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Abstract

The Cox regression model, which is widely used for the analysis of treat-
ment and prognostic effects with censored survival data, makes the as-
sumption of constant hazard ratio. In the violation of this assumption,
different methods should be used to deal with non-proportionality of
hazards. In this study, the stratified Cox regression model and extended
Cox regression model, which uses time dependent covariate terms with
fixed functions of time are discussed. The results are illustrated by an
analysis of lung cancer data in order to compare these methods with
respect to Cox regression model in the presence of nonproportional
hazards.
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1. Introduction

Survival analysis is a class of statistical methods for studying the occurrence and
timing of events and is useful for studying many kinds of events in both the social and
natural sciences.

Survival data have some features that are difficult to handle with traditional statistical
methods: censoring and time-dependent covariates. Regression models for survival data
have traditionally been based on the Cox regression model, which assumes that the
underlying hazard function for any two levels of some covariates are proportional over
the period of follow-up time. If hazard ratios vary with time, then the assumption of

∗Hacettepe University, Faculty of Science, Department of Statistics, 06800, Beytepe, Ankara,
Turkey. E-mail: nihalata@hacettepe.edu.tr

†Hacettepe University, Faculty of Science, Department of Actuarial Sciences, 06800 Beytepe,

Ankara, Turkey. E-mail: sozer@hacettepe.edu.tr



158 N. Ata, M.T. Sözer

proportional hazards may not be justified and we need to use methods that do not assume
proportionality to investigate the effects of covariates on survival time.

In this paper, we explain the proportional hazards assumption and investigate and
discuss the methods which can be used when the hazards are nonproportional.

2. Cox Regression Model

The most common approach to model covariate effects on survival is the Cox regres-
sion model, which takes into account the effect of censored observations [4]. Although the
model is based on the assumption of proportional hazards, no particular form of proba-
bility distribution is assumed for the survival times. The model is therefore referred to
as a semi-parametric model.

Let x1, x2, . . . , xp be the values of p covariates X1, X2, . . . , Xp. According to the Cox
regression model, the hazard function is given as follows:

(2.1) h(t) = h0(t) exp(

p
∑

i=1

βixi),

where β = (β1, β2, . . . , βp) is a 1 × p vector of regression parameters and h0(t) is the
baseline hazard function at that time. Coefficient vectors of the covariates are estimated
using a maximum likelihood (ML) procedure. ML estimates are obtained by maximizing
a (partial) likelihood function (L) [3].

3. Assessment of Proportional Hazards Assumption

A key assumption of the Cox regression model is proportional hazards. The propor-
tional hazards assumption means that the hazard ratio is constant over time, or that the
hazard for an individual is proportional to the hazard for any other individual [13].

Let x∗ = (x∗1, x
∗
2, . . . , x

∗
p) and x = (x1, x2, . . . , xp) be the covariates of two individuals.

The hazard ratio is given as follows:

(3.1) exp

[

p
∑

i=1

β̂i (x
∗

i − xi)

]

.

When the value of the exponential expression for the estimated hazard ratio is a constant
that does not depend on time, the proportional hazards assumption is satisfied.

An assessment of the proportional hazards assumption can be done by many numerical
or graphical approaches. None of these approaches are known to be better than the
others in finding out whether the hazards are proportional or not. Interpreting graphical
plots can be arbitrary. The conclusions are highly dependent on the subjectivity of the
researcher. Some of these graphical approaches are log-minus-log survival plots of survival
functions, a plot of survival curves based on the Cox regression model and Kaplan-Meier
estimates for each group, a plot of cumulative baseline hazards in different groups [2], a
plot of difference of the log cumulative baseline hazard versus time, a smoothed plot of
the ratio of log-cumulative hazard rates versus time, a smoothed plot of scaled Schoenfeld
residuals versus time and a plot of the estimated cumulative hazard versus the number
of failures [1].

There are various numerical approaches in finding non-proportionality, such as a test
including a time dependent covariate in the model [4], a test based on the Schoenfeld
partial residuals [12] which is a measure of the difference between the observed and
expected value of the covariate at each time [13], a test based on a comparison of different
generalized rank estimators of the hazard ratio [6], and a test based on a semi-parametric
generalization of the Cox regression model [9, 11].
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4. Nonproportional Hazards Models

Since the Cox regression model relies on the hazards being proportional, i.e. on the
effect of a given covariate not changing over time, it is very important to verify that
the covariates satisfy the assumption of proportionality. If this assumption is violated,
the simple Cox regression model is invalid and more complicated analyses such as the
stratified Cox regression model or the extended Cox regression model are required.

4.1. The Stratified Cox Regression Model. The stratified Cox regression model is
a modification of the Cox regression model by the stratification of a covariate that does
not satisfy the proportional hazards assumption. Covariates that are assumed to satisfy
the proportional hazards assumption are included in the model, whereas the predictor
being stratified is not included.

Let k covariates fail to satisfy the proportional hazards assumption, and p covariates
satisfy proportional hazards assumption. The covariates not satisfying the proportional
hazards assumption are denoted by Z1, Z2, . . . , Zk, and the covariates satisfying the pro-
portional hazards assumption are denoted by X1, X2, . . . , Xp. To form the stratified Cox
regression model, a new variable is defined from z variables and denoted by z∗. The
stratification variable z∗ has k∗ categories, where k∗ is the total number of combinations
(strata) formed after categorizing each of z’s. There are interaction and no-interaction
models defined in the concept of the stratified Cox regression model [7, 8].

4.1.1. No-Interaction Model. The no-interaction model is defined as follows:

(4.1) hg(t, x) = h0g(t) exp [β1x1 + β2x2 + · · ·+ βpxp] , g = 1, 2, . . . , k∗,

where the subscript g represents the strata. The strata are the different categorizations
of the stratum variable. The variable z∗ is not implicitly included in the model, whereas
the x’s which are assumed to satisfy the proportional hazards assumption are included in
the model. The baseline hazard function, h0g(t), is different for each stratum. However,
the coefficients β1, β2, . . . , βp are the same for each stratum. Since the coefficients of the
x’s are the same for each stratum, the hazard ratios are same for each stratum.

To obtain estimates of the regression coefficients β1, β2, . . . , βp, a likelihood function
L that is obtained by multiplying together the likelihood functions for each stratum is
maximized [8].

4.1.2. Interaction Model. The interaction model can be formed in two ways according
to the number of variables that do not satisfy the proportional hazards assumption.

(i). Let there be one variable that does not satisfy the proportional hazards assumption.

The data set can be stratified into k strata according to the variable that does not
satisfy the proportional hazards assumption. In this case, the interaction model is defined
as follows:

(4.2) hg(t, x) = h0g(t) exp [β1gx1 + β2gx2 + · · ·+ βpgxp] , g = 1, 2, . . . , k

The covariates and the products of each of these covariates with the variable that does
not satisfy the proportional hazards assumption can be included in the model. In this
case, an alternative interaction model is defined as follows:

(4.3)
hg(t, x) = h0g(t) exp

[

β
∗

1x1 + β
∗

2x2 + · · ·+ β
∗

pxp

+ β
∗

p+1(x1 × z) + · · ·+ β
∗

2p(xp × z)
]

,

where the coefficients β∗ do not have a subscript g representing the stratum [8].

There is a relation between the coefficients of the interaction model and the alternative
interaction model. Let z = (0, 1, 2, . . . , k − 1) be the only variable that does not satisfy
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the proportional hazards assumption and denote its number of strata by g = 1, 2, . . . , k.
The general relation between the β coefficients of these models are given below:

(4.4)
β1k = β

∗

1 , . . . , βpk = β
∗

p , k = 1,

β1k = (k − 1)(β
∗

1 + β
∗

p+1), . . . , βpk = (k − 1)(β
∗

p + β
∗

2p), k > 1.

(ii). Let there be two or more variables that do not satisfy proportional hazard.

The new strata variable is represented by z∗ = (0, 1, 2, . . . , k∗ − 1). Here k∗ is the
product of the levels of the variables that do not satisfy the proportional hazards assump-
tion. In this case the alternate interaction and interaction models are given by (4.5) and
(4.6), respectively.

(4.5) hg(t, x) = h0g(t) exp [β1gx1 + · · ·+ βpgxp] , g = 1, 2, . . . , k∗,

(4.6)

hg(t, x) = h0g(t) exp
[

β1x1 + · · ·+ βpxp + β11(z
∗

1 × x1) + · · ·

+ β1(k∗−1)(z
∗

k∗−1 × x1) + · · ·+ βp1(z
∗

1 × xp) + · · ·

+ βp(k∗−1)(z
∗

k∗−1 × xp)
]

.

The no-interaction assumption

The stratified Cox regression model contains regression coefficients that do not vary
over the strata. This property of the model is known as the no-interaction assumption.
If interaction is allowed for, different coefficients for each of the stratum are obtained.

The test that is used to examine the no-interaction assumption is the likelihood ratio
test statistics. For this test statistic, log likelihood functions of the interaction and no-
interaction models are used. The interaction model differs from the no-interaction model
by containing product terms. Thus, the null hypothesis is that the coefficients of the
product terms are equal to zero. The likelihood ratio test statistic shows a Chi-square
distribution with p(k∗ − 1) degrees of freedom under the null hypothesis [8].

4.2. Extended Cox Regression Model. In the Cox regression model, there can be
variables which involve t. Such variables are called time-dependent variables. A time-
dependent variable is defined as any variable whose value for a given subject may differ
over time (t). If there are time-dependent variables in the model, the Cox regression
model can be used but can no longer satisfy the proportional hazards assumption. There-
fore, extended Cox regression model should be used instead [5, 10].

In this model, the Cox regression model is extend to a model which contains time-
dependent covariates and the product of these covariates with a function of time. Let
x1, x2, . . . , xp1 be time-independent covariates, x1(t), x2(t), . . . , xp2(t) the time-dependent
covariates and set x(t) = (x1, x2, . . . , xp1 , x1(t), x2(t), . . . , xp2(t)). The extended Cox re-
gression model is defined as follows:

(4.7) h (t, x(t)) = h0(t) exp

[

p1
∑

i=1

βixi +

p2
∑

j=1

δjxj(t)

]

,

where β and δ are the coefficient vectors of the covariates, p1 is the number of covariates
that satisfy the proportional hazards assumption and p2 the number of covariates not
satisfing the proportional hazards assumption. The computations for this model are more
complicated than for the Cox regression model, because the risk sets used to form the
likelihood function are more complicated with time dependent variables.

Two sets of predictors, x(t) and x∗(t), identify two specifications at time t for the
combined set of predictors containing both time-independent and time-dependent vari-
ables. The hazard ratio for the extended Cox regression model which is a function of
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time is given as follows [7,8]:

(4.8) exp

[

p1
∑

i=1

β̂i (x
∗

i − xi) +

p2
∑

j=1

δ̂j

(

x
∗

j (t)− xj(t)
)

]

.

While investigating the proportional hazards assumption, the extended Cox regression
model is used and in this case the model is given as follows:

(4.9) h (t, x(t)) = h0(t) exp

[

p
∑

j=1

βjxj +

p
∑

j=1

δjxjgj(t)

]

,

where gj(t) is defined as a function of time. In this model, the critical decision is the
form that the functions gj(t) should take. The possible forms of gj(t) are given below:

(i) All the gj(t) can be zero.
(ii) gj(t) = t.
(iii) gj(t) = log t
(iv) gj(t) is a Heavyside (step) function. When this function is used, we get constant

hazard ratios for different time intervals [8, 10, 13].

Let C be the only covariate. Then the hazard ratios for the extended Cox regression
model with one step (Heavyside) function and two step functions are given in Table 1.

Table 1. Hazard Ratios for the Extended Cox Regression with Heavyside

Functions

Step function Time interval Hazard ratio

One step function g(t) =

{

1 if t ≥ t0

0 if t < t0
t ≥ t0 exp

(

β̂ + δ̂
)

t < t0 exp
(

β̂
)

Two step functions g1(t) =

{

1 if t ≥ t0

0 if t < t0
t ≥ t0 exp(δ̂1)

g2(t) =

{

1 if t < t0

0 if t ≥ t0
t < t0 exp(δ̂2)

More than two step functions can be used, and in this way we get constant hazard ratios
within different time intervals. The model does not involve a main effect term and is
defined as follows:

(4.10)
h(t, x(t)) = h0(t) exp

[

δ1(C × g1(t)) + δ2(C × g2(t)) + δ3(C × g3(t)) + · · ·

+ δk(C × gk(t))
]

,

where t1, t2, . . . , tk are time intervals and

(4.11) g1(t) =

{

1 if 0 ≤ t < t1

0 otherwise
, . . . , gk(t) =

{

1 if tk−1 ≤ t < tk

0 otherwise

are step functions. The hazard ratios for this model are as given below:

(4.12) exp(δ̂1) for 0 ≤ t < t1, . . . , exp(δ̂k) for tk−1 ≤ t < tk.
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5. An Application to Lung Cancer Data

Patients diagnosed with lung cancer were taken into this study based on Cox regression
analysis. In the following analysis, the time after the operation of the recurrence of the
illness is the endpoint of interest. This variable is measured in months. There was an
8-year follow-up period for the patients. Patients who were still alive at the end of the
follow-up period were treated as censored observations. The complete data set consists
of 236 observations, of which 60.2% are censored. The aim of of the analysis was to try
and determine prognostic factors that affect the survival time of lung cancer patients by
using the statistical analysis software SAS 8.2.

In the following study, qualitative covariates such as

five-level covariate age (x1 = 39, 40− 49, 50− 59, 60− 69, 70),

four-level covariate cigarette consumption (package per year, x2 = 5, 6 - 30, 31 - 60, 61),

two-level covariate extended resection (x3 = not present, present),

four-level covariate tumour size (mm, x4 = 30, 31 - 40, 41 - 50, 51),

four-level covariate tumour stage (x5 stage 1; stage 2, stage 3, stage 4), and

two-level covariate invasion (x6 = not present, present)

were used. Since the calculations are quite difficult, in applications the use of covariates
with two or more levels are usually avoided.

The example of real data permits a focused comparison of various competitive tech-
niques related to the Cox regression model which are useful in the presence of nonpro-
portional hazards.

Firstly, the Cox regression model was applied to the data set before investigating the
proportional hazards assumption. Cigarette consumption, tumour size and tumour stage
were found to be significant at the 95% confidence level. Then the proportional hazards
assumption was assessed by a statistical test. This test was accomplished by finding the
correlation between the Schoenfeld residuals for a particular covariate and the ranking
of the individual failure times. If the proportional hazards assumption is met then the
correlation should be near zero [13]. It was found that the extended resection variable
does not satisfy the proportional hazards assumption. It is shown by a correlation analysis
of the partial residuals with time that the p value obtained for this variable is 0.0041.
For other variables (all levels of each covariate) used in the Cox regression model the
proportional hazards assumption holds. The same conclusion can be derived from the
log-minus-log plots.

The stratified Cox regression model can be described as a no-interaction model and
as an interaction model. In the no interaction model, the extended resection variable
which causes nonproportional hazards was used as the strata variable and Cox regression
analysis carried out. The results obtainrd are given in Table 2.

In the no-interaction model, from the p values, cigarette consumption, tumour size
and tumour stage are found to be important risk factors which affect the failure. x2(4),
x4(4), x5(3) and x5(4) are the important levels. Patients whose cigarette consumption
is equal to or higher than 61 have 3.6 times the hazard faced by patients whose cigarette
consumption is less than or equal to 5. Patients whose tumour size is greater than or
equal to 50 mm have 2.2 times the hazard faced by patients whose tumour size is equal
to or less than 30 mm. Patients whose tumour stage is 3 have 2.2 times, and patients
whose tumour stage is 4 have 6.7 times the hazard faced by patients whose tumour stage
is 1.
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Table 2. Results for the No-interaction and Interaction Models

No-interaction model Interaction model

Variable Strata 1 Strata 2

exp(β) p exp(β) p exp(β) p

Age 0.5659 0.0938 0.4118

x1(2) 0.6640 0.4573 0.5492 0.3392 3.5068 0.4439

x1(3) 1.1599 0.7659 1.0649 0.9128 3.2267 0.3372

x1(4) 0.8531 0.7546 0.6619 0.4706 4.9234 0.2229

x1(5) 1.0626 0.9150 1.7847 0.3790 1.0129 0.9928

Cigarette csp. 0.0130 0.2702 0.8741

x2(2) 1.8010 0.3052 1.9974 0.0214 16739.465 0.9365

x2(3) 1.5173 0.4507 1.4713 0.5056 10228.862 0.9397

x2(4) 3.6366 0.0261 3.8261 0.0315 15671.379 0.9369

Tumour size 0.0041 0.0127 0.7915

x4(2) 0.6765 0.2822 0.6828 0.3726 0.6833 0.6369

x4(3) 1.6295 0.1608 1.7363 0.1843 1.6956 0.5995

x4(4) 2.2147 0.0075 2.5091 0.0098 1.1960 0.8447

Tumour stage 0.0000 0.0000 0.2735

x5(2) 1.2492 0.5128 1.0274 0.9446 2.5197 0.4535

x5(3) 2.2451 0.0078 2.9030 0.0012 1.6923 0.6593

x5(4) 6.7165 0.0000 7.6626 0.0000 13.6475 0.0852

Invasion (x6) 1.2902 0.3512 1.3868 0.3064 1.4608 0.6465

For the interaction model, the data set is divided into two strata according to the extended
resection variable. The first stratum consists of patients who don’t have an extended
resection and the second stratum consists of patients who do. For the first stratum,
from the p values, cigarette consumption, tumour size and tumour stage are found to be
important risk factors which affect the failure. Patients whose cigarette consumption is
equal to or higher than 61 have 3.8 times the hazard faced by patients whose cigarette
consumption is less than or equal to 5. Patients whose tumour size is greater than or
equal to 50 have 2.5 times the hazard faced by patients whose tumour size is equal to
or less than 30. Patients whose tumour stage is 3 have 2.9 times, and patients whose
tumour stage is 4 have 7.6 times the hazard faced by patients whose tumour stage is 1.
For the second stratum, when we investigate the p values, none of the covariates is an
important risk factor at the 95% confidence level. Results for the alternative interaction
model are given by Table 3.

When we investigate the interaction model and the alternative interaction model,
the relation between the coefficients of these two models is explored. In the alternative
interaction model, we have the same findings as with the interaction model.

To evaluate the no-interaction assumption, a likelihood ratio test that compares the
no-interaction model to the (full) interaction model is performed. The null hypothesis
is that the no-interaction assumption is satisfied. The test statistic which is given by
the difference between the log-likelihood statistics for the no-interaction and interaction
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models was found to be 14.607. This statistic is approximately chi-square with 14 degrees
of freedom under the null hypothesis. Since the null hypothesis could not be rejected,
this indicates that the no-interaction model is to be preferred to the interaction models.

Table 3. Results for the Alternative Interaction Model

Variable exp(β) p Variable exp(β) p

Age

x1(2) 0.5492 0.3392 x1(2) ∗ x3 6.3858 0.2907

x1(3) 1.0649 0.9128 x1(3) ∗ x3 3.0299 0.4113

x1(4) 0.6619 0.4706 x1(4) ∗ x3 7.4388 0.1597

x1(5) 1.7847 0.3790 x1(5) ∗ x3 0.5676 0.7185

Cigarette consumption

x2(2) 1.9974 0.2702 x2(2) ∗ x3 3083.0061 0.9136

x2(3) 1.4713 0.5056 x2(3) ∗ x3 2557.5131 0.9156

x2(4) 3.8261 0.0315 x2(4) ∗ x3 1506.8052 0.9213

Tumour size

x4(2) 0.6828 0.3726 x4(2) ∗ x3 1.0008 1.0000

x4(3) 1.7363 0.1843 x4(3) ∗ x3 0.9766 0.9826

x4(4) 2.5091 0.0098 x4(4) ∗ x3 0.4766 0.4498

Tumour stage

x5(2) 2.9030 0.0012 x5(2) ∗ x3 2.4526 0.4876

x5(3) 7.6626 0.0000 x5(3) ∗ x3 0.5830 0.6629

x5(4) 1.3868 0.3064 x5(4) ∗ x3 1.7810 0.7128

Invasion (x6) 1.0274 0.9446 x6 ∗ x3 1.0534 0.9532

Further evidence of the proportional hazards assumption not being satisfied for the ex-
tended resection variable can be seen from a graph of the adjusted survival curves strat-
ified by the extended resection variable. Survival curves of patients who have extended
resection and those who do not have extended resection begin to diverge after 8 months.
It was seen that two curves diverge greatly after 8 months. This indicates that the hazard
ratio for the extended resection variable will be much closer to one early on, but quite
different from one later on.

In order to illustrate the extended Cox regression model we use step functions, and
the results we obtain are given in Table 4.

When the extended Cox regression model is used with one step function and with
two step functions, the same results are obtained. Cigarette consumption, tumour size,
tumour stage and extended resection are found to be important risk factors which affect
the failure. Patients whose cigarette consumption is equal to or higher than 61 have 3.5
times the hazard faced by patients whose cigarette consumption is less than or equal to
5. Patients whose tumour size is greater than or equal to 50 mm. have 2.2 times the
hazard faced by patients whose tumour size is equal to or less than 30 mm. Patients
whose tumour stage is 3 have 2.2 times, and patients whose tumour stage is 4 have 6.5
times the hazard faced by patients whose tumour stage is 1. Patients who have extended
resection have 4 times the hazard faced by patients who do not have extended resection.
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Table 4. Results for Extended Cox Regression Model

One Step Function Two Step Functions

Variable exp(β) p exp(β) p

Age

x1(2) 0.6706 0.4672 0.6706 0.4672

x1(3) 1.1715 0.7503 1.1715 0.7503

x1(4) 0.8808 0.8028 0.8808 0.8028

x1(5) 1.0727 0.9016 1.0727 0.9016

Cigarette consumption

x2(2) 1.8023 0.3031 1.8023 0.3031

x2(3) 1.5322 0.4389 1.5322 0.4389

x2(4) 3.5645 0.0279 3.5645 0.0279

Tumour size

x4(2) 0.6644 0.2621 0.6644 0.2621

x4(3) 1.6300 0.1585 1.6300 0.1585

x4(4) 2.1879 0.0082 2.1879 0.0082

Tumour stage

x5(2) 1.2372 0.5289 1.2372 0.5289

x5(3) 2.1848 0.0098 2.1848 0.0098

x5(4) 6.5723 0.0000 6.5723 0.0000

Invasion (x6) 1.2992 0.3338 1.2992 0.3338

Extended resection (x3) 4.0452 0.0154 - -

x3 ∗ g(t) 0.2040 0.0110 - -

x3 ∗ g1(t) - - 4.0452 0.0154

x3 ∗ g2(t) - - 0.8252 0.5581

For different time intervals, hazard ratios are given in Table 5. Since hazard ratios are
constant within these time intervals, the proportional hazards assumption is satisfied.

Table 5. Step Functions and Hazard Ratios

Step function Time interval Hazard ratio

One step function g(t) =

{

1 if t ≥ 8 months

0 if t < 8 months
t < 8 months 4.0451

t ≥ 8 months 0.8251

Two step functions g1(t) =

{

1 if t ≥ 8 months

0 if t < 8 months
t < 8 months 4.0451

g2(t) =

{

1 if t < 8 months

0 if t ≥ 8 months
t ≥ 8 months 0.8251
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In survival analysis, comparisons between a number of possible models can also be made
on the Akaike’s information criterion (AIC) or -2log likelihood function (-2logL). The
values of AIC and –2logL for the Cox regression model, extended Cox regression model
and stratified Cox regresyon model are given in Table 6. The AIC values of the prognostic
factors can be compared across different models [3].

Table 6. -2logL and AIC Values of the Cox Regression Model, Stratified

Cox regression model and Extended Cox Regression Model

Stratified Cox Regression Model

Cox No- Alternative Extended Cox

Regression Interaction Interaction Model Interaction Model Regression

Model Model Model

Strata 1 Strata 2 Strata 1 Strata 2

AIC 926.710 819.579 659.732 173.240 659.732 832.972 922.340

-2log L 896.710 791.579 631.732 145.240 631.732 776.972 890.340

Our study shows that, according to the AIC, using the stratified Cox regression model
(no-interaction model) and extended Cox regression model gives more suitable results for
survival data in the presence of nonproportional hazards.

6. Conclusion

Ignoring nonproportional hazards in an analysis can lead us to incorrect results. For
this reason, before applying the Cox regression model to survival data, one should first
check the proportional hazards assumption. In this study, some of the regression models
that can be used in the presence of nonproportional hazards are considered. Stratified
Cox regression models – interaction and alternative interaction models – are given, and
the relations between the regression coefficients of these models are obtained. Also the
Cox regression model is extended to allow time-dependent variables, this being called the
extended Cox regression model.

All the regression models within the scope of this paper are applied to real survival
data of lung cancer patients. When we take AIC - model selection criteria - into consider-
ation, the no-interaction model and extended Cox regression model are found to be more
appropriate models for survival data than the Cox regression model if the proportional
hazards assumption does not hold. In these models, only the extended resection vari-
able does not satisfy the proportional hazards assumption and cigarette consumption,
tumour size and tumour stage are found to be important risk factors which affect the
failure. However these models give almost the same hazard ratios.

In case of nonproportional hazards, using the stratified Cox regression and extended
Cox regression models is found to be more appropriate than the simple Cox regression
model. In our study this claim is supported by the application.
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