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ABSTRACT The optimal planning for distributed generations (DGs) associated with photovoltaics (PVs) in

the utility-owned distribution system is crucial for increasing high penetration of renewables while against

practical system operation constraints. Such PV-DG planning is categorized as a complicated mixed-integer

nonlinear programming (MINLP) problem and is extremely difficult to solve by using conventional meth-

ods. In recent years, several bio-inspired metaheuristic algorithms have been proposed to tackle various

complicated real-parameter optimization problems. This paper proposes a two-stage approach including a

new bio-inspired algorithm, Coyote Optimization Algorithm (COA), to solve the large-scale MINLP PV-DG

sizing problem considering different load levels. The objective function terms under consideration include

the total system power loss and voltage regulator tap changes at different load levels while against limits of

rms bus voltages, tap changes, and PV-DG constraints at each candidate bus. The proposed method is tested

using the IEEE 123-bus unbalanced benchmark system and an actual utility distribution network. Results

obtained are then compared with those obtained by a classic MINLP solver-based and four other bio-inspired

methods. Moreover, results also show that the proposed method leads to lower loss, a minimum number of

regulator tap changes, and higher PV penetration capacity among the compared methods and is suitable for

solving the large-scale PV-DG planning problem in distribution systems.

INDEX TERMS Bio-inspired optimization, metaheuristic algorithm, distributed generation, photovoltaic

generation.

I. INTRODUCTION

The growing awareness of carbon emissions associated with

the drastic fossil-fuel consumption in electrical energy pro-

duction has led to an urgent need for mitigating global

warming. Therefore, the photovoltaic (PV) solar energy has

become more popular to serve as an alternate resource

of fossil-fueled electricity generation [1]. Also, because of

the significantly reduced cost of PV modules, MW-scale

PV distributed generation (DG) installations at distribution

networks are increasing worldwide. Therefore, the hosting

capacity of PV generation in a distribution feeder that satisfies

power system operation constraints becomes an imminent

goal to promote a higher penetration of renewable energy
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resources. A literature survey shows that approaches for

PV-DG planning of the distribution network fall into two

major categories: with and without (i.e. deterministic) includ-

ing uncertainties associated with either PV generation out-

put and/or load variations [2]–[5]. Both planning categories

consider either single- or multi-objective functions while

against the system and PV-DG operation constraints. The

purpose of studies typically involves decisions of locations,

sizes, or both locations and sizes of PV-DG units in the

system [2]–[17], [19]–[25].

When considering generation output uncertainties, several

methods have been presented for PV-DG planning. A review

of recent publications indicates that most proposed methods

assume that PV irradiance is modeled by beta probability

distribution function and the load variation is modeled by

Gaussian distribution function. Most of the test systems are
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in small or medium scale. Approaches for long-term (one

or more years) planning considering uncertainties are not

commonly seen because of the problem complexity and

the requirement of historical data and producing scenar-

ios for modeling purposes. The methods adopted gener-

ally are analytical [6], Monte-Carlo simulation-based [7],

metaheuristic-based [8], and hybrid methods [9]–[11]. When

considering uncertainties in PV planning, the number of PVs

to be placed at candidate busses in the system is limited due

to the enormous solution search space. A larger scale of the

system with multiple PVs planning while considering load

and/or PV output uncertainties remains a challenging task.

On the other hand, the deterministic approaches gen-

erally do not consider PV generation or load uncertain-

ties. These methods include analytic [12], classical [13],

metaheuristic-based [14]–[17], [19]–[22] and hybrid types

[23]–[25]. The analytical type is more suitable for smaller

systems with a limited number of PV-DG units in the plan-

ning. The classical type of approaches usually formulates

the problems by mixed-integer nonlinear programming and

solved by commercial off-the-shelf software. A metaheuris-

tic approach is an iterative method that guides a subordi-

nate heuristic by combining different intelligent concepts

for exploring the solution search space. Such an approach

is often inspired by observing the phenomena occurring in

nature. The hybrid type combines two or more of the above

approaches.

In this paper, the authors firstly review several metaheuris-

tic approaches not considering uncertainties for finding opti-

mal locations and sizes of PV-DG units while managing the

system loss, PV hosting capacity, regulator tap changes, and

network voltage profile. Like many other resource allocation

problems, the DG planning problem formulation is classified

as a mixed-integer nonlinear programming (MINLP) prob-

lem and is extremely difficult to solve by using conven-

tional methods because of its highly non-convex, discrete,

and constrained nature [13]. Over the past two decades, the

bio-inspired metaheuristic methods have gained great interest

in applications to the described problems. Not like commonly

seen algorithms such as classic Newton-type methods that are

easy to trap in the local optimum during the hill-climbing or

gradient search, the bio-inspired methods adopt algorithms

including certain randomness in the solution procedure and

is considered as a higher-level method using specified selec-

tion mechanisms and information sharing for finding the

global optimum solution. The paradigm of bio-inspired algo-

rithms for global search and optimization can be broadly

divided into three classes: swarm intelligence, evolutionary,

and ecology-based classes [26]. For instance, the particle

swarm optimization (PSO), ant bee colony (ABC), and grey

wolf optimizer (GWO) fall into the first class. For the sec-

ond class, genetic algorithm (GA) and differential evolution

(DE) are commonly seen methods. The biogeography-based

optimization (BBO) and invasive weed optimization (IWO)

methods belong to the third class. The following gives an

overview of applying bio-inspired methods to solve the DG

planning problems.

In [15], the authors adopted a GA-based method to deter-

mine the location and capacity of PV-DG for the area devel-

opment plan of a distribution network. The objective is to

minimize power loss and improve the system voltage profile.

Reference [16] presented a PSO-based method for PV-DG

planning of a master-slave controlled microgrid, where the

master mode is in non-unity power factor operation and the

slave mode is in unity power factor operation. The proposed

model is formulated as aMINLP problem and is incorporated

into an optimal power flow framework considering a variable

load profile. However, one of the disadvantages of the GA-

and PSO-based methods is that there is no guarantee of

finding the global optimal solution due to the early trap in

the search space. In [17], the imperialist competitive algo-

rithm (ICA) was used to solve the DG distribution planning

problem. It is noted that ICA is only applied to some of the

standard optimization problems [18]. Reference [19] used the

big bang-big crunch method for planning DGs. The method

tries to minimize power loss in an unbalanced distribution

system. An improved non-dominated sorting GA was used

to solve the optimal planning of multiple DG units in [20],

which is to minimize load consumption in the network and

maintain the bus voltage within the acceptable range. Refer-

ence [21] presented a comprehensive teaching learning-based

optimization technique for the optimal allocation of DGs in

radial distribution systems to improve network loss reduction,

voltage profile and annual energy savings. The proposed

method possesses immunity to local extrema trappings. How-

ever, the selection of the optimal number of DGs in the

distribution networks is only limited to three units. In [22],

the adaptive quantum-inspired evolutionary algorithm was

proposed for placing and sizing DGs and capacitors. Nev-

ertheless, the planning study only considers a given load

demand at a specific time instant and only up to three DGs

can be placed in the system.

In addition to the aforementioned metaheuristic algorithms

for PV-DG planning, several hybrid methods have been pro-

posed to improve the solution. For instance, [23] proposed

a GA-based Tabu search method to investigate and analyze

the optimal locations of multiple types of DG units with

certain capacities for optimizing net present worth subject to

economic and technical constraints. The cost terms include

capital, replacement, operation and maintenance, and relia-

bility improvement costs. In [24], several performance evalu-

ation indices such as power loss, voltage deviation, reliability,

and shift factor are used to develop the multi-objective func-

tion while considering different load models. The combined

GA and PSO-based solution algorithm is then applied to

find the optimal sizing and placement of DGs. A hybrid

grey wolf optimization (HGWO) method was proposed

for optimal allocation of DGs [25]. The locations, sizes,

and the total number of DGs to be placed are under

consideration.
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This paper studies deterministic planning for PV-DG

placement and sizing in distribution systems. To assess the

effectiveness of the proposed planning method, the electric

utility-owned PV-DG planning for annual loss reduction and

load balancing while against network and PV-DG operation

constraints are considered. In the study, the authors propose

a two-stage planning for PV-DGs. The placement problem

is firstly solved by calculating the loss reduction sensitivity

factor (i.e. LRSF) without and with DG installation at each

network bus. Those with top LRSF values are selected as

the candidate DG busses. Then, the newly proposed Coyote

Optimization Algorithm (COA) is adopted to find the optimal

size of each candidate DG bus [27]. The COA is classified as

both swarm intelligence and evolutionary heuristic inspired

on canis latrans species. It considers social structure and

experience exchange during hunting the prey while each

coyote is a potential solution and its social condition is the

cost of the objective function. In [27], the COA is proposed

to solve small- and mid-scale unconstrained and con-

strained real-parameter single-objective optimization prob-

lems through testing 40 benchmark functions with 92 cases

not including any engineering problems [28], [29]. The num-

ber of solution variables is only up to 100 without any integer

variables in the test cases. To test the usefulness of COA

for solving practical and larger scale of global constrained

optimization problem including both real and integer solution

variables and constraints, this paper applies COA to solve

PV-DGs planning problem and finds the optimal size of each

DG bus through minimizing the total real power loss and

the number of tap changes of voltage regulators while the

rms voltage at each bus is controlled to satisfy the system

operation limits.

To evaluate the multiple objective terms, a weighted

sum method is applied for determining the fitness of the

multi-objective function and obtain the best solution. The

weighted factor depends on the level of importance between

the components of the objective function. In this study, the

EPRI OpenDSS R© distribution system simulation tool and

Matlab R© are adopted for solving power flow problems [30].

The OpenDSS is to perform sequential-time power flow sim-

ulations including PV-DGs over a long time period when

the generation alters the load profile. Traditional distribution

power flow solvers are formulated with a radial circuit and

the forward-backward sweep ladder methods are commonly

seen. The default power flow solution method is based on

a fixed-point iteration method to solve a set of nonlinear

equations, which is computationally efficient for sequential

time solutions [31]. When a power flow analysis is com-

pleted, the power losses, bus voltages, and branch flows are

calculated.

In the study, the IEEE 123-bus benchmark system

and an actual 137-bus distribution network are under

test [32]. Results obtained by the proposed method are also

compared with a conventional MINLP method [13] and

four bio-inspired methods including GA [15], PSO [33],

biogeography-based optimization (BBO) [34], grey wolf

optimizer (GWO) [35]. It shows that the proposed method

is superior in both cost minimization and convergence.

The organization of the paper is as follows. In section II

the problem formulation for placement and sizing of PV-DG

units considering voltage, and tap changes constraints are

introduced. Section III illustrates the proposed LRSF-based

placement andCOA-based sizing procedures. Section IV then

reports test results and Section V provides the conclusion.

II. PROBLEM FORMULATION

The problem of optimal placement and sizing of PV-DGs

considering multiple objective functions is challenging due

to its highly non-convex nature. In the study, the objective

is to minimize the total power loss and the tap changes of

the voltage regulators while maintaining rms voltage at each

network bus, regulator tap positions, and PV-DG capacity and

power factor constraints. Listed below describes the problem

formulation for the optimal planning of PV-DGs in a distri-

bution network.

A. OBJECTIVE FUNCTION

The objective function to be minimized includes two compo-

nents: system power loss reduction rate and the number of tap

changes of the voltage regulators.

1) TOTAL POWER LOSS

Real power loss is an important index for the economic

and technical assessment of PV-DG placements. The total

power loss at each load level after the PV-DG installations

is expressed by

TPLPV ,l =
∑

b∈B

Pl,b, l ∈ ℓ (1)

where Pl,b = ybV
2
b is the power loss of branch b with

admittance yb in the distribution system at the l-th load level,

Vb is the rms voltage across the branch b, B is the set of

all network branches, and ℓ is the set of all load levels. The

objective function term of the total power loss reduction rate

is given below.

F1,l =
TPLPV ,l

TPLw/oPV ,l
(2)

The smaller the value of (2), the greater the power loss

reduction with PV-DG installations.

2) VOLTAGE REGULATOR TAP CHANGES

The reduction of operation cost of voltage regulators means

to have the number of tap changes of regulators as low as

possible. Equation (3) shows the number of tap changes of

regulators at the l-th load level.

F2,l =
∑

ϕ∈3

∣

∣τl,ϕ − τl−1,ϕ

∣

∣ (3)

where τl,ϕ is the number of tap changes of the ϕ-th regulator

control after connecting PV-DGs at the l-th load level, τl−1,ϕ

is the number of tap changes of the ϕ-th regulator control after
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connecting PV-DGs at the (l-1)-th load level. 3 is the set of

all voltage regulators.

The objective function to be minimized then becomes

Ffitness =
∑

l∈ℓ

(γ1F1,l + γ2F2,l) =
∑

l∈ℓ

fl(H) (4)

where
2
∑

m=1

γm = 1 and 0 ≤ γm ≤ 1.H is the vector of solution

variables.

In the study, a method of weighting sum for multi-objective

optimization is used to decide the fitness value of the

multi-objective function and to obtain the best solution. The

weights of (4) are defined according to the degree of impor-

tance of each component of the objective function [36].

B. CONSTRAINTS

The constraints of the PV-DG planning problem include the

limits of rms voltage, the regulator tap positions, and PV-DG

constraints, as described below.

1) RMS VOLTAGE

The rms voltage at each bus must be maintained within an

acceptable range, as given in (5)

Vmin ≤ Vn,l ≤ Vmax, n ∈ ℵ, l ∈ ℓ (5)

where Vn,l is the rms voltage of the n-th bus at the l-th load

level, Vmin and Vmax are the lower and upper limits of the

system voltage profile, respectively. ℵ is the set of all system

busses.

2) TAP POSITIONS OF VOLTAGE REGULATOR

In the study, the ϕ-th voltage regulator is assumed to have

2Ntap taps for its regulated voltage, Vtapϕ
, ranging from -Ntap

to Ntap, as shown in the integer constraint of (6) [37], [38].

Vmin
tapϕ

and Vmax
tapϕ

are the minimum and maximum regulator

voltages, respectively, as shown in (7).

−Ntap ≤ tapϕ ≤ Ntap (6)

Vmin
tapϕ

≤ Vtapϕ
≤ Vmax

tapϕ
, ϕ ∈ 3 (7)

C. PV-DG CONSTRAINTS

High penetration of PVs can affect the operation of voltage

regulation devices and severe voltage fluctuations. The smart

inverter control of PVs, which provides different functions

such as volt-var and fixed power factor, can help PVs provide

reactive power support in response to dynamic variations in

voltage at the point of connection [39]. For instance, Fig. 1

shows the fixed power factor function of the PV-DG. PVs

can inject a constant real power (kW) and various reactive

power (kVar) at a specified power factor range. As shown

in Fig. 1, the PV can be operated at cosϕ1, cosϕ2, or cosϕ3

corresponding to the output of (P1, Q1), (P2, Q2), and

(P3, Q3), respectively.

In this study, the fixed power factor function is modeled

to control the reactive power of PVs. The reactive power

FIGURE 1. Fixed power factor function of PV-DG.

support function introduced by the operation of PVs is given

in (8)-(10). The real power output of each PV-DG unit and

the total generation of all PV-DG units for a specific load

level l must be kept within the maximum generation limit,

as shown in (8) and (8). The constraint of (8) is to avoid

over-generation of DGs during the lowest load level, PL .

Equation (10) indicates the power factor constraint used to

control the reactive power of PV-DGs.

PlPV ,j ≤ Pmax
PV ,j, l ∈ ℓ (8)

∑

j∈ℑ

PPV ,j ≤ PL (9)

PFmin ≤ PF lPV ,j ≤ PFmax, j ∈ ℑ. (10)

where Pmax
PV ,j is the maximum generation limit of the j-th

PV-DG unit. ℑ is the set of available PV-DG units for

placement.

III. PROPOSED METHOD AND SOLUTION PROCEDURE

The proposed two-stage PV-DG planning problem is tested

under the IEEE 123-bus benchmark system and an actual

utility distribution feeder. The LRSF-based placement proce-

dure is firstly implemented to efficiently determine PV-DG

candidate busses and the proposed COA-based algorithm is

then applied to solve the optimal sizing problem.

A. POWER LOSS REDUCTION SENSITIVITY

FACTOR-BASED PV-DG PLACEMENT

The key component in the objective function to be minimized

is the real power loss reduction after sitting DGs. Assume

that a given number of available PV-DG units are planned

for placement in the system and each unit is assigned with

a maximum kW capacity. The search space of the PV-DG

candidate busses usually is enormous. For instance, it is

approximately 1.731× 1013 combinations of candidate loca-

tions for 10 different PV-DG units to be installed in a 100-bus

system. Therefore, the brute-force approach to find optimal

PV-DG locations is impractical. To reduce the search space

for the PV-DG placement problem, the loss reduction sen-

sitivity factor of (11) for a specified bus i at the l-th load

level is assessed by placing a small testing PV-DG unit with

VOLUME 8, 2020 36183



G. W. Chang, N. C. Chinh: COA-Based Approach for Strategic Planning of PV Distributed Generation

a capacity of (kWCap)PV at the specified bus one at a time.

LRSFl,i =
TPLl,i(w/oPV ) − TPLl,i(PV )

(kWCap)PV
(11)

where TPLl,i(w/oPV ) and TPLl,i(PV ) are the total real power

loss of the system without and with the placement of the

selected PV-DG unit at the l-th load level and at the i-th bus,

respectively. After assessing LRSFs of all busses, the busses

with top priorities (i.e. the highest LRSF values) are chosen

as candidate busses for siting the available PV-DG units. The

size at each candidate bus is then determined by the proposed

COA-based algorithm, as described below.

B. OVERVIEW OF COYOTE OPTIMIZATION ALGORITHM

The COA algorithm applies a mathematical model that is

described as the birth and death of ‘‘coyote’’ inside a pack.

In the COA algorithm, the population of coyotes is separated

into Np packs with Nc coyotes in each pack. The total pop-

ulation in the algorithm is obtained by the multiplication of

Np and Nc, each coyote is a possible solution for the opti-

mization problem and its social conditions set, soc, include all

decision variables [27]. For the c-th coyote of the p-th pack

at the t-th time instant, the social condition is expressed by

x = (x1, x2, . . . , xJ ) = soc
p,t
c , where J is the search space

dimension.

The first step in the COA is to initialize the global popu-

lation of coyotes. For the c-th coyote of the p-th pack of the

j-th dimension,

soc
p,t
c,j = lbj + rj(ubj − lbj), j = 1, 2, . . . , J (12)

where lbj and ubj are the lower and upper bounds; rj is a real

random number uniformly generated in the range of 0 and 1.

The next step is to evaluate the current social conditions by

(13) representing the cost of the objective function, fit
p,t
c .

fitp,tc = f (socp,tc ) (13)

According to [14], to diversify the interactions between

all coyotes in the population, the coyotes sometimes leave

their packs and become solitary or join a pack instead with

probability, Pe.

Pe = 0.005N 2
c (14)

To avoid Pe is greater than 1, Nc is limited below 14. Then,

the new social condition of the coyote is updated by (15).

new_socp,tc = socp,tc + r1δ1 + r2δ2 (15)

where r1 and r2 are uniformly distributed random numbers in

the range of 0 and 1. δ1 and δ2 are given by (16) and (17),

respectively.

δ1 = αp,t − socp,tcr1 (16)

δ2 = βp,t − socp,tcr2 (17)

where

αp,t =
{

soc|c∈Cmin f (socp,tc )
}

, C = {1, 2, ...,Nc} (18)

β
p,t
j =











S
p,t
(Nc+1)/2,j, Nc is odd

S
p,t
Nc/2,j

+ S
p,t
(Nc+1)/2,j

2
, otherwise

(19)

Equation (16) illustrates a cultural difference from a ran-

dom coyote of the pack (cr1) to the α coyote and (17) shows a

cultural difference from a random coyote (cr2) to the cultural

tendency of the pack, β. In (19), Sp,t is the ranked social

conditions of all coyotes of the p-th pack at the t-th time

instant for each j, j = 1, 2, . . . , J . Equation (19) implies that

the cultural tendency of the pack is calculated as the median

social conditions of all coyotes in that pack.

The new social conditions is evaluated by (20),

new_fitp,tc = f (new_socp,tc ) (20)

and the new social condition is decided by (21).

socp,t+1
c =

{

new_soc
p,t
c , new_fit

p,t
c < fit

p,t
c

soc
p,t
c , otherwise

(21)

Also, the birth and the death of a coyote are considered in

COA. The birth of a new coyote is written as a combination

of the social conditions of two random parents plus an envi-

ronmental factor, as shown in (22).

pup
p,t
j =











soc
p,t
k1,j

, rndj < PS or j = j1

soc
p,t
k2,j

, rndj ≥ PS + Pa or j = j2

Rj, otherwise

(22)

where Ps = 1/J (i.e. the number of variables),

Pa = (1− Ps)/2, k1 and k2 are random coyotes from the p-th

pack, j1 and j2 are two random dimensions of the problem,

Ps is the scatter probability, Pa is the association probability,

Rj is a random number inside the decision variable bound of

the j-th dimension, and rndj is a random number in the range

of 0 to 1.

The pub will survive if the fitness value with the pup

smaller than the older; otherwise, the pup will die. Finally,

the social condition of the coyote that best adapted itself to

the environment is selected and is used as the global solution

of the problem.

C. SOLUTION PROCEDURE

The following describes the details of the two-stage solu-

tion procedure including the loss reduction sensitivity-based

placement and optimal sizing by using the COA algorithm for

the PV-DG planning problem.

1) DISTRIBUTION SYSTEM POWER FLOW ANALYSIS

In this study, OpenDSS simulation tool is used for solving

power flow problems. Because the load models have been

modified in OpenDSS so that power flow solution nearly

always converges for very low voltages. While the power

flow solutions of other algorithms are difficult to maintain

a converged solution over a wide range of voltages [31].

In OpenDSS each power deliver or conversion element is

represented by a nodal admittance network model to perform
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the power flow solution. The power-deliver elements includ-

ing lines and transformers are represented by the primary

admittance matrix, Yp. A power conversion element is typi-

cally represented by its Norton equivalent with a constant Yp

in parallel with an injection (or compensation) current that

compensates for the nonlinear portion. The nodal admittance

matrix of each element is then used to construct the system

admittance matrix, Ys, where Ys is usually maintained con-

stant for computational efficiency.

An initial guess at the voltages, V, is obtained by per-

forming a direct solution of I = YV, where generators and

loads aremodeled by their linear equivalents with no injection

currents. The power flow iteration starts with obtaining the

injection currents from all the power conversion elements in

the system and updating them in the injection current vector,

Iinj. The solution is focused on solving the nonlinear system

admittance equation of the form of Iinj(V) = YsV, where

Iinj(V) is a function of voltage and represents the nonlinear

part of the currents from loads, generators, and PV-DGs in

the circuit. To solve the nonlinear equations set, a fixed point

method shown in (23) is adopted.

Vn+1 = Y
−1
s Iinj(Vn), n = 0, 1, 2, . . . (23)

The iteration continues until the convergence criterion for the

voltage vector is satisfied. This simple iterative solution has

been shown to converge well for most distribution systems

that have adequate capacity to serve the load demand. When

performing yearly simulations such as in our study, the solu-

tion at the present time step is used as the starting point for

the solution at the next time step. The solution typically con-

verges in two iterations. Therefore, the OpenDSS efficiently

performs the power flow calculations [31].

2) PROCEDURE FOR PLACEMENT OF PV-DGs

The placement procedure considers all load levels based on

the installation of a testing DG unit by injecting real power at

each bus one at a time. Then, the loss reduction sensitivity fac-

tor, LRSF, for each bus is calculated. The busses with the top

rank of LRSF values obtained by (11) are candidate busses for

PV-DG placement to substantially reduce the search space.

Listed below summarizes the major steps of the procedure.

1. Start with the highest load level.

2. Add one test DG unit with a small selected size to a bus

one at a time while the other busses are without PV-DG

installations. Calculate the system power loss by perform-

ing fundamental power flow analysis.

3. Repeat for all busses until each bus has been tested with

the unit PV-DG real power injection.

4. Assess the LRSF for each bus by using (11).

5. Prioritize LRSFs for all buses from the largest to the

smallest values and select the top M busses as candidate

busses for PV-DG installations.

6. Check if the total number of load levels has been reached.

If yes, proceed to the next step. Otherwise, return to step 2

for the next load level.

7. Select the top-priorityK (K<M ) busses from theM busses

of the highest load level which are also in the top M

busses of each of the other load levels obtained at step 5.

Since the top K buses at the highest load level have higher

LRSFs compared to lower load levels, they are selected as

candidate placement busses for all load levels.

3) PROCEDURE FOR SIZING THE PV-DGS AT CANDIDATE

BUSSES

The following procedure summarizes major steps for sizing

the DGs at the selected candidate busses by using the COA

algorithm. The sizes and power factors of PV-DGs at candi-

date busses and tap positions of voltage regulators are defined

as the social conditions of the coyote (i.e. a solution).

1. Parameters initialization. Assign the number of packs Np,

the number of coyotes in a pack Nc, the number of social

conditions for each coyote (i.e. a possible solution), and

the number of load levels L. Specify the lower and upper

bounds of each social condition (i.e. capacity limits of the

PV-DG unit at a candidate bus).

2. The initial social conditions are randomly set for each

coyote for all load levels. Check bounds for each social

condition in the coyote. If bounds are violated, initialize

social conditions again until no bound violation. Calculate

the fitness value of (4) using the social conditions of the

initial coyotes.

3. Specify the maximum number of iteration Ni and perform

the COA procedure as follows.

for each iteration

for each load level

for each pack

- Define the α coyote of the pack.

- Compute the social tendency of the pack

using (18).

for each coyote of a pack

- Update the social condition of coyote using (15).

- Check bounds condition. If the bounds of the

social condition are violated, update again.

- Calculate the fitness value using the new social

conditions of the initial coyotes by (20).

- Adapt the social condition using (21).

end

Perform birth and death inside the pack using (22).

- Check social-condition bounds. If bounds are

violated, give birth to a new pup again.

- Calculate the fitness value with the pup. If the

fitness value with the pup is smaller than the

older, the pup will survive. Otherwise, the pup

will die.

end

end

Select the coyote with the best fitness value.

Check if a coyote can leave the pack and enter another

pack according to (14). Then, update the pack information.

end
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FIGURE 2. Flowchart of the proposed algorithm for sizing PV-DGs at
candidate busses.

4. Select the best adapted coyote with its social conditions

(i.e. the optimal sizes, power factors of PV-DGs and tap

positions of voltage regulators) from Step 3.

5. Output the fitness value with the best adapted coyote’s

social conditions (including the optimal size and the power

factor of PV-DG at each candidate bus, tap positions of

voltage regulators, total power loss, and voltage profile).

It is noted that, in the above solution procedure, the initial

randomly assigned PV-DG sizes, power factors, and regulator

tap positions in Step 2 will be updated in Step 3 for each

load level and each iteration. Fig. 2 depicts the flowchart of

the proposed procedure for sizing the PV-DGs at candidate

busses.

IV. TEST RESULTS

In the study, there are two fairly sizable feeders are under test

to show the usefulness of the proposed method. One is the

ieee 123-bus benchmark distribution network and another one

is an actual Taipower 137-bus distribution system. Assume

that 10 PV-DGs are available and each DG capacity is in the

range of 50 to 1000 kW and is an integral multiple of 50 kW.

the EPRI OpenDSS is used to perform power flow analysis

for assessment of the loss reduction sensitivity factor, LRSF,

FIGURE 3. Co-simulation between OpenDSS and Matlab.

TABLE 1. Parameter settings of all algorithms.

of (11) at each bus. The priority list of the LRSF values is then

determined for the top 10 candidate busses for PV-DG place-

ments. Then each solution (i.e. coyote) is input to OpenDSS

through the common object model interface to perform power

flow at Steps 2 and 3 of the sizing procedure for social

condition assessments and solve the planning problem. Fig. 3

illustrates the diagram of co-simulation between OpenDSS

and Matlab, where the COA-based approach is implemented

using Matlab. Results include rms voltage at each bus, reg-

ulator tap positions, and the system power loss. The fitness

value of (4) is then calculated. Results obtained by COA

are compared with those obtained by mixed-integer nonlin-

ear programming (MINLP), genetic algorithm (GA), particle

swarm optimization (PSO), biogeography-based optimiza-

tion (BBO), and grey wolf optimizer (GWO).

In the two test cases, the number of annual (i.e. 8760 hrs)

load levels, L = 3, and the number of continuous and

integer solution variables for case 1 is 450 and for case 2

is 471. the parameter settings of all compared algorithms

are listed in Table 1. The parameters are chosen for each

algorithm based on those proposed methods in the indicated

references.
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TABLE 2. LRSFs for all load levels (case 1).

TABLE 3. Candidate busses for PV-DGs (case 1).

A. CASE 1: IEEE 123-BUS BENCHMARK DISTRIBUTION

SYSTEM

In the study, three load variation levels are included. the

highest annual load level is with a peak value of 3490 kW.

The medium and low annual load levels are 80% and

60% of the highest load level, respectively. To evaluate the

multi-objective function of (4), the weighting factors are γ1 =

0.7 and γ2 = 0.3, depending on the importance of each

objective component. After applying the COA algorithm for

sizing the PV-DGs, the voltage at each bus is limited within

the range of 0.95 to 1.05 pu.

Table 2 shows the priority list of candidate DG busses

for all load levels calculated by (11) after the placement

procedure. Table 3 lists the top 10 busses which have the

highest LRSFs for all load level selected as the candidate

PV-DG busses. The power factor of each PV-DG unit is to

be maintained within the range of 0.85 to 1. Each of the

seven single-phase voltage regulators has ±16 taps and the

corresponding voltage ranges from 0.9 to 1.1 pu. The results

shown in Table 4 are the best solutions among 25 independent

runs of all methods at all load levels, which include each of

the top 10 candidate PV-DG busses with its optimal size in

kW and the range of PV power factor, as well as the total

installed kW capacity obtained by each compared method.

It also indicates that the proposed method leads to the highest

penetration capacity among the compared methods. Table 5

lists the loss reductions, bus rms voltages, computational

time, and fitness values of (4) obtained by all compared

TABLE 4. Candidate busses and capacity (kW)/power factor range of
PV-DGs with all methods at all load levels (case 1).

TABLE 5. Results obtained before and after PV-DG planning at all load
levels (case 1).

TABLE 6. Tap positions at all load levels (case 1).

methods at all load levels before and after PV-DG planning.

Table 6 shows the regulator tap positions and the number of

tap changes obtained in Step 3 of the sizing procedure.

In table 5, it is seen that the fitness value obtained by

the COA method is the lowest among the compared meth-

ods and leads to the best solution with a loss reduction

ratio of 63.898%. The power loss for all load levels before

PV-DG planning is 191.913 kW. Fig. 4 depicts the conver-

gence trend of each method. It is observed that the COA

method yields superior convergence than the other methods.
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FIGURE 4. Convergence trends of all methods (case 1).

FIGURE 5. Voltage profile after PV-DG planning at all load levels (case 1).

FIGURE 6. Tap positions before and after PV-DG planning at all load
levels (case 1).

The rms voltage profile is improved and is within the range

of 0.99 to 1.05 pu after PV-DG planning obtained by the

proposed COA method, as shown in Fig. 5, where the min-

imum and maximum rms voltages become 0.9912 pu and

1.0489 pu, respectively. Fig. 6 illustrates that tap positions

before and after the PV-DG planning obtained by the pro-

posed method. It is observed that the tap positions of all

voltage regulators remain unchanged.

B. CASE 2: TAIPOWER 137-BUS DISTRIBUTION SYSTEM

In this case, a Taipower distribution system (69 kV/11.4 kV)

is used to test the usefulness of the proposed method. The

number of PV-DG units and their sizes are the same as those

given in Case 1. Results for comparisons include rms voltages

at each bus and the system power loss. The multi-objective

FIGURE 7. Taipower 137-bus test feeder.

FIGURE 8. Convergence trends of all methods (case 2).

FIGURE 9. Voltage profile after PV-DG planning at all load levels (case 2).

functions of (4) become a single objective function. Since

there are no voltage regulators in the system, γ2 = 0.

There are four feeders in the study system: XD21, XH22,

XH21, and XO32. Fig. 7 depicts the single-line diagram

of this taipower distribution network. In the system, the

peak value of the highest annual load level is 6000 kW.

The medium and low annual load levels are 80% and 60%

of the highest load level, respectively. Table 7 shows the

best solutions among 25 independent runs of all methods

at all load levels, which include the top ()10 highest-LRSF

candidate busses with optimal kW sizes and the ranges of

power factors, as well as the total installed PV-DG capacities

obtained by the methods under comparison. Table 8 lists the

loss reductions, bus rms voltages, elapsed time, and fitness
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TABLE 7. Candidate busses and capacity (kW)/power factor range Of
PV-DGs with all compared methods at all load levels (case 2).

TABLE 8. Results obtained before and after PV-DG planning at all load
levels (case 2).

TABLE 9. Maximum voltages (PU) at PV busses for cases 1 and 2.

values of (4) obtained by all compared methods at all load

levels. Results in Table 8 also shows that the fitness value

obtained by the COA method is still the lowest among the

compared methods and leads to the best solution with a loss

reduction ratio of 77.01%.

Simulations based on each compared method are per-

formed at 500 iterations. Fig. 8 represents the convergence

trend of each method. In this case, the COA method also

performs better than other methods. Fig. 9 depicts the

three-phase rms voltage profile corresponding to the number

of buses for each phase after installed PV-DGs at all load

levels. It is observed that the minimum and maximum rms

voltages are 0.9939 pu and 1.0023 pu, respectively, obtained

by COA. Table 9 summarizes the maximum PV-DG bus

voltages for both cases and it is observed that the bus voltages

are well controlled within the allowed upper limit.

V. CONCLUSION

This paper has proposed a two-stage solution algorithm by

applying the COAmethod for PV-DG planning in distribution

feeders considering system loss reduction, rms voltage profile

improvement, and regulator tap controls under different load

levels. The proposed method has been tested on two practical

distribution systems. Test results show that the rms voltage

at each bus can be improved, and the total number of tap

changes of voltage regulators is well controlled. By com-

paring with one conventional and four other bio-inspired

metaheuristic optimization approaches, the results confirm

that the proposedmethod is superior to the comparedmethods

in both power loss reduction and hosting capacity for PV-DG

planning.

Though the proposed COA-based approach is not the most

computationally efficient compared to the other methods.

The solutions obtained by testing both cases show that the

maximum PV-DG hosting capacity, the minimum power loss,

and the minimum number of tap changes can be achieved by

the proposed solution algorithm. For Case 1, the proposed

method can install an additional 50 to 300 kW of PV-DG

capacity and reduce an additional 1 to 8% of system power

loss with no regulator tap changes. For Case 2, the proposed

method installs an additional 150 to 700 kWof PV-DG capac-

ity and an additional 1.5 to 11% of system power loss reduc-

tion. The study has demonstrated that COA is better than the

compared methods in solving the PV-DG planning problem

for practical distribution feeders. The proposed method also

can be further applied to solve other power system planning

problems such as economic dispatch, optimal power flow, and

unit commitment.

At the present phase of the study, the PV-DG planning

does not model uncertainties of PV generation intermittency

associated with seasonal output fluctuations and annual load

variations. It is important to appreciate that there is no con-

flict between the planning either with or without including

uncertainties. Both planning processes can be combined and

lay a solid foundation for efficient PV-DG planning. Con-

sidering PV-DG generation and load uncertainties can be an

enhancement of deterministic planning and provide results

closer to reality if the uncertainty models are satisfactory

accurate. Future work will take the uncertainties into account

and include energy storage in the planning problem.
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