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Abstract

Truncation is a well-known phenomenon that may be present in observational studies of time-to-

event data. While many methods exist to adjust for either left or right truncation, there are very 

few methods that adjust for simultaneous left and right truncation, also known as double 

truncation. We propose a Cox regression model to adjust for this double truncation using a 

weighted estimating equation approach, where the weights are estimated from the data both 

parametrically and nonparametrically, and are inversely proportional to the probability that a 

subject is observed. The resulting weighted estimators of the hazard ratio are consistent. The 

parametric weighted estimator is asymptotically normal and a consistent estimator of the 

asymptotic variance is provided. For the nonparametric weighted estimator, we apply the bootstrap 

technique to estimate the variance and confidence intervals. We demonstrate through extensive 

simulations that the proposed estimators greatly reduce the bias compared to the unweighted Cox 

regression estimator which ignores truncation. We illustrate our approach in an analysis of 

autopsy-confirmed Alzheimer’s disease patients to assess the effect of education on survival.

Keywords

Cox regression model; Missing data; Survival analysis; Truncation

1. Introduction

Accurate regression coefficient estimation in survival analysis is crucial for studying factors 

that affect disease progression. However in some survival studies the outcome of interest 

may be subject to either left or right truncation. When both left and right truncation are 

present, this is known as double truncation. For example, double truncation is inherent in 

retrospective autopsy-confirmed studies of Alzheimer’s disease (AD), where autopsy 

confirmation is the gold standard for diagnosing AD due to the inaccuracy of clinical 

diagnosis (Beach et al. 2012). The right truncation occurs because information is only 

obtained from a subject when they receive an autopsy. Subjects who survive past the end of 

the study are not diagnosed and therefore not included in the study sample, resulting in a 
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sample that is biased towards subjects with smaller survival times. Furthermore, the 

retrospective sample is also left truncated because subjects who succumb to the disease 

before they enter the study are unobserved, resulting in a sample that is biased towards 

subjects with larger survival times. A diagram showing how double truncation occurs is 

provided in Figure 1. We note that right censoring is not possible in this setting, since any 

subject who has an autopsy performed will also have a known survival time.

If the left and right truncation are not accounted for then the observed sample will be biased, 

which may lead to biased estimators of regression coefficients and hazard ratios. In this 

paper, we examine the relationship between education and survival from AD symptom onset 

in a retrospective autopsy-confirmed AD population. The default application for analysis in 

this setting is the Cox regression model (Cox 1972). However, to obtain consistent 

regression coefficient estimators, we must adjust for truncation. Regression techniques 

already exist under left truncation (Lai and Ying 1991), right truncation (Kalbfleisch and 

Lawless 1991), and length-biased data (Wang 1996). In this paper, we propose a Cox 

regression model to adjust for double truncation using a weighted estimating equation 

approach, where the hazard rate for the failure times follows that of the standard Cox 

regression model.

Although double truncation may appear in many studies in which data is only recorded for 

subjects whose event times fall in an observable time interval, the amount of literature on 

methods to handle double truncation is small. Most of the literature deals with the estimation 

of the survival distribution rather than regression. Efron and Petrosian (1999) introduced the 

nonparametric maximum likelihood estimator (NPMLE) for the survival distribution 

function under double truncation. Shen (2010a) investigated the asymptotic properties of the 

NPMLE and introduced a nonparametric estimator of the truncation distribution function. 

Shen (2010b) and Moreira and de Ũna-Álvarez (2010) introduced a semiparametric 

maximum likelihood estimator (SPMLE) for the survival distribution function under double 

truncation. Shen (2013) introduced a method for regression analysis of interval censored and 

doubly truncated data using linear transformation models, but these models only allow 

discrete covariates and the asymptotic properties of the resulting estimators are not 

established. Moreira, de Ũna-Álvarez, and Meira-Machado (2016) introduced nonparametric 

kernel regression for doubly truncated data, where a mean function conditional on a single 

covariate is estimated, rather than a hazard ratio. Furthermore, the resulting estimator is 

asymptotically biased. Since right censoring is rare under double truncation, the current 

literature assumes no censoring or interval censoring.

The concept of adjusting the Cox regression model for biased samples using a weighted 

estimating equation approach was first introduced by Binder (1992) for survey data. In this 

setting, the weights were known a priori and a biased study sample was selected directly 

from the target population (i.e. the population we wish to study). Lin (2000) proved the 

asymptotic normality of the regression coefficient estimator introduced by Binder, and 

extended the model to settings where the biased study sample is selected from a 

representative sample of the underlying target population. Pan and Schaubel (2008) 

introduced a Cox regression model with estimated weights, using logistic regression to 

estimate each subject’s probability of selection into the study. In their setting, they assumed 
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that baseline information was available from both subjects with observed and missing 

survival times. Due to truncation, we do not have any information on subjects with missing 

survival times. Therefore previous methods are unable to address the unique challenges 

present in our AD study.

There are several new contributions of this paper to the literature. We propose a Cox 

regression model using a weighted estimating equation approach to obtain a hazard ratio 

estimator under double truncation, where the weights are inversely proportional to the 

probability that a subject is not truncated. These selection probabilities are estimated both 

parametrically and nonparametrically using methods introduced by Shen (2010a, 2010b) and 

Moreira and de Ũna-Álvarez (2010). As opposed to using data from missing subjects, the 

selection probabilities here are estimated using survival and truncation times from observed 

subjects only. The parametric selection probabilities make distributional assumptions about 

the truncation times, while the nonparametric selection probabilities do not. We show that 

the proposed regression coefficient estimators are consistent, and greatly reduce the bias in 

finite samples compared to the standard Cox regression estimator which ignores double 

truncation. We prove the asymptotic normality of the regression coefficient estimator under 

parametric weights, and provide a consistent estimator of its asymptotic variance. We use the 

bootstrap technique (Efron and Tibshirani 1993) to estimate the variance and confidence 

intervals of the regression coefficient estimator under nonparametric weights.

The remainder of this paper is organized as follows. In Section 2 we introduce the weighted 

estimating equation and the proposed estimators, as well as the estimation procedure for the 

weights. The asymptotic properties of the proposed estimators are provided in Section 3. In 

Section 4 we conduct a simulation study to assess the finite sample performance of the 

proposed estimators. The proposed method is then applied to the AD data in Section 5. 

Discussion and concluding remarks are given in Section 6.

2. Proposed Parametric and Nonparametric Weighted Estimators

Throughout this paper, we refer to population random variables as random variables from 

the target population and denote them without subscripts. We refer to sampling random 
variables as random variables from the observed sample and denote them with subscripts. 

These two sets of variables may have different distributions due to double truncation, which 

is why standard methodology may be inappropriate.

Let Ti denote the observed survival times for subject i = 1, …, n ≤ N, where n is the size of 

the observed sample and N is the size of the target sample. Here we use the term target 

sample to denote a representative sample from the underlying target population. In our 

setting, this consists of all subjects that would have been included in the observed sample 

had truncation not occurred. For a given time t, define Y i(t) = 1
Ti ⩾ t

 and Ni(t) = 1
Ti ≤ t

. 

Let τ be a constant set to the end of study time. The Cox regression model assumes that for a 

given subject with p × 1 covariate vector Zi(t), the hazard function at time t is given by 

λi(t) = λ0(t)e
β0′ Zi(t), where λ0(t) is the true baseline hazard function and is unspecified. The 

true p × 1 regression coefficient vector, β0, is estimated by β̂, the solution to
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U(β) = ∑
i = 1

n ∫
0

τ
Zi(t) −

∑ j = 1
n Y j(t)e

β′Z j(t)Z j(t)

∑ j = 1
n Y j(t)e

β′Z j(t)
dNi(t) = 0, (1)

where dNi(t) = Ni(t) − Ni(t−). Since right censoring is not possible under our sampling 

scheme, we do not include it in the estimation procedures. Therefore dNi(Ti) = 1 in this 

setting, since all subjects in our study sample experience an event.

When subjects have unequal probabilities of selection, then the study sample will not be a 

representative sample of the underlying target population. To adjust for biased samples, 

Binder (1992) proposed weighting each subject in the score equation (1) by the inverse 

probability of their inclusion in the sample. The true regression coefficient β0 is then 

estimated by β̂w, the solution to the weighted score equation

Uw(β, π) = ∑
i = 1

n ∫
0

τ
wi Zi(t) −

∑ j = 1
n w jY j(t)e

β′Z j(t)Z j(t)

∑ j = 1
n w jY j(t)e

β′Z j(t)
dNi(t) = 0 . (2)

Here π = (π1, …, πn) and wi = πi
−1, where πi is the selection probability for subject i, and is 

conditional on subject specific characteristics. The method described above assumes that the 

selection probabilities πi are known a priori. When these probabilities are not known, they 

must be estimated.

In our setting, we can estimate the probability that a subject was selected in our sample (i.e. 

not truncated), conditional on their observed survival time. Thus a natural solution to adjust 

for double truncation is to use these estimated selection probabilities in (2). These selection 

probabilities are estimated using the survival and truncation times from observed subjects 

only. The estimation procedure is given in Section 2.1.

In our data example, the left truncation time is taken to be the time from AD symptom onset 

to entry into the study. The right truncation time is set to the time from AD symptom onset 

to the end of the study. Let U and V denote the left and right truncation times, respectively. 

Due to double truncation, we observe {T, U, V, Z(t)} if and only if U ≤ T ≤ V .

Conditional on Ti, subject i is observed with probability πi = P (U ≤ T ≤ V |T = Ti). Here πi 

is the probability that a subject from the target sample with survival time T = Ti is observed, 

and is called the selection bias function (Bilker and Wang 1996). For an intuition as to why 

this weighting scheme works, we consider the following. If x individuals with survival time 

Ti are observed in the sample, then by the definition of πi, there must be x/πi individuals in 

the target sample with survival time Ti. Without loss of generality, suppose x = 1, so that 

there are 1/πi individuals with survival time Ti in the target sample. Of these, (1/πi) × πi = 1 

will be observed and the other 1/πi − 1 individuals are referred to as ghosts (Turnbull 1976) 
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and are unobserved. In this case, each Ti represents 1/πi individuals from the target sample 

with survival time T = Ti. We can therefore adjust for the biased sample by weighting each 

observation in the estimating equation (1) by 1/πi.

To give another intuitive view as to how the weighting works, it can be shown that πi is 

proportional to the probability of observing a survival time Ti in the observed sample 

relative to the probability of observing a survival time Ti in the target sample. That is, πi ∝ P 
(T = Ti|U ≤ T ≤ V)/P (T = Ti). Using these selection probabilities in (2) works because 

observations with survival times which are oversampled in the observed sample relative to 

the target sample are downweighted and those which are undersampled are upweighted, 

yielding a score function consisting of survival times (and corresponding covariates) that are 

distributed according to those of the target population. We show in Web Appendix B that if 

these selection probabilities are estimated consistently and plugged into the score equation 

(2), then this score function is asymptotically equivalent to the unweighted score function 

using all observations from the target sample, and is therefore asymptotically unbiased. This 

results in the consistency of the proposed regression coefficient estimators presented below.

2.1 Estimation of selection probabilities

The methods used to estimate the selection probabilities assume that the survival and 

truncation times are independent in the observable region U ≤ T ≤ V. This independence 

assumption is needed to estimate π using the estimation procedures below. We note that 

under independence, πi is simply P (U ≤ Ti ≤ V). Situations where the independence 

assumption can be relaxed by covariate adjustment are discussed in Section 6.

Before we describe the parametric and nonparametric procedures for estimating the selection 

probabilities, we introduce additional notation and assumptions. Let f(t) and F (t) denote the 

density and cumulative distribution functions of T. Let k(u, v) and K(u, v) denote the joint 

density and cumulative distribution functions of (U, V). For any cumulative distribution 

function H, define the left endpoint of its support by aH = inf{x : H(x) > 0} and the right 

endpoint of its support by bH = inf{x : H(x) = 1}. Let HU(u) = K(u, ∞) and HV (v) = K(∞, 

v) denote the marginal cumulative distribution functions of U and V, respectively. For the 

following methods, we assume that aHU
< aF ≤ aHV

 and bHU
≤ bF < bHV

. These conditions 

are needed for identifiability of the selection probability estimators presented below 

(Woodroofe 1985, Shen 2010ab).

Letting π(t) = P (U ≤ t ≤ V), our methods rest on the assumption that π(t) > 0 for all t ∈ [aF, 

bF ]. That is, we assume all survival times have a positive probability of being observed. A 

near violation of this positivity assumption can lead to a πi that is very small and thus gives 

undue influence to the ith observation in the score equation (2). We discuss a remedy to this 

situation at the end of Section 6. We note that this positivity assumption is generally implied 

through the identifiability constraints aHU
< aF ≤ aHV

 and bHU
≤ bF < bHV

. Justification of 

these constraints and positivity assumption for our data example, and a discussion on when 

these may be violated, are given in Web Appendix D.
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2.1.1 Nonparametric estimation—We now present the nonparametric estimation of the 

selection probabilities πi. As shown in Shen (2010a, p. 837), the distribution of the observed 

survival times, F∼(t), can be written as 

F∼(t) = P(T i ≤ t) = P(T ≤ t U ≤ T ≤ V) = p−1P(T ≤ t, U ≤ T ≤ V)

= p−1∫0

t
[K(s, bHV

) − K(s, s)]F(ds)

, where p = P (U ≤ T ≤ V) is 

the probability of observing a random subject from the target sample. The last equality 

follows from the independence of T and (U, V) in the observable region U ≤ T ≤ V. In this 

case, the density of the observed survival times is given by f
∼(t) = p−1 × π(t) f (t), where 

π(t) = K(t, bHV
) − K(t, t) = P(U ≤ t ≤ V). It can also be shown that under this independence 

assumption, the joint density of the observed truncation times can be written as 

k
∼(u, v) = p−1 × φ(u, v)k(u, v), where φ(u, v) = F (v) − F (u−) = P (u ≤ T ≤ v).

Let φ = (φ1, …, φn), where φi = φ(Ui, Vi). Since k(u, v) = p × k
∼(u, v)/φ(u, v), we have that 

when φ and p are known, K(u, v) can be estimated by n−1p∑ j = 1
n

1
U j ≤ u, V j ≤ v

φ j
. Setting u 

and v to ∞, we can estimate p by n ∑ j = 1
n 1/φ j

−1
. Therefore when φ is known, we can 

estimate K(u, v) by ∑ j = 1
n 1/φ j

−1∑ j = 1
n

1
U j ≤ u, V j ≤ v

φ j
 and thus 

πi = K(T i, bHV
) − K(T i, T i) can be estimated by ∑ j = 1

n 1/φ j
−1∑ j = 1

n
1

U j ≤ Ti ≤ V j
φ j

. 

Similarly, since f (t) = p × f
∼(t)/π(t), we have that when π is known, F (t) can be estimated by 

∑ j = 1
n 1/π j

−1∑ j = 1
n

1
T j ≤ t

π j
 and thus φi = F(V i) − F(U

i−
) can be estimated by 

∑ j = 1
n 1/π j

−1∑ j = 1
n

1
Ui ≤ T j ≤ t

π j
.

Shen (2010a) proved that the NPMLE’s of φi and πi, denoted by φî and πî respectively, can 

be found using the following iterative algorithm:

Step 0) Set φ̂i
(0) = n−1∑ j = 1

n 1
Ui ≤ T j ≤ Vi

, for i = 1; …, n.

Step 1) Set π̂i
(1) = ∑ j = 1

n 1
φ̂ j

(0)

−1

∑ j = 1
n

1
Ui ≤ T j ≤ Vi

φ̂ j
(0) , for i = 1; …, n.

Step 2) Set φ̂i
(1) = ∑ j = 1

n 1
π̂ j

(1)

−1

∑ j = 1
n

1
Ui ≤ T j ≤ Vi

π̂ j
(1) , for i = 1; …, n.
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Step 3) For a prespecified error e, repeat steps 1 and 2 until ∑i = 1
n π̂i

(s) − π̂i
(s − 1) < e.

The NPMLE of π is given by π̂np = π̂1
(s), …, π̂n

(s) , with estimated weights wnp = 1/π̂np. The 

corresponding estimator of β0 is denoted by β̂wnp
, the solution to Uw(β, π̂np) = 0.

Because we do not need estimates of the survival and truncation time distributions, the 

algorithm to estimate π presented here is a simplified version of the algorithm given in Shen 

(2010a). We note that both algorithms result in the same estimator π̂np.

2.1.2 Parametric estimation—We can also estimate the selection probabilities 

parametrically using the methods introduced by Shen (2010b) and Moreira and de Ũna-

Álvarez (2010). In this setting, we assume that the truncation times U and V have a 

parametric joint density function kθ(u, v). Here θ ∈ Θ is a q × 1 vector of parameters and Θ 
is the parametric space.

Under the assumption of independence in the region U ≤ T ≤ V, the conditional likelihood of 

the (Ui, Vi) given Ti is given by Lc(θ) = ∏i = 1
n kθ(Ui, V i)/πi

θ, where 

πi
θ = ∫

U ≤ Ti ≤ V
kθ(u, v)dudv = Pθ(U ≤ T i ≤ V). Here the subscript θ denotes that the 

probability depends on θ. In this setting, we estimate πi by πi
θ̂ = ∫

u ≤ Ti ≤ v
k

(θ̂)
(u, v)dudv. The 

conditional likelihood estimator, θ̂, is the solution to Uc(θ) = ∂
∂θ logLc(θ) = 0.

The MLE of π is given by πθ̂ = π1
θ̂, …, πn

θ̂ . The weights wi are then estimated by 

wi(θ̂) = p(θ̂)/πi
θ̂, where p(θ̂) = P

θ̂
(U ≤ T ≤ V) = n−1∑ j = 1

n 1/π j
θ̂ −1

. The corresponding 

estimator of β0 is denoted by β̂w
θ̂
, the solution to Uw(β, πθ̂) = 0. Here the estimated 

parametric weights wi(θ̂) scale 1/πi
θ̂ by p(θ̂) so that they sum up to the original sample size n, 

which is needed for the derivation of the asymptotic variance of β̂w
(θ̂)

.

2.2 Estimating the regression coefficients

The estimated parametric and nonparametric selection probabilities, πθ̂ and π̂np, can be 

computed using the code provided in the online supplementary materials. The regression 

coefficient estimators β̂w
θ̂
 and β̂wnp

 can be obtained by specifying the weight option in SAS 

(phreg, surveyphreg) or R (coxph) with weights p(θ̂)/πθ̂ and 1/π̂np. More details, including 
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standard error estimates and confidence intervals of β̂w
θ̂
 and β̂wnp

, as well as sample data, 

are provided in our code.

3. Asymptotic Properties of Proposed Estimators

In this section, we describe the asymptotic properties of our proposed estimators β̂wnp
 and 

β̂w
θ̂
. The asymptotic properties of the proposed estimators refer to the situation when the 

total number of observed (non-truncated) subjects n → ∞. The following theorems assume 

that the regularity conditions in Web Appendix A hold. The proofs of theorems 1 and 2 

below are outlined in Web Appendix B and Web Appendix C, respectively.

Theorem 1

β̂wnp
 and β̂w

θ̂
 are consistent estimators of β0 as n → ∞.

Theorem 2

Under correct specification of the truncation distribution, n(β̂w
θ̂

− β0) is asymptotically 

normal as n → ∞ with mean zero and covariance matrix Σ(β0, θ0) = Aw(β0, θ0)−1Vw(β0, 

θ0)Aw(β0, θ0)−1.

The covariance matrix Σ(β0, θ0) can be consistently estimated by Σ (β̂w
θ̂
, θ̂), where Σ (β̂w

θ̂
, θ̂)

is defined in Web Appendix C, along with the matrices Aw(β0, θ0) and Vw(β0, θ0).

The nature of π̂np (e.g. no closed form) complicates the establishment of asymptotic 

normality for β̂wnp
. Thus we apply the bootstrap technique to get estimates of the standard 

error for β̂wnp
 and corresponding confidence intervals. While asymptotic normality and the 

theoretical validity of the bootstrap are not formally established in this paper, our empirical 

evidence suggests that β̂wnp
 is asymptotically normal and that the bootstrap estimators are 

valid. The evidence for asymptotic normality is based on the Q-Q plot of β̂wnp
 (Web Figure 

1) from our simulation studies. Furthermore, these simulation studies show that the bootstrap 

standard errors of β̂wnp
 are close to the observed sample standard deviations, and that the 

95% confidence intervals based on the (bootstrap) percentile method result in coverage 

probabilities that are close to the nominal level of 0.95 (Table 1). In addition, the bootstrap 

confidence intervals match those based on assuming normality (data not shown).
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4. Simulations

In this section we examine the performance of the proposed weighted estimators and 

compare them to the naïve unweighted estimator which ignores truncation. In all 

simulations, the survival times were generated from a proportional hazards model with 

hazard function λ(t Z) = λ0(t)e
β0Z

, and follow a Weibull distribution with scale parameter ρ = 

0.1 and shape parameter κ = 1.2. We set β0 = 1, and generated the explanatory variable Z 
from a Unif[0,1] distribution. We simulated the left truncation time from a c1Beta(θ1, 1) 

distribution and the right truncation time from a c2Beta(1, θ2) distribution, with c1 = c2 = 30. 

We chose these distributions based on our data example. The assumption of the beta 

distribution for the truncation times in our data example was validated by a goodness-of-fit 

test (Section 5).

We conducted 1000 simulation repetitions with sample sizes of n = 50, 100, and 250. To 

obtain n observations after truncation, we simulated N = n
1 − q  observations, where q is the 

proportion of truncated data. For each simulation, we estimated the hazard ratio using the 

naïve unweighted estimator which ignores truncation (β̂uw), the parametric weighted 

estimator (β̂w
θ̂

), the nonparametric weighted estimator (β̂wnp
), and the complete case 

estimator (β̂cc) based on the full (truncated and non-truncated) sample. For these estimators, 

we calculated the estimated bias (β̂ − β0), observed sample standard deviations (SD), 

estimated standard errors (SÊ), and the average empirical coverage probability of the 95% 

confidence intervals (Cov). We used 2000 bootstrap resamples to estimate the standard error 

and confidence interval of β̂wnp
.

Table 1 shows the results of the simulations described above. In the first model we set θ1 = 

0.06 and θ2 = 0.60, which produced mild left and right truncation and a total of 20% of the 

observations truncated. In the second model we set θ1 = 0.15 and θ2 = 1, which produced 

moderate truncation from the left and right and a total of 40% of the observations truncated. 

In the third model we set θ1 = 0.40 and θ2 = 0.25, which produced heavy left truncation and 

mild right truncation and a total of 60% of the observations truncated. In the fourth model 

we set θ1 = 0.50 and θ2 = 2.5, which produced both heavy left and right truncation and a 

total of 80% of the observations truncated.

In all models, the weighted estimators β̂w
θ̂
 and β̂wnp

 had little bias, while the unweighted 

estimator β̂uw was biased. The observed sample standard deviations of β̂w
θ̂
 corresponded 

well with the standard error estimates based on asymptotic theory. The observed sample 

standard deviations of β̂wnp
 were accurately estimated by the bootstrap technique, and were 
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slightly greater than those of β̂w
θ̂
. Both weighted estimators had coverage probabilities that 

were close to the nominal level of 0.95. All of these results held for both smaller (n=50) and 

larger (n=250) sample sizes. We note that the high coverage probabilities of β̂uw are an 

artifact of its large standard error relative to its bias, which led to wider confidence intervals 

for β̂uw. In simulations where the standard error of β̂uw was small relative to its bias, the 

coverage probabilities of β̂uw did not come close to the nominal level (e.g. Web Table 1).

We now examine the bias of β̂wnp
 and β̂uw as a function of left and right truncation 

proportion (Figure 2). For the purpose of clarity we do not include β̂w
θ̂
 in Figure 2, but note 

that its bias was nearly identical to that of β̂wnp
. Even under mild truncation, β̂uw was biased, 

and this bias increased drastically as the proportion of right truncation increased. Here β̂wnp

had little bias, regardless of truncation proportion.

We also examined the robustness of β̂w
θ̂
 under misspecification of the truncation distribution 

in Web Table 1. In this setting, β̂w
θ̂
 was biased. Here β̂wnp

 still had little bias, as β̂wnp
 makes 

no distributional assumptions for the truncation times.

The simulations above assumed U and V are independent. In some cases, V can be 

expressed as V = U + d0, where d0 can be random or constant. To assess the performance of 

our proposed estimators under this dependent truncation structure, we conducted a 

simulation study (Web Table 2). The results are similar to those presented in Table 1.

5. Application to Alzheimer’s Disease Study

We illustrate our method by considering an autopsy-confirmed AD study conducted by the 

Center for Neurodegenerative Disease Research at the University of Pennsylvania. The 

target population for the research purposes of this study consists of all subjects with AD 

symptom onset before 2012 that met the study criteria and therefore would have been 

eligible to enter the center. Our observed sample contains all subjects who entered the center 

between 1995 and 2012, and had an autopsy performed before 2012. Thus one criterion for a 

subject to be included in our sample is that they did not succumb to AD before they entered 

the study, yielding left truncated data. In addition, our sample only contains subjects who 

had an autopsy-confirmed diagnosis of AD, and therefore we have no knowledge of subjects 

who live past the end of the study. Thus our data is also right truncated. Our data consists of 

n=47 subjects, all of whom have event times. The event time of interest is the survival time 

(T) from AD symptom onset. The left truncation time (U) is the time between the onset of 

AD symptoms and entry into the study (i.e. initial clinic visit). The right truncation time (V) 

is the time between the onset of AD symptoms and the end of the study, which is taken to be 

July 15, 2012. Due to double truncation, we only observe subjects with U ≤ T ≤ V .
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Our motivation for studying the effect of education on survival in AD is that education 

serves as a proxy for cognitive reserve (CR). CR theorizes that individuals develop cognitive 

strategies and neuronal connections throughout their lives through experiences such as 

education and other forms of mental engagement (Valenzuela and Sachdev 2007). For 

example, CR may have a protective role in the brain, and therefore lengthen survival during 

the course of the disease (Ientile et al. 2013). Paradise et al. (2009) and Meng and D’Arcy 

(2012) failed to detect an effect of education on survival from AD symptom onset. However 

the studies included in their meta-analyses did not consist of populations with autopsy-

confirmed AD.

Here we assess the effect of education on survival time in our autopsy-confirmed cohort, 

where education is measured by years of schooling. The median years of education in this 

cohort is 16 years. Comparing the low education group (< 16 years) and high education 

group (⩾ 16 years) on the variables of interest revealed no significant differences (Table 2).

Since our data is doubly truncated, we apply the Cox regression model using the proposed 

weighted estimating equation approach. We check the assumption of independence between 

the truncation and survival times in the observable region U ≤ T ≤ V using the conditional 

Kendall’s tau proposed by Martin and Betensky (2005). The resulting p-value is 0.10, and 

therefore we do not have enough evidence to reject the null hypothesis that the observed 

survival and truncation times are independent. We justify the identifiability constraints from 

Section 2.1, aHU
< aF ≤ aHV

 and bHU
≤ bF < bHV

, in Web Appendix D.

We adjust for double truncation using both parametric and nonparametric weights. The 

parametric weights are estimated under the assumption that U ~ c1Beta(α1, β1) and V ~ 

c2Beta(α2, β2), where c1 = 20 and c2 = 40. Under these parametric assumptions, we have 

α1̂ = 2.6, β1
^ = 13.8 and α2̂ = 3.0, β2

^ = 9.7. To check our assumption of the beta distribution, 

we test the null hypothesis H0 : K(u, v) = Kθ(u, v), where θ = (α1, β1, α2, β2). Here the 

parametric joint cumulative distribution function Kθ(u, v) = Iu/c1
(α1, β1) × Iv/c2

(α2, β2), where 

Ix(a, b) = ∫0

x
ta − 1(1 − t)b − 1dt. As described by Moreira, de Ũna-Álvarez, and Van 

Keilegom (2014), we can test H0 using a Kolmogorov-Smirnov type test statistic 

Dn = supu, v ∈ ℝ Kn(u, v) − K
θ̂
(u, v) , where Kn(u, v) is the NPMLE of K(u, v) (Shen 2010a). 

This yields a p-value of 0.60, and therefore we do not have enough evidence against the beta 

distribution assumption for the truncation times.

Table 3 displays the results from the Cox regression model using no weights, parametric 

weights, and nonparametric weights. The effects of age at AD symptom onset and male on 

survival are nearly twice as large in the weighted models relative to the unweighted model, 

but these effects are only significant under parametric assumptions. When we do not account 

for double truncation, there is no effect of education on survival ( β̂uw = 0; 95% CI: 

[−0.11,0.12]). When we account for double truncation, higher education is associated with 
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increased survival under parametric weights ( β̂w
θ̂

= − 0.07; 95% CI: [−0.20,0.06]) and 

nonparametric weights ( β̂wnp
= − 0.06; 95% CI: [−0.29,0.19]). However the confidence 

intervals for both β̂w
θ̂
 and β̂wnp

 contain 0.

6. Discussion

We proposed a weighted estimating equation approach to adjust the Cox regression model 

under double truncation, by weighting the subjects in the score equation of the Cox partial 

likelihood by the inverse of the probability that they were observed (i.e. not truncated). The 

probability of being observed was estimated both parametrically and nonparametrically by 

methods introduced in Shen (2010a, 2010b) and Moreira and de Ũna-Álvarez (2010), and 

did not require any contribution from missing subjects. The proposed hazard ratio estimators 

are consistent. The simulation studies confirmed that the proposed estimators have little bias, 

while the naïve estimator which ignores truncation is biased. The parametric weighted 

estimator is asymptotically normal, and a consistent estimator of its asymptotic variance is 

provided. Our simulations showed that the bootstrap estimate of the standard error for the 

nonparametric weighted estimator matched the observed sample standard deviation.

The proposed estimators have little bias in practical settings, which has useful implications 

in observational studies. One example is AD - a severe neurodegenerative disorder which 

has devastating effects for patients and their caregivers. Thus any knowledge of factors 

associated with extending survival from AD symptom onset can have a great impact on 

society. In this paper, we assessed the effect of education on survival in subjects with 

autopsy-confirmed AD. Our method is critical for analyzing data of this sort, since autopsy 

confirmation leads to doubly truncated survival times, which can result in biased hazard 

ratio estimators. While AD studies that do not use autopsy confirmation avoid double 

truncation, the conclusions based on these studies may be unreliable due to the inaccuracy of 

clinical diagnosis. This may explain the inconclusive findings of the two meta-analyses 

conducted by Paradise et al. (2009) and Meng and D’Arcy (2012), who used studies with 

clinically diagnosed AD subjects to examine the effect of education on survival. Using our 

proposed method on an autopsy-confirmed AD study found that higher education was 

associated with increased survival. However, these effects were not statistically significant. 

This may be due to our small sample size and the fact that our sample was highly educated 

(range = 12 – 20 years). When double truncation was ignored, we found no effect of 

education on survival.

The consistency of the estimated selection probabilities used in our proposed method rests 

on the assumption of independence between the survival and truncation times in the 

observable region. A violation of this assumption may lead to biased hazard ratio estimators. 

Currently, we are not aware of any methods to adjust for violations of this assumption. 

Because the estimation procedure for the selection probabilities does not make use of the 

assumed relationship between the survival time and covariates, this independence 

assumption cannot be relaxed simply by covariate adjustment in the Cox model. However, 
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when conditional independence on discrete covariates holds, we can stratify the data based 

on the levels of the covariates, and then estimate the weights independently within each 

stratum. In this situation, conditional independence can be tested by applying the conditional 

Kendall’s tau (Martin and Betensky 2005) within each stratum. However, this approach may 

not be practical if the number of strata is large. Future work is thus needed to relax the 

independence assumption.

Currently there are no closed form estimates for the nonparametric selection probabilities, 

which complicate the development of asymptotic properties for the nonparametric weighted 

estimator. While our simulations show that the nonparametric weighted estimator appears to 

satisfy asymptotic normality, an extension to our method is to formally prove this result. 

Furthermore, the theoretical validity of the bootstrap estimators needs to be established. 

Finally, the proposed method assumes that no censoring is present in the data. While right 

censoring is uncommon under double truncation, interval censoring could be present in the 

data (Bilker and Wang 1996, Martin and Betensky 2005). Future work would thus be needed 

to extend our methods in the presence of interval censored data.

While weighting leads to consistent estimators, it may also lead to an increase in the 

variance of these estimators in certain cases. In practice, an investigator may wonder 

whether it is worth adjusting for double truncation. We recommend using the proposed 

weighted estimators since they are consistent and perform well in finite samples, while the 

naïve estimator can be biased even in cases of mild truncation. When the truncation is 

severe, the naïve estimator can be heavily biased. However, severe truncation may produce 

large weights which can lead to an increase in the standard error of the weighted estimators. 

Therefore if the estimated weights are large, we recommend performing a sensitivity 

analysis by truncating the weights as described in Seaman and White (2013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
In this hypothetical example, we assume subjects 1, 2, and 3 all have similar times of disease 

symptom onset. For illustrative purposes, we also assume that subjects 1, 2, and 3 have the 

same study entry time, however this need not be the case. Here the x-axis represents time, 

and the squares represent the terminating events. Subject 1 is left truncated because they die 

before they enter the study. Subject 2 enters the study and dies before the end of the study, 

and is therefore observed. Subject 3 is right truncated because they live past the end of the 

study, and therefore do not have an autopsy performed.
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Figure 2. 

Bias of the unweighted estimator β̂uw (black) and nonparametric weighted estimator β̂wnp

(gray). Left truncation time simulated from a c1 Beta(θ1, 1) distribution, right truncation 

time simulated from a c2 Beta(1, θ2) distribution, with c1 = c2 = 30. Here θ1 ranges from 

0.025 to 0.50 which results in a range of 5% to 65% truncation from the left, and θ2 ranges 

from 0.25 to 5 which results in a range of 5% to 45% truncation from the right. The 

remaining settings are kept the same as in Table 1, with n = 250.
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Table 1
Simulation results

q is the proportion of observations missing due to truncation and n is the size of the observed sample. β̂uw

denotes the naïve unweighted estimator, β̂u
θ̂
 denotes the proposed parametric weighted estimator, β̂wnp

denotes the proposed nonparametric weighted estimator, and β̂cc denotes the unattainable complete case 

estimator based on both truncated and non-truncated observations. SD is the empirical standard deviation of 

estimates across simulations, SÊ is the average of the estimated standard errors, Cov is the coverage of 95% 

confidence intervals. The true value of β is 1.

q n Estimator Bias SD

SÊ
Cov

50

β̂uw

−0.081 0.574 0.545 0.943

0.20 50

β̂w
θ̂

−0.011 0.616 0.552 0.927

50

βwnp

−0.015 0.616 0.620 0.937

63

βcc
0.003 0.504 0.475 0.943

100

βuw
−0.071 0.375 0.371 0.945

100

βw
θ

0.003 0.405 0.374 0.940

100

β̂wnp

0.000 0.406 0.408 0.943

125

β̂cc

−0.005 0.340 0.328 0.941

250

β̂uw

−0.066 0.235 0.231 0.938

250

β̂w
θ̂

0.007 0.254 0.232 0.925

250

β̂wnp

0.004 0.254 0.250 0.945

313

β̂cc

0.011 0.205 0.205 0.951

50

β̂uw

−0.031 0.548 0.536 0.957
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q n Estimator Bias SD

SÊ
Cov

0.40 50

β̂w
θ̂

0.053 0.593 0.551 0.935

50

β̂wnp

0.045 0.605 0.626 0.934

83

β̂cc

0.047 0.423 0.404 0.949

100

β̂uw

−0.092 0.381 0.370 0.939

100

βw
θ

−0.006 0.424 0.381 0.936

100

βwnp

−0.009 0.426 0.419 0.938

167

βcc
0.008 0.274 0.282 0.958

250

βuw
−0.084 0.235 0.231 0.927

250

β̂w
θ̂

0.005 0.263 0.235 0.922

250

β̂wnp

0.004 0.266 0.258 0.944

417

β̂cc

0.008 0.180 0.177 0.948

50

βuw
0.139 0.562 0.542 0.937

0.60 50

βw
θ

0.041 0.547 0.561 0.950

50

βwnp

0.034 0.555 0.580 0.939

125

βcc
0.005 0.338 0.326 0.947

100

β̂uw

0.122 0.374 0.372 0.949

100

β̂w
θ̂

0.014 0.361 0.392 0.970

100

β̂wnp

0.011 0.363 0.382 0.955

250

β̂cc

−0.004 0.234 0.228 0.936
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q n Estimator Bias SD

SÊ
Cov

250

β̂uw

0.111 0.244 0.232 0.911

250

β̂w
θ̂

0.013 0.234 0.249 0.964

250

β̂wnp

0.005 0.237 0.234 0.937

625

β̂cc

0.006 0.150 0.144 0.947

50

β̂uw

−0.127 0.560 0.538 0.937

0.80 50

β̂w
θ̂

−0.015 0.666 0.633 0.940

50

β̂wnp

−0.004 0.724 0.701 0.947

250

βcc
0.008 0.226 0.233 0.961

100

βuw
−0.122 0.373 0.367 0.940

100

βw
θ

0.013 0.472 0.456 0.924

100

βwnp

0.016 0.493 0.472 0.949

500

β̂cc

0.006 0.162 0.164 0.955

250

β̂uw

−0.163 0.236 0.228 0.878

250

βw
θ

−0.021 0.316 0.328 0.913

250

βwnp

−0.019 0.315 0.294 0.927

1250

βcc
0.000 0.104 0.103 0.949
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Table 2

Comparing low education (< 16 years) and high education (⩾ 16 years) groups

Variable Low education (n=15)
mean (sd)

High education (n=32)
mean (sd)

Test statistic p-value

Age Onset 61.8 (10.5) 63.2 (12.9) t45 = −0.37 0.712

Survival time 8.7 (3.4) 7.9 (3.2) t45 = 0.80 0.430

Time to study entry 3.4 (1.71) 2.7 (1.5) t45 = 1.37 0.177

Time to end of study 13.3 (2.8) 12.6 (4.7) t45 = 0.58 0.563

Male (%) 53 72
χ1

2 = 1.56
0.211

Survival time, time to study entry, and time to end of study are measured in years from AD symptom onset.
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