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Let X be a del Pezzo surface of degree one over an algebraically closed field, and

let Cox(X) be its total coordinate ring. We prove the missing case of a conjecture

of Batyrev and Popov, which states that Cox(X) is a quadratic algebra. We use

a complex of vector spaces whose homology determines part of the structure of

the minimal free Pic(X)-graded resolution of Cox(X) over a polynomial ring.

We show that sufficiently many Betti numbers of this minimal free resolution

vanish to establish the conjecture.

1. Introduction

Let k be an algebraically closed field and let X be a smooth projective integral

scheme over k. Assume that the Picard group Pic(X) is freely generated by the

classes of divisors D0, D1, . . . , Dr . The total coordinate ring, or Cox ring of X
with respect to this basis is given by

Cox(X) :=
⊕

(m0,...,mr )∈Zr+1

H0
(

X, OX (m0 D0 + · · · + mr Dr )
)

,

with multiplication induced by the multiplication of functions in k(X). Different

choices of bases yield (noncanonically) isomorphic Cox rings.

The first appearance of Cox rings was in the context of toric varieties in [Cox

1995]. In that paper Cox proves that if X is a toric variety then its total coordi-

nate ring is a finitely generated multigraded polynomial ring, and that X can be

recovered as a quotient of an open subset of Spec(Cox(X)) by the action of a torus.

Cox rings are finitely generated k-algebras in several other cases, including del

Pezzo surfaces [Batyrev and Popov 2004], rational surfaces with big anticanonical

divisor [Testa et al. 2009], blow-ups of P
n at points lying on a rational normal

curve [Castravet and Tevelev 2006] and wonderful varieties [Brion 2007]. All

these varieties are examples of Mori dream spaces [Hu and Keel 2000], and for this
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class the Cox ring of X captures much of the birational geometry of the variety.

For example, the effective and nef cones of X are finitely generated polyhedral

cones and there are only finitely many varieties isomorphic to X in codimension

one, satisfying certain mild restrictions. To add to the long list of consequences of

the landmark paper [Birkar et al. 2008], we note that log Fano varieties are also

Mori dream spaces.

Colliot-Thélène and Sansuc introduced universal torsors to aid the study of the

Hasse principle and weak approximation on an algebraic variety X over a number

field [Colliot-Thélène and Sansuc 1980; 1987]; see also [Colliot-Thélène et al.

1984]. If the Cox ring of X is finitely generated, then the universal torsor of X is

an open subset of Spec(Cox(X)), an affine variety for which explicit presentations

have been calculated in many cases [Hassett and Tschinkel 2004; Hassett 2004].

Starting with Salberger [1998], universal torsors have been successfully applied to

the problem of counting points of bounded height on many classes of varieties. The

expository article [Peyre 2004] has a very readable account of the ideas involved.

The explicit descriptions of universal torsors via Cox rings have led to explicit

examples of generalized del Pezzo surfaces that satisfy Manin’s conjectures for

points of bounded height [de la Bretèche and Browning 2007; de la Bretèche et al.

2007].

Batyrev and Popov [2004] systematically study the Cox rings of del Pezzo sur-

faces X/k. They show that Cox(X) is a finitely generated k-algebra; moreover, if

deg(X)≤ 6 then Cox(X) is generated by sections whose classes have anticanonical

degree one [Batyrev and Popov 2004, Theorem 3.2]. Let G denote a minimal set

of homogeneous generators of Cox(X), and denote by k[G] the polynomial ring

whose variables are indexed by the elements of G. As a result, Cox(X) is a quotient

of k[G]:

Cox(X) ∼= k[G]/IX .

Batyrev and Popov provided a conjectural description of the generators of IX .

Conjecture 1.1 [Batyrev and Popov 2004]. Let X be a del Pezzo surface. The

ideal IX is generated by quadrics.

Quadratic relations have a clear geometric meaning: linear systems associated

to degree two nef divisors on X have many more reducible elements than their di-

mension; thus there are linear dependence relations among degree two monomials

in k[G]. All quadratic relations arise in this way (see page 758).

Remark 1.2. Del Pezzo surfaces of degree at least six are toric varieties and hence

their Cox rings are polynomial rings. The Cox ring of a del Pezzo surface of degree

five is the homogeneous coordinate ring of the Grassmannian Gr(2, 5) [Batyrev

and Popov 2004].
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Several partial results are known about this conjecture. Stillman, Testa, and Ve-

lasco established it for del Pezzo surfaces of degree four, and general del Pezzo sur-

faces of degree three [Stillman et al. 2007]. The conjecture was proved in [Laface

and Velasco 2009] for surfaces of degree at least two. Recently, Serganova and

Skorobogatov [2007; 2008] established Conjecture 1.1 up to radical for surfaces

of degree at least two, using representation theoretic methods, (see also [Derenthal

2007] for related work). In all cases, the conjecture for degree one surfaces eluded

proof. The purpose of this paper is to fill in this gap for surfaces defined over a

field of characteristic different from two, as well as for certain general surfaces in

characteristic two that we call sweeping (see Definition 4.3).

Theorem 1.3. Let X be a del Pezzo surface of degree one; if the characteristic of
k is two, then assume that X is sweeping. The ideal IX is generated by quadrics.

Remark 1.4. Our method of proof is cohomological in nature and relies mainly on

the Kawamata–Viehweg vanishing theorem. By [Terakawa 1998] and [Xie 2008],

this theorem is independent of the characteristic of k for rational surfaces.

The argument we give works for del Pezzo surfaces of every degree. We include

a short proof of the conjecture for del Pezzo surfaces of degree at least two in

Section 10. An alternative proof of Conjecture 1.1 for general del Pezzo surfaces

in characteristic zero, obtained independently by computational means, appears

in a paper by Sturmfels and Xu [2008]. They apply the theory of sagbi bases to

construct an initial toric ideal of IX which is generated by quadrics. Geometrically

this corresponds to a degeneration of the universal torsor on X to a suitable toric

variety.

In order to prove Theorem 1.3, we modify the approach taken in [Laface and

Velasco 2009]. We use a complex of vector spaces whose homology determines

part of the structure of the minimal free Pic(X)-graded resolution of Cox(X) over

a polynomial ring. We show that sufficiently many Betti numbers of this minimal

free resolution vanish to establish the theorem. We hope that similar techniques

can be applied to obtain presentations of Cox rings of other classes of varieties, for

example singular del Pezzo surfaces, blow-ups of P
n at points lying on the rational

normal curve of degree n and M0,n .

The paper is organized as follows. In Section 2 we define del Pezzo surfaces, fix

presentations for their Cox rings and establish notation for the rest of the paper. In

Section 3 we study the nef cone of del Pezzo surfaces and prove some geometric

results. In Section 4 we analyze low-degree linear systems on del Pezzo surfaces

of degree at most two. Our proof of Theorem 1.3 uses [Batyrev and Popov 2004,

Proposition 3.4]. However, the proof given by those authors for their proposition

has a gap: it applies only to general del Pezzo surfaces of degree one in charac-

teristic not two [Popov 2004]. Thus we prove Proposition 4.4 in order to establish
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Theorem 1.3 for all del Pezzo surfaces of degree one in characteristic not two.

In Section 5 we review the approach of [Laface and Velasco 2009] to study the

ideal of relations of finitely generated Cox rings, adapting it to the case of degree

one del Pezzo surfaces. In Section 6 we define the notions of capturability of a

divisor and stopping criterion, and prove Theorem 6.7, the main ingredients in our

proof of the Batyrev–Popov conjecture. In Section 7 we show the capturability of

most divisors on del Pezzo surfaces of degree one. We then handle the remaining

cases for del Pezzo surfaces of degree one (Sections 8, 9) and del Pezzo surfaces

of higher degree (Section 10). In Section 11 we finish the proof of the Batyrev–

Popov conjecture and give the first multigraded Betti numbers of the Cox rings of

del Pezzo surfaces.

2. Notation and background on del Pezzo surfaces

We briefly review some facts about del Pezzo surfaces and establish much of the

paper’s notation along the way.

Definition 2.1. A del Pezzo surface X is a smooth, projective surface over k whose

anticanonical divisor −K X is ample. The degree of X is the integer (K X )2.

Picard groups and Cox rings. A del Pezzo surface X not isomorphic to P
1 × P

1

is isomorphic to a blow-up of P
2 centered at r ≤ 8 points in general position: this

means no three points on a line, no six on a conic and no eight on a singular cubic

with a singularity at one of the points. Let L be the inverse image of a line in

P
2 and let E1, . . . , Er be the exceptional divisors corresponding to the blown-up

points. Then
(

L , E1, . . . , Er ) is a basis for Pic(X), and

Cox(X) :=
⊕

(m0,...,mr )∈Zr+1

H0
(

X, OX (m0L + m1 E1 + · · · + mr Er )
)

.

If X has degree one, then with the above choice of basis, the classes in Pic(X) of

the 240 exceptional curves are given in Table 1 [Manin 1986].

# of curves Picard degree (up to a permutation of E1, . . . , E8)

8 E1

28 L − E1 − E2

56 2L − E1 − E2 − E3 − E4 − E5

56 3L − 2E1 − E2 − E3 − E4 − E5 − E6 − E7

56 4L − 2E1 − 2E2 − 2E3 − E4 − E5 − E6 − E7 − E8

28 5L − 2E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6 − E7 − E8

8 6L − 3E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6 − 2E7 − 2E8

Table 1. Exceptional curves on X .
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For a del Pezzo surface X of any degree, we let C denote the set of exceptional

curves on X . If X has degree one, we let

G := C ∪ {K1, K2},

where K1, K2 ∈ |−K X |; if X has degree at least two, then we let

G := C.

In all cases, we write k[G] for the polynomial ring whose variables are indexed

by the elements of G. By [Batyrev and Popov 2004, Theorem 3.2], we know

that Cox(X) is a finitely generated k-algebra, generated by sections whose divisor

classes have anticanonical degree one. For all G ∈ G, we let g ∈ H0
(

X, OX (G)
)

be a nonzero element. We typically use uppercase letters for divisors on X and

we denote the generator of k[G] associated to an exceptional curve E by the corre-

sponding lowercase letter e. If X has degree one, then we denote the generators of

k[G] corresponding to K1 and K2 by k1 and k2, respectively. Furthermore, given

any exceptional curve E ∈ C, we let E ′ denote the unique exceptional curve whose

divisor class is −2K X −E , and we denote accordingly the generator corresponding

to E ′ by e′.

There is a surjective morphism

k[G] → Cox(X)

that maps g to g. We denote the kernel of this map by IX .

For any divisor D on X , any integer n and any Pic(X)-graded ideal J ⊂ k[G],

denote by JD the vector space of homogeneous elements of Pic(X)-degree D, by

Jn the vector space of the homogeneous elements of anticanonical degree n and

call them, respectively, the degree D part of J and the degree n part of J .

Finally, let JX be the ideal generated by (IX )2; since JX ⊂ IX , there is a surjec-

tion

(k[G]/JX )D → (k[G]/IX )D.

This map plays a role in Section 8.

3. Remarks on the nef cone of del Pezzo surfaces

In this section we collect basic results on del Pezzo surfaces that we use in the

paper. The following result is well known [Debarre 2001, page 148, 6.5].

Proposition 3.1. Let X be a del Pezzo surface of degree d ≤ 7. A divisor class
C ∈Pic(X) is nef (respectively ample) if and only if C ·E ≥0 (respectively C ·E >0)

for all (−1)-curves E ⊂ X.

Definition 3.2. Let X be a del Pezzo surface. The minimal ample divisor on X is

the ample divisor AX defined in the following table:
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X AX (K X )2

P
2 − 1

3
K X 9

P
1 × P

1 − 1
2

K X 8

Blp(P
2) 2L − E 8

Blp1,...,pr (P
2) −K X 9 − r

We also extend the list to include X = P
1 and we define the minimal ample divisor

on P
1 to be the class of a point. To simplify the notation, if b : X → Y is a

morphism, then we may denote b∗(AY ) by AY . Minimal ample divisors allow us

to give a geometric description of nef divisors.

Corollary 3.3. Let Xr be a del Pezzo surface of degree 9 − r . Let D ∈ Pic(Xr ) be
a nef divisor. Then we can find nonnegative integers n0, n1, . . . , nr and a sequence
of morphisms Xr −→ Xr−1 −→ · · · −→ X1 −→ X0 such that

• each morphism is the contraction of a (−1)-curve, except for X1 → X0, which
is allowed to be a conic bundle; and

• D can be expressed as

D = nr AXr + nr−1 AXr−1
+ · · · + n0 AX0

.

Proof. We proceed by induction on r , the cases r ≤ 1 being immediate. Suppose

that r ≥ 2 and let n := min
{

L · D | L ⊂ X is a (−1)-curve}. By assumption we

have n ≥ 0. Let D := D + nK Xr ; note that D is nef by Proposition 3.1. Choose a

(−1)-curve L0 ⊂ X such that D · L0 = 0. Thus D is the pull-back of a nef divisor

on the del Pezzo surface Xr−1 obtained by contracting L0. The result follows by

the inductive hypothesis. �

Observe that the integer nr in the statement of the corollary is the nef threshold

([Reid 1997, page 126]) of the divisor D with respect to the minimal ample divisor

of Xr . The minimal ample divisor is minimal in the sense that for every ample

divisor A on X , the divisor A − AX is nef: this follows from Corollary 3.3.

By [Kollár 1996, Proposition III.3.4] and Corollary 3.3 we deduce that every

nef divisor N on a del Pezzo surface is effective and that |2N | is base-point free.

Moreover, if N is a nef nonbig divisor, then N is a multiple of a conic bundle.

Let X → Y be a morphism with connected fibers and let A be the pull-back to

X of the minimal ample divisor on Y . If Y ≃ P
1, then we call A a conic. If Y ≃ P

2,

then we call A a twisted cubic, by analogy with the case of cubic surfaces. Finally,

if Y is a del Pezzo surface of degree d, then we call A an anticanonical divisor of
degree d in X .

We summarize and systematize the previous discussion in the following lemma.
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Lemma 3.4. Let X be a del Pezzo surface. The cone of nef divisors on X is gener-
ated by the following divisors:

(1) the conics;

(2) the twisted cubics;

(3) the anticanonical divisors of degree d ≤ 3 in X.

In particular, if N is any nonzero nef divisor on X , then we may find r :=8−deg(X)

distinct exceptional curves E1, E2, . . . , Er on X such that N −E1, . . . , N −Er are
either nef or the sum of a nef divisor and an exceptional curve, unless deg(X) = 1

and N = −K X .

Proof. The divisors in the list are clearly nef. Conversely, if D is any nef divisor,

then either D is a multiple of a conic, and we are done, or a positive multiple of

D induces a morphism with connected fibers X → Y . It is clear that if A is the

pull-back to X of the minimal ample divisor on Y , then D− A is nef. By induction

on n := −K X · D, we therefore reduce to showing that the anticanonical divisors of

degree d ≥ 4 in X are nonnegative linear combinations of the divisors listed. This

is immediate.

For the second statement, note that it suffices to check it for the divisors in the

list, and for −2K X if deg(X) = 1, where the result is easy to verify. �

The following lemma will be used in the proof of Lemma 7.7.

Lemma 3.5. Let X be a del Pezzo surface, let b : X → P
1 be a conic bundle

with fiber class Q and let C be an exceptional curve such that C · Q = 2. There
are exactly five reducible fibers of b such that C intersects both components. In
particular, if deg(X) = 1, then there are two reducible fibers of b such that C is
disjoint from one of the two components in each fiber.

Remark 3.6. If deg(X) ≥ 4, then there are no exceptional curves C such that

C · Q = 2, and hence the lemma applies nontrivially only to the cases deg(X) ≤ 3.

Proof. Let S and T be the components of a reducible fiber of b. Since C · Q = 2,

there are only two possibilities for the intersection numbers C ·S and C ·T : they are

either both equal to one, or one of them is zero and the other is two. Suppose that

there are k reducible fibers of b such that the curve E intersects both components.

Thus contracting all the components in fibers of b disjoint from E and one compo-

nent in each of the remaining reducible fibers, we obtain a relatively minimal ruled

surface b′ : X ′ → P
1, together with a smooth rational curve C ′ in X ′, the image of

C , having anticanonical degree k + 1, square k − 1 and intersection number two

with a fiber of b′. Since X ′ is isomorphic to either P
1 × P

1 or Blp(P
2), a direct

calculation shows that this is only possible if X ′ ≃ P
1 × P

1 and k = 5.

The last statement follows from the fact that any conic bundle structure on X
contains exactly 8 − deg(X) reducible fibers. �
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4. Low-degree linear systems

The lemmas in this section determine subsets of monomials that span Cox(X)D

when (deg(X), D) ∈ {(2, −K X ), (1, −2K X )}.

Lemma 4.1. Let X be a del Pezzo surface of degree two. The linear system |−K X |

is spanned by any five of its reducible elements.

Proof. The linear system |−K X | defines a separable morphism of degree two

ϕ : X → P
2 such that every pair of exceptional curves E, E ′ on X with E + E ′ =

−K X maps under ϕ to the same line in P
2. To prove the result it suffices to show

that any five of these lines have no base-point. Suppose that p ∈ P
2 is contained in

kp ≥ 4 such lines; let q ∈ X be a point in the inverse image of p. By construction,

the point q is contained in kp exceptional curves. Let E be an exceptional curve

containing q and let E ′ be the exceptional curve such that E+E ′ =−K X . The curve

E ′ is disjoint from the exceptional curves F such that F · E = 1, since F · E ′ = 0.

Thus contracting E ′ we obtain a del Pezzo surface Y of degree three with a point

contained in at least kp − 1 exceptional curves. The anticanonical linear system

embeds Y as a smooth cubic surface in P
3, and exceptional curves through a point

y ∈Y are lines contained in the tangent plane to Y at y. This implies that kp−1≤3,

and the result follows. �

To study the case of degree one del Pezzo surfaces we begin with a lemma.

Lemma 4.2. Let R ⊂ P
3 be a curve, let r ∈ R be a smooth point and let p ∈ P

3

be a closed point different from r. Let H be a plane through p intersecting R at r
with order of contact m ≥ 2. Let πR : R → P

2 be the projection away from p, let
R = πR(R), and let γ : R 99K (P2)∨ be the composition of πR and the Gauss map
of R, i.e., the map sending a general point q ∈ R to the tangent line to R at πR(q).
Then the map γ is defined at r and one of the following occurs:

(1) the tangent line to R at r contains p, or

(2) the length of the localization at r of the fiber of γ at γ (r) equals m − 1 if
char(k) ∤ m and it equals m if char(k) | m.

Proof. The rational map γ is defined at r since r ∈ R is a smooth point and the

range of γ is projective. Choose homogeneous coordinates X0, X1, X2, X3 on P
3

so that p = [1, 0, 0, 1] and r = [0, 0, 0, 1]. In these coordinates H is defined

by the linear form AX1 + B X2, for some A, B ∈ k. In the affine coordinates

(x0 = X0/X3, x1 = X1/X3, x2 = X2/X3) the curve R is defined near the origin r by

a complete intersection ( f1, f2) and thus its embedded tangent space is the kernel

of the matrix DF(r) =
(

(∂ fi/∂x j )(r)
)

with i ∈ {1, 2} and j ∈ {0, 1, 2}. Therefore

either the first column of DF(r) vanishes — that is, ∂ f1/∂x0 and ∂ f2/∂x0 vanish

at r — and the tangent line to R through r contains p, or some 2 × 2 minor of



Cox rings of degree one del Pezzo surfaces 737

DF(r) containing the first column is nonzero, since otherwise all 2 × 2 minors

of DF(r) vanish, contradicting the assumption that R is nonsingular at r . In the

latter case, the completion of the local ring of R at r is isomorphic to k[[t]] via a

parametrization in formal power series of the form (x0(t), x1(t), t). Since H has

order of contact m at r , the power series Ax1(t)+ Bt vanishes to order m so A 6= 0

and we have

x1(t) = −
B

A
t + cm tm + (higher order terms)

with cm 6= 0. The equation of the tangent line to R at πR(x0(t), x1(t), t, 1) is

−(X1 − x1(t)) + (X2 − t)x ′
1(t) = 0,

so the morphism γ is given by

(x0(t), x1(t), t, 1) 7−→ [−1, x ′
1(t), x1(t) − t x ′

1(t)].

The localization at r of the fiber of γ at γ (r) is thus given by the ideal

I = (Ax ′
1(t) + B, x1(t) − t x ′

1(t)).

Since we have

Ax ′
1(t) + B = Acmmtm−1 + (higher order terms),

x1(t) − t x ′
1(y) = cm(1 − m)tm + (higher order terms),

it follows that either char(k) ∤ m and I = (tm−1), or char(k) | m and I = (tm) as we

wanted to show. �

Let X be a del Pezzo surface of degree one. The linear system |−2K X | is base-

point free and the image of the associated morphism κ : X → |−2K X |∗ ≃ P
3 is a

cone W over a smooth conic; the morphism κ is a separable double cover of W
branched at the cone vertex w ∈ W and along a divisor R ⊂ W . We call tritangent
planes of X the elements of |−2K X | supported on exceptional curves, and think of

them as planes in |−2K X |∗ =P
3. There are 120 such planes and they do not contain

the vertex w of the cone, since the planes containing w correspond to elements of

|−2K X | supported on the sum of two effective anticanonical divisors (see [Kollár

1996, Section III.3] and [Manin 1986, Chapter IV] for details).

Definition 4.3. A del Pezzo surface X of degree one over a field k is sweeping if

any 119 tritangent planes of X span |−2K X |.

Our goal in the remainder of this section is to show that every del Pezzo surface

of degree one in characteristic not two is sweeping; if the characteristic is two, then

we only show that a general del Pezzo surface of degree one is sweeping. In the

following sections we prove that if X is a sweeping del Pezzo surface of degree

one, then Conjecture 1.1 holds for X .
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From here through page 740 we assume that k does not have characteristic 2.

Then the curve R is smooth and it is the complete intersection of W with a cubic

surface. Hence R is a canonical curve of genus four and degree six admitting

a unique morphism of degree three to P
1 (up to changes of coordinates on P

1)

obtained by projecting away from w. The tritangent planes to R are planes in P
3

not containing w whose intersection with R is twice an effective divisor.

Proposition 4.4. If X is a del Pezzo surface of degree one over a field k of char-
acteristic different from two, then X is sweeping. More precisely, any 113 of the
tritangent planes of X span |−2K X |.

Proof. Let p ∈ P
3 be a closed point. We say that a tritangent plane H containing

p is p-regular (resp. p-singular) if p does not belong to (resp. p belongs to) a

tangent line to R at some point in H ∩ R; denote by kp the number of tritangent

planes containing p and by kr
p (resp. ks

p) the number of p-regular (resp. p-singular)

tritangent planes. Suppose that the point p belongs to R; then there are no p-

regular tritangent planes, since every tritangent plane containing p contains also

the tangent line to R at p. Thus if q is any point on the tangent line to R at p, we

have kp ≤ ks
q ≤ kq , so it suffices to prove the proposition assuming that p ∈ P

3 is a

closed point not in R. Therefore let p ∈ P
3 \ R be a closed point; projecting away

from p we obtain a morphism πR : R → P
2; let R = πR(R). Let γ̄ : R 99K (P2)∨

be the Gauss map, let γ : R → (P2)∨ be the unique morphism that extends the

composition γ̄ ◦(πR), and let Ř = γ (R). The morphism γ factors as R
g
−→ N

ν
−→ Ř,

where ν : N → Ř is the normalization of Ř. We summarize these definitions in a

commutative diagram:

R
γ̄

//___ Ř

R

πR

OO

γ
??

g
// N

ν

OO

(4-1)

The argument consists in identifying the contributions of the tritangent planes

through p in terms of combinatorial invariants of Diagram 1. More precisely, the

p-singular tritangent planes correspond (at most 7 : 1) to the points of R where the

morphism πR is ramified; the p-regular tritangent planes correspond to points of

Ř where (the separable part of) γ is ramified.

We now estimate the number ks
p of p-singular tritangent planes.

Lemma 4.5. As above, let R be the ramification divisor of κ .

(1) If ℓ ⊂ P
3 is a tangent line to R, then there are at most 7 tritangent planes

containing ℓ;

(2) Let p ∈ P
3 be a closed point not in R. There are at most 42 p-singular

tritangent planes.
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Proof of Lemma 4.5. (1) Let r ∈ R be a point such that ℓ is tangent to R at r and let

α : R → P
1 be the morphism obtained by considering the pencil of planes in P

3

containing ℓ. The morphism α has degree at most four since every plane containing

ℓ is tangent to R at r and hence intersects R at r with multiplicity at least two. If

α were not separable, then the characteristic of k would be three (recall that we

assume char(k) 6= 2), α would be the Frobenius morphism, and the curve R would

be rational, which is not the case. We deduce that α is separable; if α has degree

three, then ℓ contains the vertex w of the cone W and in this case no tritangent

plane contains ℓ. Moreover, α cannot have degree two since R is not hyperelliptic.

Thus α is separable and we reduce to the case in which the degree of α is four. If

H is a tritangent plane to R containing ℓ, then we have R∩ H = 2((r)+(p)+(q)),

and hence the contribution of H to the ramification divisor of α is at least two.

From the Hurwitz formula we deduce that the ramification divisor has degree 14

and r is contained in at most 14/2 = 7 tritangent planes.

(2) First, we reduce to the case that the morphism πR has degree at most two (and

in particular it is separable). Indeed, the degree of πR divides six, and since R is not

contained in a plane, the image R cannot be a line; therefore it suffices to analyze

the cases in which the degree of πR equals three. If πR were not separable of degree

three, then it would be purely inseparable and R would have degree two but geo-

metric genus four, which is not possible. If πR is separable of degree three, then p
is the vertex w of the cone W and hence ks

p = 0, since there are no tritangent planes

through w. This completes the reduction. Note that if the degree of πR equals two,

then the image of πR is a smooth plane cubic, since R is not hyperelliptic.

Second, by [Hartshorne 1977, Proposition IV.3.4], the morphism πR ramifies at

every tangent line to R through p.

Finally, the image of a ramification point of πR is either a singular point of R
or a ramification point of the morphism induced by πR to the normalization of R.

Using the Hurwitz formula, the formula for the arithmetic genus of a plane curve,

and the equality deg(R) · deg(πR) = 6, we deduce that the number of points in P
2

corresponding to ramification points of πR is at most six. Thus there are at most

six lines in P
3 containing p such that every p-singular tritangent plane contains

one of these lines. We conclude using Lemma 4.5(1). �

By Lemma 4.5(2) we have ks
p ≤ 42. Thus to prove the proposition, it suffices to

show that kr
p ≤ 70.

Define the torsion sheaf 1 on Ř by the exact sequence

0 → OŘ → ν∗ON → 1 → 0. (4-2)

From the long exact cohomology sequence, we deduce that

h1(N , ON ) + h0(1) = h1(Ř, OŘ). (4-3)
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Applying the Hurwitz formula to the composition of πR with a projection of R
from a general point of P

2, we obtain deg(Ř) ≤ 18, and hence h1(Ř, OŘ) ≤ 136.

For each tritangent plane H through p denote by ℓH ∈ Ř ⊂ (P2)∨ the point

corresponding to the image in P
2 of H under the projection away from p. We

want to estimate the contribution of the point ℓH ∈ Ř to h0(1). Note that this

contribution is at least length(Oν−1(ℓH )) − 1, and that

length(Oν−1(ℓH )) · deg(g) = length(Oγ −1(ℓH )). (4-4)

Factor g as the composition of a power of the Frobenius morphism, followed by

a separable morphism gs . Let di be the inseparable degree of g and ds = deg(gs)

be the separable degree of g, let also ď denote the degree of Ř; recall that we have

di ds ď ≤ 18.

Suppose first that di ds = 1. By Lemma 4.2 and (4-4) each p-regular tritangent

plane contributes at least 2 to h0(1); hence we have h0(1)≥ 2kr
p, and we conclude

that kr
p ≤ 68.

Suppose now that di ds > 1 and hence ď ≤ 9. By the Hurwitz formula, the degree

of the ramification divisor of the morphism gs is at most 6+2 deg(gs)≤6+36=42.

The curve Ř has degree at most nine, and hence it has at most 28 singular points.

Let U ⊂ N × P
3 be the universal family of planes through p tangent to R and

let Z := (U ∩ N × R). Thus Z defines a family of closed subschemes of R ⊂ P
3 of

dimension zero and degree six. The geometric generic fiber of Z → N therefore

determines a partition of 6 that we call the generic splitting type. Alternatively, if

H is a plane through p tangent to R, then H ∩ R determines an effective divisor of

degree six on R; if H is general with the required properties, then the multiplicities

of the geometric points of H ∩ R are the generic splitting type.

By [Hefez and Kleiman 1985, Theorem 3.5] and [Kaji 1992, page 529], the

generic splitting type of γ is of the form (a, . . . , a, 1, . . . , 1), where either a = 2

and the morphism is separable or a is the inseparable degree of the rational map

R → Ř. The possibilities are

(5, 1), (4, 1, 1), (3, 3), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1).

If the generic splitting type is (2, 2, 2), then the point p is the cone vertex w and in

this case kp = 0. The partition (2, 1, 1, 1, 1) corresponds to the case di ds = 1 and

we already analyzed it. The partitions (5, 1) and (4, 1, 1) can also be excluded,

since they imply that R is birational to a plane curve of degree at most ⌊18/4⌋ = 4

and hence cannot have arithmetic genus four.

Examining the remaining generic splitting types and using Lemma 4.2, we de-

duce that the p-regular tritangent planes correspond to ramification points of gs . In

particular, at most 42 + 28 = 70 such points exist, and the proposition follows. �
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Remark 4.6. In characteristic two the curve R above has degree 3, contains the

cone vertex w, and is not necessarily smooth [Cragnolini and Oliverio 2000]. While

we are not able to prove that every del Pezzo surface of degree one in characteristic

two is sweeping, we prove it for a general such surface. We write an explicit

example of a del Pezzo surface S of degree two defined over F2 and five tritangent

planes to S no four of which share a common point. Thus S is sweeping; since the

property of being sweeping is open, we conclude that a general del Pezzo surface of

degree one in characteristic two is sweeping. We found this example using Magma

[Bosma et al. 1997].

Let P := P(1, 1, 2, 3) be the weighted projective space over F2 with coordinates

x, y, z, w and respective weights 1, 1, 2, 3. Let S ⊂ P be the surface defined by

S : {w2 + z3 + wxz + wy3 + x6 = 0}.

It is immediate to check that S is smooth. Let t ∈ F2 be an element satisfying

t2 + t + 1 = 0; any four of the homogeneous forms

z + x2, z + y2, z + t x2, z + t x2 + t2xy + y2, z + t x2 + xy + t2 y2

are linearly independent. Moreover, they represent tritangent planes since we have

F(x, y, x2, w) = w(w+x3+y3),

F(x, y, y2, w) =
(

w+(x3+t xy2+x2 y+t y3)
)(

w+(x3+t2xy2+x2 y+t2 y3)
)

,

F(x, y, t x2, w) = w(w+t x3+y3),

F(x, y, t x2+t2xy+y2, w) =
(

w+y(x2+xy+t y2)
)(

w+(t x3+t2 y3+t x2 y)
)

,

F(x, y, t x2+xy+t2 y2, w) =
(

w+t y(x2+t xy+y2)
)(

w+t (x3+t x2 y+t y3)
)

,

and we deduce that S is sweeping.

The proof of Corollary 4.7 below given in [Batyrev and Popov 2004, Propo-

sition 3.4] contains a gap pointed out in [Popov 2004]: the original argument

implicitly assumes that the characteristic of the base field is not two, and reduces

the proof to the fact that H0
(

X, OX (−2K X )
)

is spanned by the sections supported

on exceptional curves. Proposition 4.4 fixes this gap.

Corollary 4.7. Let X be a del Pezzo surface of degree one in characteristic not
two. If D 6= −K X is an effective divisor, then H0

(

X, OX (D)
)

is spanned by global
sections supported on exceptional curves. �

Remark 4.8. A general del Pezzo surface of degree one in characteristic two is

sweeping; therefore Corollary 4.7 also holds for such surfaces.
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5. Betti numbers and the Batyrev–Popov conjecture

We review the approach of [Laface and Velasco 2009] to study the ideal of re-

lations of Cox rings. As usual, let X be a del Pezzo surface, and let R = k[G].

Throughout this section D denotes a divisor on X . Since R is positively graded

(by anticanonical degree), every finitely generated Pic(X)-graded R-module has a

unique minimal Pic(X)-graded free resolution. For the module Cox(X) = R/IX

this resolution is of the form

· · · →
⊕

D∈Pic(X)

R(−D)b2,D →
⊕

D∈Pic(X)

R(−D)b1,D → R → 0,

where the rightmost nonzero map is given by a row matrix whose nonzero entries

are a set of minimal generators of the ideal IX . Since the differential of the resolu-

tion has degree 0, it follows that IX has exactly b1,D(Cox(X)) minimal generators

of Picard degree D.

Let K be the Koszul complex on G. Consider the degree D part of the complex

Cox(X) ⊗R K. Then

Hi ((Cox(X) ⊗R K)D) = (Hi (Cox(X) ⊗R K))D

= (TorR
i (Cox(X), k))D = kbi,D(Cox(X)),

where the equalities on the last line follow since TorR
i (A, B) is symmetric in A

and B and the Koszul complex is the minimal free resolution of k over R. Hence

we have the equality

dimk(Hi ((Cox(X) ⊗R K)D)) = bi,D(Cox(X)).

Thus, Conjecture 1.1 is equivalent to the statement that b1,D(Cox(X)) = 0 for all

D ∈ Pic(X) with −K X · D ≥ 3. This is the form of the conjecture that we prove.

Let X be a del Pezzo surface of degree one. To compute the Betti numbers

b1,D(Cox(X)), denote by C1, . . . , C240 the exceptional curves of X , and let

C240+i := Ki

for i ∈ {1, 2}. With this notation, the part of the complex relevant to our task is

⊕

1≤i< j≤242

H0(X, OX (D−Ci −C j ))
d2
−→

242
⊕

i=1

H0(X, OX (D−Ci ))
d1
−→ H0(X, OX (D)),

where d2 sends σi j ∈ H0(X, OX (D − Ci − C j )) to

(0, . . . , 0, σi j c j , 0, . . . , 0, −σi j ci , 0, . . . , 0)

and d1 sends σi ∈ H0
(

X, OX (D − Ci )
)

to σi ci .
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A cycle is an element of ker d1; a boundary is an element of im d2. The support
of a cycle σ = (. . . , σi , . . .) is

‖σ‖ = {Ci : σi 6= 0}

and the size of the support is the cardinality of ‖σ‖, denoted by |σ |.

Strategy. In order to show that b1,D(Cox(X)) = 0 whenever −K X · D ≥ 3, we split

the divisor classes D as follows:

(1) D is ample and has anticanonical degree at least four (Section 7);

(2) D is ample and has anticanonical degree three (Section 8);

(3) D is not ample (Section 9).

The case when D is not ample follows by induction on the degree of the del

Pezzo surface, and the ample divisors of anticanonical degree three are dealt with

algebraically. In order to show that b1,D(Cox(X)) = 0 whenever D is ample and

−K X · D ≥ 4 we show that every cycle is a boundary by arguing as follows.

• We describe constructions through which a divisor may be removed from the

support of a cycle using boundaries, at the cost of possibly introducing new

divisors in the support of the cycle.

• We apply these constructions to all cycles in a systematic way to reduce their

support to at most two elements.

We conclude using the following lemma.

Lemma 5.1. Any cycle σ with |σ | ≤ 2 is a boundary.

Proof. We deduce from [Elizondo et al. 2004, Theorem 1.1] that the Cox rings

of del Pezzo surfaces are unique factorization domains. The statement follows

immediately. �

6. Capturability and stopping criteria

We introduce the following terminology to aide us in our search of ways to reduce

the support of a cycle. We keep the notation of the previous section.

Definition 6.1. A capture move for a divisor D is a pair (S, C), where S ⊂ G,

C ∈ G \ S and the map

⊕

S∈S

H0(X, OX (D − S − C)) ⊗ H0
(

X, OX (S)) −→ H0(X, OX (D − C))

induced by tensor product of sections is surjective. We say that C is the captured
curve, and that C is capturable for D by S.
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Let T be a set; for a direct sum
⊕

t∈T Vt of vector spaces indexed by T and

T ′ ⊂ T , we write
∑

t∈T ′ at êt for the element (bt)t∈T of
⊕

t∈T Vt where bt = at if

t ∈ T ′ and bt = 0 otherwise. As usual, if S ∈ G, we denote by s the chosen global

section of OX (S). Let (S, C) be a capture move for D, let σC ∈ H0(X, OX (D−C)),

and let σ ∈
⊕

H0(X, OX (D − Ci )) be the element corresponding to σC . Then we

have

σC =
∑

S∈S

pss, ps ∈ H0(X, OX (D − S − C)),

and thus we obtain

σ =
∑

S∈S

psc ês + d2

(

∑

S∈S

εC S ps êC+S

)

∈
⊕

i

H0(X, OX (D − Ci )) (6-1)

where εC S ∈ {±1}.

Hence, if σ is a cycle and there is a capture move (S, C), then we can modify

σ by a boundary so that C /∈ ‖σ‖. In this sense we have captured the curve C
from the support of σ . Observe, however, that this modification adds a subset of

S to ‖σ‖, so a priori the size of the support may not have decreased. We need to

find and apply capture moves in an organized way to ensure that we are genuinely

decreasing the size of the support of a cycle.

Finally note that if (S, C) is a capture move and S
′ ⊃ S with C /∈ S

′, then

(S′, C) is also a capture move. We frequently use this observation without explic-

itly mentioning it.

Lemma 6.2. Let A, B and C be distinct exceptional curves on X , with A and
B disjoint, and let D be any divisor. If H1

(

X, OX (D − A − B − C)
)

= 0, then
({A, B}, C) is a capture move for D. In particular, if (−K X + D − A − B − C) is
nef , and if either it is big or it has anticanonical degree two, then ({A, B}, C) is a
capture move for D.

Proof. Since A and B are disjoint, there is an exact sequence of sheaves

0 → OX (−A − B) → OX (−A) ⊕ OX (−B) → OX → 0.

Tensoring with OX (D − C) we obtain the short exact sequence

0 → OX (D− A− B −C) → OX (D− A−C)⊕OX (D− B −C) → OX (D−C) → 0

and the desired surjectivity follows from the associated long exact sequence in

cohomology and the assumption that

H1
(

X, OX (D − A − B − C)
)

= 0.

The last statement follows from the Kawamata–Viehweg vanishing theorem when

−K X + D − A − B −C is nef and big. Otherwise −K X + D − A − B −C = Q for
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some conic Q and the statement follows from the exact sequence

0 → OX (K X ) → OX (K X + Q) → OQ(K X + Q) → 0,

by considering the associated long exact sequence in cohomology. �

Lemma 6.3. If X is sweeping, then the pairs (C, K1) and (C, K2) are capture
moves for all D 6= −2K X .

Proof. Since D + K X 6= −K X , it follows from Corollary 4.7 and Remark 4.8

that H0
(

X, OX (D + K X )
)

is spanned by global sections supported on exceptional

curves. Thus the following map is surjective
⊕

S∈C

H0(X, OX (D − S + K X )) ⊗ H0(X, OX (S)) −→ H0(X, OX (D + K X ))

and (C, K1) and (C, K2) are capture moves for D. �

Definition 6.4. A stopping criterion for a divisor D is a set S ⊂ G such that the

following complex is exact:

⊕

Ci ,C j ∈S

i< j

H0(X, OX (D − Ci − C j ))
d2
−→

⊕

Ci ∈S

H0(X, OX (D − Ci ))
d1
−→ H0(X, OX (D))

Remark 6.5. By Lemma 5.1, a subset of G of cardinality two is a stopping criterion

for any divisor D.

The name stopping criterion is motivated by Theorem 6.7: whenever we can

capture all curves in a given degree D by curves contained in a stopping criterion,

then there are no relations in degree D. In this case, we may stop looking for

capture moves.

Definition 6.6. Let D ∈ Pic(X) be a divisor class and let M := (E1, . . . , En) be a

sequence of elements of G; define Si := G\{E1, E2, . . . , Ei } for all i ∈ {1, . . . , n}.

We say that D is capturable (by M) if

(1) (Si , Ei ) is a capture move for D for all i ∈ {1, . . . , n},

(2) Sn is a stopping criterion for D.

Theorem 6.7. Fix a divisor class D ∈ Pic(X). If D is capturable then

b1,D(Cox(X)) = 0

and hence there are no minimal generators of the ideal IX in degree D.

Proof. Let M := (E1, . . . , En) be such that D is capturable by M. Let S0 = G and,

for i ∈ {1, . . . , n} define Si := G \ {E1, E2, . . . , Ei }. We want to show that every

cycle σ is a boundary. Let j (σ ) := max{i ∈ {0, . . . , n} | ‖σ‖ ⊂ Si }. By definition

if ‖σ‖ ⊂ Sn , or equivalently if j (σ ) = n, then σ is a boundary.
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Suppose that j = j (σ ) < n; since (S j+1, E j+1) is a capture move for D, we

deduce as in (6-1) that σ is homologous to a cycle τ such that j (τ ) ≥ j + 1.

Repeating this argument we conclude that σ is homologous to a cycle with support

contained in Sn and thus that σ is itself a boundary. �

7. Ample divisors of anticanonical degree at least four

Let X be a del Pezzo surface of degree one. Assume throughout this section that if

X is defined over a field of characteristic two, then X is sweeping. In this section

we prove that there are no minimal generators of the ideal IX in all sufficiently large

ample degrees. More precisely, if D is an ample divisor such that −K X · D ≥ 4

then we show that D is capturable.

The general strategy is the following. First we capture K1 and K2 using C via

Lemma 6.3. Next, assume C is an exceptional curve and we want to capture it

using S ⊂ C. We prove that there exist disjoint exceptional curves S and T in S

such that H1
(

X, OX (K X + L ST )
)

= 0, where L ST := −K X + D −C − S − T . Then

({S, T }, C) is a capture move for D by Lemma 6.2. Often we show that L ST is nef

and either big or of anticanonical degree two, omitting any reference to Lemma 6.2.

In all cases we capture enough curves to conclude that D is a capturable divisor,

using Lemma 5.1 as stopping criterion.

Lemma 7.1. Let X be a del Pezzo surface of degree one and let b : X → Y be
a birational morphism. Denote by KY the pull-back to X of a canonical divisor
on Y and let N be a nef divisor on X. Assume that deg(Y ) ≥ 3; then the divisor
D = −K X −KY + N is capturable.

Proof. Let S be the set of exceptional curves contracted by b and note that S

consists of at least two disjoint exceptional curves and that −KY − S − T is big

and nef for all S, T ∈ S, S 6= T . Let C ∈ C \ S be any exceptional curve and

let C ′ := −2K X − C . First we capture the curves C such that C ′ ∈ S using S:

LC ′T := −KY + N − T is big and nef for any choice of T ∈ S \ {C ′}.

Second we choose any two distinct S, T ∈ S, we let S
′ := {S, T } and we capture

all curves C ∈ C\S
′ such that C ′ /∈ S: the divisor L ST = C ′ + (−KY − S −T )+ N

is big and nef provided C ′ · (−KY − S − T ) > 0; since the only curves orthogonal

to (−KY − S − T ) are the curves in S \ S
′, we conclude. �

Lemma 7.2. Let X be a del Pezzo surface of degree one and let b : X → Y be a
birational morphism. Denote by A the pull-back to X of the minimal ample divisor
on Y and let N be a nef divisor on X. Assume that deg(Y ) ≥ 8; then the divisor
D = −K X + A + N is capturable.

Proof. Note that Y is isomorphic to P
2, Blp(P

2) or P
1 × P

1.
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Case 1: Y 6≃ P
1 × P

1. In this case A = L + Q, where L is a twisted cubic and Q
is either zero or a conic. Thus it suffices to treat the case D = −K X + L + N .

Let S be the set of curves contracted by L; thus S consists of eight disjoint

exceptional curves. Note that
∑

S 6=T ∈S
L − S − T = 7(−K X + L) has intersection

number at least 7 with every exceptional curve on X . Since the intersection number

of two exceptional curves on X is at most 3, it follows that every exceptional curve

on X intersects positively at least two of the curves {L − S − T | S 6= T ∈ S}.

For any C ∈ C \ S let S, T ∈ S be such that (−2K X − C) · (L − S − T ) > 0 and

such that no (rational) multiple of N equals (−2K X − C) + (L − S − T ). Note

that the second condition ensures that N does not contract both −2K X − C and

(L − S − T ) when −2K X − C + (L − S − T ) is a conic. We have that L ST :=

−2K X + L − C − S − T + N = (−2K X − C)+ (L − S − T )+ N is nef and either

it has anticanonical degree two or it is also big. Thus (S, C) is a capture move for

all C ∈ C \ S. Let S, T ∈ S be distinct elements and let S
′ := {S, T }. For any

C ∈ S\S
′ the divisor L ST := (−2K X −C)+ (L − S − T )+ N is big and nef since

(−2K X − C) · (L − S − T ) = 2.

Case 2: Y ≃ P
1 × P

1. Let S be the set of curves contracted by A; thus S consists

of seven disjoint exceptional curves. Note that
∑

S 6=T ∈S
A − S − T = −6K X +9A

has intersection number at least six with every exceptional curve on X and that

the summands are conics. Since the intersection number of an exceptional curve

and a conic on X is at most four, it follows that every exceptional curve on X
intersects positively at least two of the conics {A − S − T | S 6= T ∈ S}. For any

C ∈ C \ S let S, T ∈ S be such that (−2K X − C) · (A − S − T ) > 0. We have that

L ST := −2K X + A − C − S − T + N = (−2K X − C) + (A − S − T ) + N is big

and nef. Thus (S, C) is a capture move for all C ∈ C \ S. Let S, T ∈ S be distinct

elements and let S
′ := {S, T }. For any C ∈ S \ S

′ the divisor

L ST := (−2K X − C) + (A − S − T ) + N

is big and nef since (−2K X − C) · (A − S − T ) = 4. �

Lemma 7.3. Let X be a del Pezzo surface of degree one, E an exceptional curve on
X and N 6=0 a nef divisor on X such that N ·E =0. The divisor −(n+2)K X+E+N
is capturable for n ≥ 0.

Proof. By Lemma 3.4, for i ∈{1, 2}, there is an exceptional curve Fi on X such that

Fi · E = 0 and N − Fi is either nef or the sum of a nef divisor and an exceptional

curve, with F1 6= F2, . Let S := {E, F1, F2}. For any C ∈ C \ S, let F ∈ {F1, F2}

be such that (−2K X − C) is not a fixed component of (N − F); we have that

L E F =−(n+3)K X + E −C − E − F + N =−K X +(−2K X −C)+(N − F)−nK X

is big and nef and we conclude that we can capture all curves in C \ S, using only
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the three curves in S. Finally, by the same argument, we find ({E, F1}, F2) is a

capture move and we are done. �

Lemma 7.4. Let X be a del Pezzo surface of degree one, E an exceptional curve on
X and N a nef divisor on X. The divisor D := −(n +3)K X + E + N is capturable
for n ≥ 0.

Proof. Let E, E2, . . . , E8 be eight disjoint exceptional curves on X and let Ẽi :=

−K X + E − Ei for 2 ≤ i ≤ 8. Let S := {E, E2, . . . , E8, Ẽ2, . . . , Ẽ8}. It is clear

from Table 1 that every exceptional curve C ∈ C \ S intersects positively at least

two of the curves in S; in particular for every C ∈ C \ S there is S ∈ S such that

S · E = 0, S · C > 0 and N is not a (rational) multiple of −4K X − (S + C). Thus

L E S = −K X + D − E − S −C = (−4K X −C − S)+ N − nK X is nef and it either

has anticanonical degree two or it is big. In either case H1
(

X, OX (K X + L E S)
)

= 0

and we may capture all the curves in C \ S using the curves in S.

Note that for all integers i, j, k, l ∈ {2, 3, . . . , 8}, i 6= j , k 6= l, we have

(−4K X − Ei − Ẽ j ) · (−4K X − Ek − Ẽl) = 0

if and only if i = k and j = l. In particular, if N is a multiple of a conic, it

is proportional to at most one of the divisors (−4K X − Ei − Ẽ j ); relabeling the

indices if necessary, we may assume that N is not proportional to −4K X −(Ei+Ẽ j )

for all i, j ∈ {2, 3, . . . , 8} and i 6= j , (i, j) 6= (7, 8). Thus for all i ∈ {3, 4, . . . , 8}

the divisor L E Ẽ2
= (−4K X − Ei − Ẽ2) + N − nK X is either a conic or big and

nef and we may capture E3, E4, . . . , E8 using E, Ẽ2. Similarly we can capture

Ẽ2, Ẽ3, . . . , Ẽ8 using E, E2 and we are done. �

Lemma 7.5. Let X be a del Pezzo surface of degree one. Let D =−(n+4)K X +N
where n ≥ 0 and N is a nef divisor. Let C, S and T be exceptional curves such that
S · T = 0 and that C · S, C · T are at least 2. Then ({S, T }, C) is a capture move
for D if either

(1) C · (S + T ) = 5, or

(2) C · (S + T ) = 4 and the divisor N is either 0 or not a multiple of the conic
T ′ + S′ + C ′ + K X .

Proof. Consider L ST := −K X + D − S − T − C = S′ + T ′ + C ′ − (n − 1)K X + N .

Since the inequalities C ′ · S′ ≥ 2 and C ′ · T ′ ≥ 2 hold, the curves S′, C ′ and T ′,

taken together, are not all pullbacks of exceptional curves on a del Pezzo surface

Y of degree at least two. It follows that every exceptional curve V 6∈ {S′, T ′, C ′}

intersects at least one curve in this set and thus L ST is nef. If C · (S + T ) = 5 then

either C ′ + S′ = −2K X or C ′ + T ′ = −2K X and L ST is big. If N = 0 then L ST

has anticanonical degree 2 and capturability follows from Lemma 6.2. Finally,
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assume that C · S = C · T = 2. In this case S′ + T ′ + C ′ + K X = Q is a conic and

L ST = Q − nK X + N is big unless N = m Q for some m ≥ 1. �

Lemma 7.6. Let X be a del Pezzo surface of degree one and let N be a nef divisor
on X. The divisor −(n + 4)K X + N is capturable for n ≥ 0.

Proof. Let L be a twisted cubic and let E1, . . . , E8 be exceptional curves on X
contracted by L . First we capture all curves C ∈ C such that L · C = 3. From

Table 1 it is clear that C = −K X + Ei − E j for some i 6= j . Set

S = E j , T1 = 2L−Ei −Ei1
−Ei2

−Ei3
−Ei4

, T2 = 2L−Ei −E j1−E j2−E j3−E j4,

with {i, j}∩{i1, . . . , i4} = ∅, {i, j}∩{ j1, . . . , j4} = ∅, {i1, . . . , i4} 6= { j1, . . . , j4}.
Note that L · S, L · Ti 6= 3, C · S = C · Ti = 2 and S · Ti = 0 for i = 1, 2. Let T be

an exceptional curve in {T1, T2} such that N 6= m(T ′ + S′ +C ′ + K X ). By Lemma

7.5(2), ({S, T }, C) is a capture move.

Next, we capture curves C with L ·C ∈{4, 5}. It is clear from Table 1 that for any

such curve there exists a pair of distinct exceptional curves S, T ∈ {E1, . . . , E8}

such that ({S, T }, C) is a capture move via Lemma 7.5(2). Similarly we capture

curves C with L ·C ∈ {1, 2} using some pair S, T ∈ {E ′
1, . . . , E ′

8}. Next we capture

E3, . . . , E8 using E ′
1 and E ′

2 via Lemma 7.5(1) and finally, we capture E ′
1, . . . , E ′

8

using E1 and E2. This concludes the proof. �

Lemma 7.7. Let X be a del Pezzo surface of degree one and let Q be a conic on X.
The divisor D = −(n+1)K X +(m+1)Q is capturable for m, n ≥ 0 and m+n ≥ 1.

Proof. Suppose first that n ≥ 1. Let S be the set of curves contracted by Q and

for any S ∈ S, let S̃ be the unique curve such that S + S̃ = Q. If S, T, C are

exceptional curves let BST = −K X + C ′ + Q − S − T and note that if BST is nef

and big then so is L ST := −K X + D−C −S−T = BST +m Q−(n−1)K X because

n ≥ 1. Moreover BST has anticanonical degree 2 and h2
(

X, OX (BST )
)

= 0 so by

Riemann–Roch BST is nef if and only if B2
ST = 2Q · C ′ − 2C ′ · S − 2C ′ · T ≥ 0.

We first show that the curves C in C \ S can be captured with the curves in S.

To do so, we split them into cases according to the value of Q · C ′.

If Q ·C ′ = 0 choose T ∈ S disjoint from C ′. In this case BC ′T = −K X + T̃ is nef

and big, and ({C ′, T }, C) is a capture move. If Q · C ′ = 1 choose disjoint curves

S and T ∈ S which are also disjoint from C ′ and note that BST has anticanonical

degree 2 and square 2 so it is the pullback to X of the anticanonical divisor of a

del Pezzo surface of degree 2 and thus it is nef and big; whence ({S, T }, C) is a

capture move. If Q · C ′ = 2, by Lemma 3.5 there exist disjoint curves S,T in S

such that S ·C ′ = T ·C ′ = 0 so BST has square 4 and hence BST = −2K is nef and

big. Thus ({S, T }, C) is a capture move in this case. Finally if Q ·C ′ = 3, then let

S and T be disjoint curves in S such that S · C ′ = T · C ′ = 1; then BST has square

2 and it is a nef and big divisor since it is the pullback to X of the anticanonical
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divisor of a del Pezzo surface of degree 2. Thus ({S, T }, C) is a capture move in

this case.

Now choose S, T disjoint exceptional curves in S. We show that all curves C
in S \ {S, T } can be captured from {S, T }. In this case Q · C ′ = 4 and S · C ′,

T · C ′ ≤ 2, so B2
ST ≥ 0. If BST is big the statement follows since so is L ST . If

B2
ST = 0 there are two cases to consider, either n = 1 and m = 0 and the statement

follows from Lemma 6.2, or at least one of n, m is greater than one. In this case

L ST = BST − (n −1)K X +m Q is big because BST · Q = 6 6= 0. It follows that we

can capture every exceptional curve in S \ {S, T } from {S, T }.

Suppose now that n = 0 and m ≥ 1. Note that if Q · C ′ ≤ 1 then

Q · (D − C) = Q · (K X + C ′ + (m + 1)Q) = −2 + Q · C ′ < 0,

so D − C is not an effective divisor. In this case C is captured vacuously and

thus we restrict our attention to curves C with Q · C ′ ≥ 2. Let S be the set of

exceptional curves contracted by Q and for any S ∈ S let S̃ be the unique curve

such that S + S̃ = Q.

For any C ∈ C \ S which satisfies Q · C ′ ≥ 2 there exist disjoint curves S, T in

S such that S̃ and T̃ intersect C ′. By construction S̃ + T̃ + C ′ is nef and big and

so is L ST := −K X + D − S − T −C = S̃ + T̃ +C ′ + (m − 1)Q. It follows that we

can capture C \ S with S.

Finally, fix two disjoint curves S, T ∈ S and let C be any curve in S \ {S, T }.

Since Q · C = 0 we have Q · C ′ = 4 so C ′ intersects both S̃ and T̃ . It follows that

L ST is nef and big and that S can be captured from {S, T }. �

Theorem 7.8. Let X be a sweeping del Pezzo surface of degree one and let D be
an ample divisor. If −K X · D ≥ 4, then D is capturable.

Proof. Write D = −nK X + N , where n ≥ 1, the divisor N is nef and not ample

and n −K X · N ≥ 4. If N = 0, then n ≥ 4 and we conclude using Lemma 7.6. If

N 6= 0, write N = m A+ N ′ where X → Y is a morphism with connected fibers, A
is the pull-back to X of the minimal ample divisor on Y , N ′ is the pull-back of a nef

divisor on Y and m ≥ 1. If Y is a surface, then we conclude using Lemmas 7.1–7.4.

If Y ≃ P
1, then we conclude using Lemma 7.7. �

8. Ample divisors of anticanonical degree three

The only ample divisors D that seem to elude the strategy of Section 7 are those of

anticanonical degree three. These divisors are −3K X , −2K X +E , −K X +Q, where

E is any exceptional curve and Q is any conic. Recall that there is a surjection

(k[G]/JX )D → (k[G]/IX )D;
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see Section 2. We show the dimension of (k[G]/JX )D is at most h0
(

X, OX (D)
)

=

dim(k[G]/IX ) and conclude that (IX )D = (JX )D .

Lemma 8.1. Let X be a del Pezzo surface of degree one and let A, B, G be ex-
ceptional curves with A + B = −K X + G. Then k1g, k2g and ab form a basis
for H0

(

X, OX (−K X + G)
)

. In particular, if C, D are exceptional curves with
C + D = −K X + G then cd = α1k1g + α2k2g + α3ab and the coefficient α3 is
nonzero.

Proof. The morphism X →P
2 associated to |−K X +G| contracts G and is ramified

along a smooth plane quartic R. The image of G is a point not lying on any

bitangent to R since otherwise X would have had a (−2)-curve. The images of

K1 and K2 in P
2 are distinct lines through the image of G and therefore the three

lines in P
2 corresponding to A + B, K1 + G K2 + G have no common point and

are independent. �

Lemma 8.2. Let X be a del Pezzo surface of degree one; then the ideal IX has no
minimal generators in degree D = −3K X .

Proof. The only ways of writing −3K X as a sum of three effective divisors are

given in the following table.

Monomial Description

h1h2h3 h1, h2, h3 ∈ {k1, k2}

haa′ h ∈ {k1, k2} , A ∈ C

abc
A, B, C ∈ C

A · B = A · C = B · C = 2

(8-1)

Indeed, let −3K X = A + B + C be any expression of −3K X as a sum of three

effective divisors. If one among A, B, C is in |−K X |, then we are in one of the

first two cases above. If A, B, C ∈ C, then intersecting with A, B, C successively

both sides of the equation −3K X = A + B + C we obtain the system










A · B + A · C = 4,

A · B + B · C = 4,

A · C + B · C = 4,

whose only solution is A · B = A · C = B · C = 2.

By definition (IX )2 = (JX )2; we deduce that the span of the monomials of the

first two forms in (8-1) in k[G]/JX has dimension at most six, being the image of

H0
(

X, OX (−K X )
)

⊗ H0
(

X, OX (−2K X )
)

under the multiplication map (note that

dim H0
(

X, OX (−K X )
)

= 2, dim H0
(

X, OX (−2K X )
)

= 4 and the linearly indepen-

dent elements k1 ⊗ k2
2e − k2 ⊗ k1k2 and k2 ⊗ k2

1e − k1 ⊗ k1k2 are in the kernel).
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Fix any monomial p = abc of the third form in (8-1) and denote the span of p
together with the monomials of the first two forms in (8-1) by V . Let q = de f be

any monomial of the third form in (8-1); we prove that q can be written as the sum

of an element of V and an element of JX .

The result is clear if c = f , since in this case we can use the relation coming

from degree A + B involving the monomials k1gc, k2gc, abc and dec to conclude

(see Lemma 8.1). By the same reasoning we reduce to the case in which {a, b, c}
and {d, e, f } are disjoint.

Suppose that A · D = 2; then the divisor G := −3K X − A − D satisfies G2 =

K X · G = −1, and hence G is an exceptional curve. Moreover from the fact that

D · G = 2, we deduce that G is an exceptional curve on the del Pezzo surface

obtained by contracting D′ and whose anticanonical divisor pulled-back to X is

E+F ; let H := E+F−G and note that H is also an exceptional curve. In particular

we can use a relation coming from degree E + F involving the monomials dk1d ′,

dk2d ′, dgh and de f to reduce to the case {a, b, c} ∩ {d, e, f } 6= ∅.

Finally, if A · D = A · E = A · F = 1, then A is a conic in the del Pezzo surface

obtained by contracting F ′. From Table 1 it follows that there are exceptional

curves intersecting any given conic twice; denote the strict transform in X of one

such curve of X by H and the exceptional curve E + F − H by J . Thus we can

use a relation coming from degree E + F involving the monomials dk1d ′, dk2d ′,

dhj and de f to reduce to the case in which A · D = 2. �

Lemma 8.3. Let E be an exceptional curve on X ; then the ideal IX has no minimal
generators in degree D = −2K X + E.

Proof. The monomials of degree D are of the following forms:

Monomial Description

ks k ∈ {k1, k2} , s ∈ k[G]−K X +E

aa′e A · A′ = 3

abc

A · E = 1

B · E = C · E = 0

A · B = A · C = 2

B · C = 1

Indeed let m ∈ k[G]D be a monomial. If k ∈{k1, k2}, or e divides m, then m is of one

of the first two forms. Otherwise let m =abc, with {a, b, c}∩{k1, k2, e}=∅; if two

of the curves A, B, C have intersection number three, then the remaining one is

E , which we are excluding. If the intersection numbers among the curves A, B, C
are all at most two, then the required conditions follow multiplying successively

the equality A + B + C = −2K X + E by A, B, C .
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We show that the monomials of degree D span a subspace of dimension at most

six of (k[G]/JX )D; since dim Cox(X)D = 6, the result follows.

First, the image of H0
(

X, OX (−K X )
)

⊗ H0
(

X, OX (−K X + E)
)

in k[G]D has

dimension at most five: dim H0
(

X, OX (−K X )
)

= 2, dim H0
(

X, OX (−K X + E)
)

= 3

and the element k1 ⊗ k2e − k2 ⊗ k1e is in the kernel.

Second, the span of the monomials of the first two forms has dimension at most

six. Let aa′e, bb′e be any two monomials of the second form. There is a quadratic

relation q involving aa′, bb′, k2
1, k1k2, k2

2 since these five vectors correspond to five

elements of the four dimensional space H0
(

X, OX (−2K X )
)

. Moreover aa′ and bb′

are independent from k2
1, k1k2, k2

2 , since the monomials in k1, k2 correspond to

sections having a base-point, and neither of the remaining elements aa′ and bb′

vanishes at the base-point. Thus in the relation q the coefficients of aa′ and bb′

are both nonzero. We deduce that the span of the elements of the first two forms

has dimension at most six in (k[G]/JX )D .

Third, let abc be a monomial of the third form. The divisor A+ B contracts the

unique exceptional curve F := K X + A + B, and the divisor G := A + B − E is an

exceptional curve on the del Pezzo surface Y obtained from X by contracting F .

Therefore there is a quadratic relation involving the monomials ab, ge, k1 f, k2 f
and the monomials ab and ge are independent from k1 f, k2 f , by Lemma 8.1. Thus

we may use this relation to write the image of abc in k[G]/JX as a combination of

divisors of the first two forms and the proof is complete. �

Lemma 8.4. Let Q be a conic on X ; then the ideal IX has no minimal generators
in degree D = −K X + Q.

Proof. The monomials of degree D are of the following forms:

Monomial Description

ks k ∈ {k1, k2} , s ∈ k[G]Q

e f e1

E1 · Q = 0

E · F = 2

E1 · (E + F) = 2

Q · E = Q · F = 1

ee1e2
E1 · Q = E2 · Q = E1 · E2 = 0

Q · E = E1 · E = E2 · E = 2

Note that E1, E2 are disjoint components of reducible fibers of the conic bundle

associated to Q. Indeed let

−K X + Q ∼ A + B + C. (8-2)
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Multiplying both sides of (8-2) by Q we find

2 = A · Q + B · Q + C · Q;

thus at least one of the intersection products is zero. Suppose that C · Q = 0, and

let C̃ = Q − C ; then A + B = −K X + C̃ is a reducible divisor in the linear system

associated to the pull-back of the anticanonical divisor on the del Pezzo surface of

degree two obtained from X by contracting Ẽ . The first case in (8-2) corresponds

to the sections containing a divisor in the linear system |−K X |; the second to one

not containing it and containing two curves not in the linear system |Q|; the last

one to one containing two elements of |Q|.

Since (k[G]/JX )2 = Cox(X)2, it follows that the dimension of the span of the

monomials of the first form in (8-2) modulo (JX )−K X +Q is at most four. Let

p = ee1e2 be a monomial in k[G]−K X +Q of the third form in (8-2) and let V
denote the span of the monomials of the first form in (8-2) together with p in

(k[G]/JX )−K X +Q . Since dim(Cox(X)−K X +Q) = 5, the result follows if we show

that

V = (k[G]/JX )−K X +Q .

Let q = ēē1ē2 be a monomial in k[G]−K X +Q of the third form in (8-2).

If ē1 =e1, then let E3 = K X+E+E2 = K X+E+E2 be the exceptional curve con-

tracted by E + E2. By Lemma 8.1, applied to the monomials ēē2, ee2, k1e3, k2e3,

we conclude that the image of q in (k[G]/JX )−K X +Q belongs to V .

If {E1, E2}∩ {E1, E2} = ∅, then at least one curve in {E1, E2} is disjoint from

one curve in {E1, E2} and relabeling the indices if necessary we may assume that

E1 · E1 = 0. By the same reasoning above q = ēē1ē2 is in the span of V and

q̃ = ẽē1e1 (note that Ẽ := −K X + Q − E1 − E1 is an exceptional curve, since it has

anticanonical degree one and square negative one), and we conclude since q̃ is in

the span of V .

Finally, if q = ē f̄ ē1, then at least one curve in E1, E2 is disjoint from E1 and

relabeling the indices if necessary we may assume that E1 · E1 = 0. Reasoning as

above, q is in the span of V and ẽe1ē1, and we are done. �

Corollary 8.5. Let X be a sweeping del Pezzo surface of degree one and let D be
an ample divisor on X such that −K X · D ≥ 3. Then the ideal IX has no minimal
generators in degree D.

Proof. By Theorem 7.8, if −K X · D ≥ 4 then D is capturable and the result follows

from Theorem 6.7. Since the only ample divisors of anticanonical three are −3K X ,

−2K X + E and −K X + Q, where E is an exceptional curve and Q is a conic, the

result is true if −K X · D = 3, by Lemmas 8.2–8.4. �
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9. Nonample divisors

In this section we prove that the relations in degree D, where D is a nonample

divisor on X of anticanonical degree at least three, coming from JX are sufficient

to show that the quotient (k[G]/JX )D is in fact spanned by monomials coming from

a del Pezzo surface of smaller degree. This is the basis for the inductive procedure

of Section 11. Throughout this section we assume that del Pezzo surfaces X of

degree one defined over fields of characteristic two are sweeping.

Lemma 9.1. Let X be a del Pezzo surface of degree at most five and let D be a
divisor on X. Suppose that E is an exceptional curve on X such that D · E = 0.
Then (k[G]/JX )D is spanned by products of variables corresponding to exceptional
curves disjoint from E.

Proof. Let m ∈ k[G]D be a monomial and write m = ep · s, where p ≥ 0 and s is

a product of variables different from E . Note that if p = 0, then s is a product of

variables corresponding to divisors disjoint from E , since by assumption D ·E = 0.

We shall show that if p ≥ 1, then using the quadratic relations we may decrease p;

the result then follows by induction on p.

Suppose that p ≥ 1. Since D · E = 0, there is a variable c ∈ G such that

E · C > 0 and c divides s. The monomial ce is a monomial of anticanonical

degree two corresponding to a nef divisor. By definition of JX , the vector space

(k[G]/JX )C+E coincides with Cox(X)C+E ; thus it suffices to show that there is

a basis of Cox(X)C+E consisting of sections vanishing along exceptional curves

different from E . To conclude, we analyze all the possibilities for the divisor C+E .

Case 1. The divisor C+E is a conic. The linear system |C+E | contains 8−deg(X),

i.e., at least three, distinct reducible elements and any two of these span it.

Case 2. The divisor C +E is −b∗KY , where b : X → Y is a birational morphism, Y
has degree two. The linear system |C + E | contains 28 distinct reducible elements

and any five of these span it (Lemma 4.1).

Case 3. The divisor C + E is −2K X and the degree of X is one. The linear system

|−2K X | contains 120 distinct reducible elements whose irreducible components

are (−1)-curves and any 113 of these span it (Proposition 4.4).

In all these cases the sections supported on (−1)-curves distinct from E span

Cox(X)C+E , and the lemma follows. �

Lemma 9.2. Let X be a del Pezzo surface of degree at most five and let D be a
divisor on X. Suppose that E is an exceptional curve on X such that D · E < 0.
Then dim(k[G]/JX )D = dim(k[G]/JX )D−E and dim Cox(X)D = dim Cox(X)D−E .

Proof. If D is not effective, then D − E is not effective and k[G]D = k[G]D−E = 0.

If D is effective, then E · D < 0 implies that E is a component of D and thus every
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monomial in k[G]D is divisible by e; the same argument also proves the statement

about the Cox ring. �

10. Del Pezzo surfaces of degree at least two

Lemma 10.1. Let X be a del Pezzo surface of degree two. Any ample divisor is
capturable except −K X .

Proof. Let D 6= −K X be an ample divisor and write D = −nK X + N , with n ≥ 1

and N nef and not ample; by assumption either n ≥ 2 or N 6= 0.

Suppose first that N 6= 0; if N contracts more than one exceptional curve, then

we let S be the set of exceptional curves contracted by N . If N contracts exactly

one exceptional curve E , then we let F be any exceptional curve disjoint from E
and let S := {E, F}.

Let C ∈ C \ S and let C ′ := −K X − C . If C ′ ∈ S, then the divisor LC ′T =

N + (−K X − T ) − (n − 1)K X is big and nef for all T ∈ S, T 6= C ′ since

(−K X − T ) · N = −K X · N > 0;

thus we can capture all such curves using S. If C ′ /∈ S, then let S, T ∈ S be disjoint

and note that N − T is either nef or N is a multiple of a conic and it is the sum of

a multiple of a conic and a single exceptional curve. Moreover

• S′ · (N − T ) = −K X · N − 1 > 0;

• if N is a multiple of a conic, then S′ also intersects the fixed component of

N − T ;

• C ′ · (N − T ) = −K X · N − 1 − C · T is zero if and only if N is a conic and

C · T = 1.

In this last case, note that C · N 6= 0, and C intersects at least one component in

every reducible fiber of the conic bundle determined by N ; hence we may choose T
to be the other component if C ′ ·(N −T ) = 0. In all cases we may choose S, T ∈ S

disjoint such that L ST is big and nef, and hence capture all C ∈ C \ S using only

curves in S. In particular, we are done if N contracts at most two exceptional

curves.

To conclude it suffices to treat the two cases N = L + N ′ and N = Q + N ′,

where L is a twisted cubic, Q is a conic and N ′ is nef; note also that S · N ′ = 0,

for all S ∈ S.

Choose any two disjoint S, T ∈ S and let C ∈ S, C 6= S, T . If N = L + N ′,

we have that the divisor L ST = −K X + (−K X −C)+ (L − S − T )+ N ′ is big and

nef since (−K X − C) · (L − S − T ) = 1 and we conclude. If N = Q + N ′, then

the divisor L ST = (−K X − S) + (−K X − T ) + (Q − C) + N ′ is big and nef since

(−K X − S) · (Q − C) = (−K X − T ) · (Q − C) = 1 and again we conclude.
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Suppose now that N =0 and hence D =−nK X , where n ≥2. Let S be any set of

seven disjoint exceptional curves. For all C ∈ C\S, there are distinct S, T ∈ S such

that C · S, C ·T > 0: this is clear from the list of exceptional curves. Thus for such

a choice of S, T , we have that the divisor L ST = −3K X −C −S−T = C ′+S′+T ′

is big and nef and we may capture all the curves in C \ S using S. Finally let

S, T ∈ S be distinct elements and let S′ := −K X − S, T ′ := −K X − T ; for all

C ∈ S the divisor L S′T ′ = −3K X − C − S′ − T ′ = C ′ + S + T is big and nef and

we conclude. �

Lemma 10.2. Let X be a del Pezzo surface of degree three. Any ample divisor is
capturable.

Proof. Let D be an ample divisor and write D = −K X + N , with N a nef divisor.

Let S be a set of six disjoint exceptional curves. For all C ∈ C\S there are two

distinct S, T ∈ S such that C · S = C · T = 1. With these choices of S, T we have

that the divisor L ST = −2K X + N −C −S−T = (−K X −T )+(−K X −C −S)+ N
is big and nef since (−K X − T ) · (−K X −C − S) = 1. Thus we may capture all the

exceptional curves C ∈ C\S using the curves in S. Let S
′ be the set of six disjoint

exceptional curves each intersecting all the curves in S except for one (thus S∪S
′

is a Schläfli double-six). Choose S, T ∈ S and let S′, T ′ ∈ S
′ be two corresponding

curves, that is S · S′ = T · T ′ = 0. Using the moves above we can capture {S′, T ′}

with S and we can capture S \ {S, T } using S
′ \ {S′, T ′}, and finally we capture

S
′ \ {S′, T ′} using {S, T }. �

Lemma 10.3. Let X be a del Pezzo surface of degree four. Any ample divisor is
capturable.

Proof. Let D be an ample divisor and write D = −K X + N , with N a nef divisor.

The criterion to capture curves is that ({E, F}, C) is a capture move if C /∈ {E, F},

E · F = 0 and C · E + C · F > 0: if C · E > 0, then the divisor

L E F = (−K X − C − E) + (−K X − F) + N

is the sum of a conic, a twisted cubic and a nef divisor and hence it is big and nef.

We refer to Table 1. Use E3, E4 to capture L − Ei − E j for all 3 ≤ i < j < 5.

Use L − E1 − E3, L − E1 − E4, L − E1 − E5 to capture E3, E4, E5 and finally use

E1, E2 to capture all the remaining curves. �

Lemma 10.4. Let X be a del Pezzo surface of degree five. Any ample divisor is
capturable.

Proof. Same criterion and strategy as in Lemma 10.3, ignoring any reference to

the index 5. �

Lemma 10.5. Let X be a del Pezzo surface of degree six. Any ample divisor is
capturable.
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Proof. Same criterion as in Lemma 10.3. Capture L − E1 − E2 using E1, E2 and

then capture the remaining curves using L − E1 − E3, L − E2 − E3. �

11. Quadratic generation

Main result. We collect all the information gathered in the previous sections to

prove the main result of this paper: the ideal IX is generated by its degree two part.

Proof of the Batyrev–Popov Conjecture. Let n be an integer; by induction on rX :=

9 − deg(X) and by induction on n we show that (JX )n = (IX )n . By definition, the

statement is true if n ≤ 2, for all del Pezzo surfaces X ; if rX ≤ 4, then the result is

well known for all n.

Suppose that rX > 4, n ≥ 3, that for all del Pezzo surfaces Y such that rY < rX

we have that JY = IY , and that (JX )n−1 = (IX )n−1. Let D be a divisor on X of

anticanonical degree n; if there is an exceptional curve E such that D · E ≤ 0, then

the result follows by Lemma 9.2 or by Lemma 9.1. Otherwise D is ample and the

result follows from Corollary 8.5 if deg(X) = 1, or from the lemmas of Section 10

if deg(X) ≥ 2. �

Quadratic generators. Let X be a del Pezzo surface of degree d . We briefly ex-

plain how all generators of IX arise. The nef divisors D with anticanonical degree

two on X are:

(1) the conics Q,

(2) −K X if d = 2,

(3) −K X + E if d = 1, where E is an exceptional curve on X ,

(4) −2K X if d = 1.

These divisors are precisely sums of pairs of intersecting exceptional curves on X .

We count the relations coming from conics as follows. Every conic Q has 8−d
reducible sections and h0

(

X, OX (Q)
)

= 2; thus each conic gives rise to 6 − d
quadratic relations. If there are B conics on X then there are (6 − d)B generators

of IX induced by conic bundles. For example, when d = 1 we obtain 5 × 2,160 =

10,800 relations.

When d = 2, we also have relations in degree −K X . There are 28 monomials in

k[G]−K X , and h0
(

X, OX (−K X )
)

= 3, giving 25 linear dependence relations among

these quadratic monomials. These relations yield the remaining generators of IX .

When d = 1, there are 30 monomials in k[G]−K X +E : k1e, k2e and the 28 mono-

mials coming from the anticanonical divisor of the del Pezzo surface of degree two

obtained by contracting E . This gives (30 − 3) × 240 = 6,480 generators in IX .

Finally, we also have relations coming from −2K X . There are 123 monomials in

k[G]−2K X : k2
1, k1k2, k2

2 and the 120 monomials of the form ee′, where E, E ′ ∈C and
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deg(X) D
Number of
monomials
in k[G]D

h0
(

X, OX (D)
)

b1,D(Cox(X))
Number of

divisors
of type D

1

Q 7 2 5 2160

−K X + E 28 + 2 3 27 240

−2K X 120 + 3 4 119 1

(Total) 22443 17399 2401

2

Q 6 2 4 126

−K X 28 3 25 1

(Total) 784 529 127

3
Q 5 2 3 27

(Total) 135 81 27

4
Q 4 2 2 10

(Total) 40 20 10

5
Q 3 2 1 5

(Total) 15 5 5

Table 2. First Betti numbers b1,D(Cox(X)) for del Pezzo surfaces.

E + E ′ = −2K X . Since h0
(

X, OX (−2K X )
)

= 4, we obtain 119 linear dependence

relations among these quadratic monomials. These relations yield the remaining

generators of IX . This information is summarized in Table 2.
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