival times were sampled based on

the Weibull survival distribution. Censoring times were chosen from the exponential distribu-

tion with rate = 0.05. We randomly generated this dataset 100 times and estimated the perfor-

mance metrics on 20% holdout test-sets. We compared C-index and IPCWmetrics with

censoring to uncensored C-index (S10 Fig). Neural network-based Cox-nnet and tree-based

Random Forest survival do not differ significantly from Cox-PH models. This may be due to

the simplification in the simulated data. For example, the simulated gene-expression does not

have common biological functions and embedded co-linearability as shown in TCGA data.

Supporting information

S1 Fig. Overview of the structure, methods and classes in the Cox-nnet package. The arrows

in the workflow point from each module to the output of that module. “Model Predictions”

and “Var. Importance Score” are the output of Cox-nnet package.

(PDF)

S2 Fig. A. Boxplot of C-IPCW of the 10 TCGA datasets among various penalization approaches

in Cox-nnet one hidden layer (ridge, drop-out and ridge combined with dropout). Cox-nnet

with Ridge and Dropout is optimized based on 5-fold cross-validation. Cox-nnet parameteriza-

tions with Ridge and Dropout are optimized based on a single validation set. Each dataset is ran-

domly split into 80% training and 20% testing sets and resampled 10 times to calculate the

average performance of each approach. B. Performance rank of each regularization approach,
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ordered by their average performance in each dataset.

(PDF)

S3 Fig. A. Boxplot of C-IPCW of the 10 TCGA datasets comparing zero, one and two hidden

layers. Each model was optimized with 5-fold cross-validation. Each dataset is randomly split

into 80% training and 20% testing sets and resampled 10 times to calculate the average perfor-

mance of each approach. B. Performance rank of each regularization approach, ordered by the

average C-IPCW scores in each dataset. �: P< 0.05.

(PDF)

S4 Fig. A: comparison of descent methods on the TCGA KIRC dataset. The change in cost

function is evaluated over 100,000 iterations for three methods: gradient descent, momentum

gradient descent and the Nesterov accelerated gradient. B: Boxplots comparing Cox-nnet

(CPU and GPU), Cox-PH, Cox-boost and Random Forest (RS-F) running time on the same

dataset.

(PDF)

S5 Fig. A. Boxplot of C-IPCW of the 10 TCGA datasets comparing Cox-PH regularization

methods (LASSO, Ridge and MCP). Each model is optimized with 5-fold cross-validation.

Each dataset is randomly split into 80% training and 20% testing sets and resampled 10 times

to calculate the average performance of each approach. B. Performance rank of each regulari-

zation approach, ordered by the average C-IPCW scores in each dataset. �: P< 0.05.

(PDF)

S6 Fig. Boxplot of the C-harrel of the 10 TCGA datasets using four prognosis-predicting

methods: Cox-nnet (dropout), CoxBoost, Cox-PH (ridge) and RF-S. The data are randomly

split into 80% training and 20% testing sets, and repeated 10 times to calculate the average C-

harrel values in each approach. �: P< 0.05.

(PDF)

S7 Fig. A. Bar plots of Log-rank p-values of the 10 TCGA datasets. The log rank p-values are

calculated first splitting the patients by median prognostic index in the testing data set, in

order to compare the survival distributions between the high and low risk groups. The data are

randomly split into 80% training and 20% testing sets, and repeated 10 times to calculate the

average log-rank p-values in each approach. �: P< 0.05. B. Kaplan-Meier plots from one exem-

plary repeat showing survival differences between the high and low risk groups. Note that due

to dichotomization, log-rank p-values vary much widely compared to other performance met-

rics.

(PDF)

S8 Fig. Boxplot of the Brier score of the 10 TCGA datasets using four prognosis-predicting

methods: Cox-nnet (dropout), CoxBoost, Cox-PH (ridge) and RF-S. The data are randomly

split into 80% training and 20% testing sets and repeated 10 times to calculate the average

Brier scores in each approach. �: P< 0.05.

(PDF)

S9 Fig. Variable importance of the common leading edge genes of enriched KEGG path-

ways.

(PDF)

S10 Fig. RNA-Seq survival simulation results showing the performance over 100 simulated

datasets comparing the C-index, IPCWmetric and the uncensored concordance.

(PDF)
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S1 Table. Tabulation of TCGA patients by individual dataset. Event = 1 indicates death.

(XLSX)

S2 Table. Significantly enriched pathways from the Cox-nnet method (P< 0.05).

(PDF)

S3 Table. Significantly enriched pathways from the Cox-PHmethod (P< 0.05).

(PDF)

S4 Table. Top 20 genes from the four survival methods compared.

(XLSX)

S5 Table. Description of hyperparameters in each method and their method of optimiza-

tion.

(XLSX)
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