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ABSTRACT Recently, building an accurate mathematical model with the help of the experimentally mea-

sured data of solar cells and Photovoltaic (PV) modules, as a tool for simulation and performance evaluation

of the PV systems, has attracted the attention of many researchers. In this work, Coyote Optimization

Algorithm (COA) has been applied for extracting the unknown parameters involved in various models for

the solar cell and PV modules, namely single diode model, double diode model, and three diode model. The

choice of COA algorithm for such an application is made because of its good tracking characteristics and

the balance creation between the exploration and exploitation phases. Additionally, it has only two control

parameters and such a feature makes it very simple in application. The Root Mean Square Error (RMSE)

value between the data based on the optimized parameters for each model and those based on the measured

data of the solar cell and PVmodules is adopted as the objective function. Parameters’ estimation for various

types of PV modules (mono-crystalline, thin-film, and multi-crystalline) under different operating scenarios

such as a change in intensity of solar radiation and cell temperature is studied. Furthermore, a comprehensive

statistical study has been performed to validate the accurateness and stability of the applied COA as a

competitor to other optimization algorithms in the optimal design of PV module parameters. Simulation

results, as well as the statisticalmeasurement, validate the superiority and the reliability of the COAalgorithm

not only for parameter extraction of different PV modules but also under different operating scenarios. With

the COA, precise PVmodels have been establishedwith acceptable RMSE of 7.7547×10−4, 7.64801×10−4,

and 7.59756 × 10−4 for SDM, DDM, and TDM respectively considering R.T.C. France solar cell.

INDEX TERMS Solar cells, PVmodules, parameter extraction, optimization, coyote optimization algorithm,

single diode model, double diode model, three diode model.

I. INTRODUCTION

Due to the availability of solar energy (SE) at a very high rate,

the exploration and investigation of the solar energy systems

are extensively performed to achieve the best exploitation

of this kind of renewable energy sources [1]. As the SE

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

is a clean source, so it contributes effectively in reducing

the pollution rates around the earth, besides that it helps to

reduce the burdens on the traditional nonrenewable energy

systems used for generating the electricity such as steam

power stations and hydroelectric power stations [2], [3].

Based on this, plenty of research studies have been carried

out for solving the problems appeared as a result of the

increased progress in the field of SE [2]. The majority of
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the presented studies have concerned with analyzing the

performance of the photovoltaic (PV) modules which are

consisting of groups of solar cells (SC) [4]. By the end of

the last decade, the demand for the PV modules witnessed a

remarkable rising, and at the same time, their prices reduced

noticeably.

Despite the fact that the PV has brought great benefits to

the grid/micro-grid [5]–[7] and the electricity markets, it suf-

fered from a remarkable challenge related to the operating

efficiency which varies according to the weather conditions

under which the SC works [8], [9]. This is in addition to

its high maintenance cost as reported in Ref. [10], [11].

According to these shortages; robust designing techniques

have to be developed to realize the optimal operation of the

PV modules and solar cells under different operating condi-

tions. The design procedure for the SC is mainly depending

on the equivalent mathematical model of the SC itself. The

importance of the SC model is obvious through its ability

to stimulate all variables, which manage the dynamic behav-

ior of the real SC. Moreover, through analyzing the behav-

ior using the mathematical model, the current-voltage (I-V)

curve can be easily obtained, which contributes effectively

in understanding the behavior of SC and PV systems under

different weather conditions.

The main two models, which have been used for modelling

the SC are the Single-Diode (SD) model and Double-Diode

(DD) model. The two models are consisting of electronic

elements, which form a circuit that can analyze and incorpo-

rate the nonlinearities of the real SC. Both the SD and DD

models include a set of components, which are the diode-

saturation current, the photo-generated current, the series

resistance, and the ideality factor pertinent to the diode. For

the SDmodel, five parameters are utilized to represent the SC

operation. Meanwhile, for the DD model, it employs about

seven parameters. The key point about deriving an efficient

mathematical model depends entirely on the estimation of

these parameters, and thus the parameters have to be properly

and precisely extracted to achieve a correct balance between

the current (I) and voltage (V) for the SC and PV modules as

well.

Despite the ability of these modules (SD and DD) to pro-

vide better analysis of the SC or PV systems, their utilization

had been restricted to the domestic use, which means that

their dynamic performance had been tested for a limited

number of operating conditions. To overcome this shortage,

the Three-Diode (TD) model has been presented [12]. The

TD model incorporates nine parameters in order to model

and stimulate the behavior of the SC and PV modules. Uti-

lizing the nine parameters of the TD model has enabled the

modeling of the real industrial applications of the SC and

PV modules with high accuracy and improved efficiency.

In general, using the diode models require the configuration

of parameters set to achieve the desired performance, and

this is considered as a challenge. However, this issue can

be treated and formulated in the form of an optimization

problem.

Plenty of numerical methodologies are applied to explore

the finest model parameters, which achieve the best perfor-

mance of the PV systems. In [13], a nonlinear least-squares

algorithm with the utilization of the Newton model has been

implemented to estimate the SC unknown parameters.

Analytical methods and techniques have been applied for

introducing I-V characteristics using a co-content function as

stated in [14]. In [15], three analytical algorithms have been

introduced and compared with each other for extracting the

SC parameters depending on the SD model; the conclusion

stated that the curve-fitting technique had the best result.

In [16], A proposed RMSE expression based on Lambert W

function has been proposed as an exact solution for RMSE

of 5-parameter single diode PV models. However, in [16],

there is no exact analytical solution based on Lambert W

function has been reached for DDM or TDM yet because

of the high nonlinearity of the current expressions of these

models [16]. LambertW-function was reported in [17], which

has been utilized to extract the parameters of the DD model.

In [18], Tabular techniques have been adopted for the PV

systems with accurate results; however, the computational

burden was high. In [19], a detailed comparison between the

Levenberg-Marquardt algorithm and the Newton-Raphson

technique has been presented for estimating the parameters

of PV modules. These types of optimization techniques were

called deterministic techniques, which can consider several

boundary conditions such as convexity and differentiability

to ensure proper implementation. Unfortunately, this action

resulted in introducing local optima due to the dependency

of the outputs on the primary solutions. The last fact can be

investigated in [20], where the Newton-Raphson technique

was used to extract the unknown parameters of the DDmodel.

The results introduced a remarkable deviation between the

real and estimated values of voltage and current [21], [22].

This is in addition to the high computational burdens of these

methodologies.

In the last decade, the evolutionary computation algorithms

have been presented and implemented for extracting the

model parameters of PV modules and SC. Such algorithms

possess various advantages such as they do not need antic-

ipated information about the search space, and they have

the ability to carry out a multidimensional exploration in

the search spaces using different arrangements until the best

solution has appeared [23]. Based on the merits of evolution-

ary computation algorithms, various approaches have been

proposed. In [24], the genetic algorithms (GA) have been

utilized to enhance the accuracy of parameters estimation for

the DDmodel of the PVmodules and SC. In [25], the particle

swarm optimization (PSO) has been adopted to evaluate the

parameters of solar cells using both the SD and DD mod-

els. An efficient technique has been proposed in [26]. This

algorithm is called the Simulated Annealing (SA) method,

which has been utilized to determine the parameters of the

SD and DD model of SC and PV modules. Moreover, it has

been demonstrated that the meta-heuristic (MH) optimiza-

tion techniques allow building an effective PV modulator
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according to various criteria such as precision, consistency,

convergence speed, calculation efficiency and the reduced

number of control parameters [23], [27]–[36]. These algo-

rithms can be classified into four categories, evolutionary

algorithms (Genetic Algorithm (GA), differential Evolu-

tion (DE), and Confidence-Weighted (SCW), physics-based

algorithms (Wind Driven Optimization (WDO), Flower

Pollination Algorithm (FPA), and Gravitational Search Algo-

rithm (GSA)), swarm-based algorithms (Artificial bee colony

(ABC), particle swarm optimization (PSO), Cat Swarm Opti-

mization (CSO),Whale Optimization Algorithm (WOA), and

human-based algorithms (HBA). The following points can

be concluded from the introduced review: The influence on

the performance of these techniques by noise and change

in irradiation and temperature should be taken into account.

To find the optimal solution, it is suggested to evaluate the

impact of various objective functions on the performance

of the MH methods: the error of calculation and estimat-

ing energy, the root mean square error, relative mistakes,

etc.

To improve the performance of the MH, it is advisable

to make combinations between the MH methods and other

alternative methods. These combinations include; the chaotic

maps methods, opposite learning method, quantum methods,

and the hybridization of different MHmethods. For example,

this helps the MH methods to discover the search area and

improve their robustness, behavior, and time complexity;

study the impact of the metaheuristic method control parame-

ters on their operation and effectiveness. As most parameters

are random, selecting the optimal value will improve the

shape of the convergence behavior and prevent the local

point from being stuck. The new methods of metaheuris-

tic proposed for extracting the ideal PV cell parameters

should reduce their time complexity. Further experiments

with different MH methods are required in the three-diode

model.

From the abovementioned review, it can be realized that the

studies in the literature with regards to parameters’ estimation

accuracy for the SC and PV modules have been limited to

the SD and DD models and they were rarely treated with

the TD model, and for this purpose, the current paper intro-

duces a comprehensive study about the estimation of the

design parameters of SD, DD and TD models for the SC and

PV modules using different optimization algorithms. From

this context, Coyote Optimization Algorithm (COA) [37]

is applied in this paper to address the problem of optimal

estimation of the unknown parameters for different models

of SCs and PV modules.

The paper is organized as follows; Section II introduces

and analyzes the different diode models for the SC and PV

modules. Moreover, section II illustrates the methodology of

applying the optimization algorithm to estimate the model

parameters of SC. In section III, the proposed optimization

technique is introduced and explained. The tests are carried

out and discussed in section IV. Finally, the conclusions and

outcomes are discussed in section V.

II. MODELS OF SOLAR CELLS

In order to design the SC and PV modules, a mathematical

model has to be used to extract the SC parameters analyti-

cally. Based upon this, electronic circuits consisting of diodes

are used to model the SC. The SD and DD models are the

most items used for evaluating the parameters of the SC and

PV modules, this is in addition to the TD circuit which is

introduced recently [12].

A. SINGLE DIODE (SD) MODEL

As shown in Fig.1, the model has only one diode used for

parallelizing the current source Iph that presents the photo-

generated current. The diode acts as a half-wave rectifier. The

model considers also the non-physical ideality factor of the

diode [26]. The model has a very simple form, and thus it

is easy to be implemented. The main issue with this simple

model is that it contains only five unknown parameters, which

have to be precisely determined.

FIGURE 1. Circuit configuration of solar cell single-diode model.

In Fig. 1, the SC current It can be identified from the

following expression;

It = Iph − Isd − Ish (1)

where It , Iph, Isd and Ish refer to the output, photo-generated,

diode, and parallel resistance currents, respectively.

It is possible to use the equivalent diode equation devel-

oped by Shockley in order to develop a more precise model

for the internal parameters of the diode. Thus, (1) can be

reformulated by,

It = Iph − Isd

[

exp

(

q (Vt + RsIt)

nkt

)

− 1

]

−
Vt + RsIt

Rsh
(2)

where Vt is the output cell voltage and Isd is the diode

saturation current. Rsis the series resistance and Rsh repre-

sents the shunt resistance; while n refers to the non-physical

ideality factor. Moreover, q refers to the charge magnitude

on an electron, and q = 1.602 × 10−19 Coulombs (C). k

is the Boltzmann constant and k = 1.380 × 10−23 (J/K ).
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T is the solar cell temperature in Kelvin (K ). Thus, the proper

operation of the model can be achieved through the accu-

rate estimation of these parameters, which will be per-

formed using different optimization algorithms in the next

sections.

B. DOUBLE DIODE (DD) MODEL

The SD model is not usually a suitable selection for different

applications [36]; and for this reason, the double diode (DD)

model is proposed as presented in Fig. 2.

FIGURE 2. Circuit configuration of the solar cell double-diode model.

From Fig. 2, it can be noticed that there are two diodes;

the first is acting as a rectifier while the other is used to

take into consideration the effect of current results from the

recombination and the impact non-idealities of the SC [36].

The current balance in the equivalent circuit of Fig. 2 can be

represented by:

It = Iph − Id1 − Id2 − Ish (3)

where Id1, Id2 represent the first and second diode cur-

rents, respectively. The Shockley equivalence is utilized

in order to update the internal arrangement of the two

diodes. Accordingly, Eq. (3) can be reformulated as

follows,

It = Iph − Isd1

[

exp

(

q (Vt + RsIt)

n1kt

)

− 1

]

− Isd2

[

exp

(

q (Vt + RsIt)

n2kt

)

− 1

]

−
Vt + RsIt

Rsh
(4)

where Isd1, Isd2 are the diffusion and saturation currents for

each diode (D1 and D2). n1 and n2 are the diffusion and

re-combination ideality factors of the diodes. The rest of the

parameters in (4) are previously presented and defined by (2),

and thus the DD model will have seven unknown parameters

that need to be estimated Rs, Rsh, Iph, Isd1, Isd2, n1 and n2.

C. THREE DIODE (TD) MODEL

An accurate model for SC and PV modules is essential for

energy system analysis. The three diodes (TD) model is

more appropriate for industrial applications [38]. The vari-

able values of n1 and n2 illustrate that the DD model is

FIGURE 3. Circuit configuration of the solar cell three-diode model.

FIGURE 4. Flowchart of COA optimization method.

not enough to represent the different current components

of SC. The impact of gain boundaries and current losses

due to leakage in the circuit have been considered with the
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TABLE 1. Estimated model parameters for SDM of R.T.C. France solar cell, obtained by various optimization methods.

TABLE 2. Estimated model parameters for DDM R.T.C. France solar cell, obtained by various optimization methods.

TD model. Hence, the equivalent circuit of the TD model

after the parallel connection of the third diode is shown

in Fig. 3.

For the first diode, the current diode Id1 is represented

by recombination and diffusion processes in the near-neutral

region with a volume of n1 = 1 and the second diode with

a new diode, Id2, as the space area is replicated to n2 = 2.

Due to the recombination that has occurred inside the defect

areas, the objective of the addition of a third diode along with

both diodes is to consider the contribution of the current diode

element Id3. The performance current will be based on the

KCL for the previous estimate.

It = Iph − Id1 − Id2 − Id3 − Ish (5)

So,

It = Iph − Isd1

[

exp

(

q (Vt + RsIt)

n1kt

)

− 1

]

− Isd2

[

exp

(

q (Vt + RsIt)

n2kt

)

− 1

]

− Isd3

[

exp

(

q (Vt + RsIt)

n3kt

)

− 1

]

−
Vt + RsIt

Rsh
(6)

where, Id1 is the current of diffusion, and Id2 is the current of

recombination. The current recombination contributes to Id3
in the region of a defect while n1, n2 and n3 are non-physical

ideality factors. So, the TD model will have nine parameters
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FIGURE 5. Application of COA for extracting the PV model parameters.

FIGURE 6. Convergence trends of the fitness function for R.T.C. France
solar cell using the applied COA-based models.

that need to be extracted (Rs, Rsh, Iph, Isd1, Isd2, Isd3, n1, n2
and n3).

D. FORMULATION OF THE OPTIMIZATION PROBLEM OF

SOLAR CELLS PARAMETERS IDENTIFICATION

Through using the mathematical model of the SD, DD and

TD, it is possible to address each of them as an optimiza-

tion problem and its solution is the optimal values of the

unknown model parameters. At first, a cost function has to

be used to check if the estimated parameters are matching

their actual values or not. The validity of the estimation

procedure can be also investigated through checking the

matching degree between the I-V characteristics given in the

datasheet of a real solar cell and that estimated based on the

optimized parameters of the mathematical empirical model

solved based on Newton-Raphson method. Then, for the SD,

the objective function can be represented by [39], [40] as

follows,

fSD (Vt , It , x) = It − x3 + x4

[

exp

(

q (Vt + x1It)

x5kt

)

− 1

]

−
Vt + x1It

x2
(7)

FIGURE 7. Error curves of the computed and measured current values of
RTC France solar cell for the three models (a) values of IAE; (b) values of
RE.

While, for the DD model, the error function is represented

by,

fDD (Vt , It , x) = It − x3 + x4

[

exp

(

q (Vt + x1It)

x6kt

)

− 1

]

+ x5

[

exp

(

q (Vt + x1It)

x7kt

)

− 1

]

+
Vt + x1It

x2
(8)

Whereas, for the TD model, the error function can be

represented by,

fTD (Vt , It , x) = It − x3 + x4

[

exp

(

q (Vt + x1It)

x6kt

)

− 1

]

+ x5

[

exp

(

q (Vt + x1It)

x7kt

)

− 1

]

+ x8

[

exp

(

q (Vt+x1It)

x9kt

)

− 1

]

+
Vt+x1It

x2

(9)
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FIGURE 8. Comparison of the characteristics of RTC France solar cell
based on measured data and computed ones using SDM.

The values of Vt and It are measured values from a real

solar cell. In (7), x =
[

Rs,Rsh, Iph, Isd , n
]

is the solution

vector. The solution vector in the case of the DD model is

x =
[

Rs,Rsh, Iph, Isd1, Isd2, n1, n2
]

and for the TD model

x =
[

Rs,Rsh, Iph, Isd1, Isd2, Isd3, n1, n2, n3
]

. The functions

fSD, fDD and fTD) check and measure the similarity rate of

the outputs from each circuit regarding the experimentally

measured ones. Then, the cost function is formulated on the

base of finding the parameters that result in the minimum

error between the actual It (obtained frommeasurements) and

the estimated It (obtained by the diode models). A set of NE
samples is necessary to be used in order to widen the search

until the global optima appears, and then the cost function can

be defined by,

RMSE(x) =

√

1

N

∑NE

c=1

(

f cM
(

V c
t , I

c
t , x

))2
(10)

where the abbreviation RMSE denotes the root mean square

error and M helps in identifying which diode model is to

be utilized. COA technique will be used for identifying the

optimal values of the unknown parameters of different solar

cells and PV modules, which result in the minimum value of

the objective function.

Pseudo-code for calculating the RMSE using Newton-

Raphson method may be written as the following:

% calculating the RMSE using Newton-Raphson;

Input k = 1.3806503E-23; q = 1.60217653E-19;

T= 273.15+33; V_t = k∗T/q;

Read TOLER; tolerance to stop iterating

Input the measured voltage vector

Input the measured current vector

Initialize estimated current to zero

Read model parameters I_ph; I_sd; R_s; R_sh; n from

the COA optimizer

for J = 1 to size of measured voltage vector

iniEal guess (I0(J))

while (f>TOLER - tolerance to stop iterating)

f (J) = f(I,J)

f1(J) = f’(I,J)

I1(J) = I (J)– f(J)/f1(J)

I(J) = I1(J)

end while

end for

calculate of RMSE between measured currents and esti-

mated currents

print the RMSE, estimated currents

plot (measured voltage, estimated currents)

III. COYOTE OPTIMIZATION ALGORITHM

Coyotes are Canis Latrans species, particularly in North

America. The coyote optimization algorithm (COA) is con-

sidered as a population-based algorithm that mimics the way

that coyotes follow in an adaptation to the surrounding envi-

ronment and social behaviors. In its operation. COA makes

combinations between the swarm intelligence and evolu-

tionary heuristic. For optimization processes, COA provides

equilibrium between discovery and development. The COA

differs from the gray wolf optimization algorithm [37], [41].

The GWO describes the entire attacking cycle of the prey

while the COA represents the social structure and shared

understanding between the coyotes [37]. The population in

this algorithm is divided into NP groups, with Nc coyotes in

each group. The coyote solution is a candidate and fitness

costs are their social behavior. The social behavior of the c-th

coyote in p-th group at a time t is presented by a vector of

development variables [37].

socp,tc = x = (x1, x2, .....xD) (11)

The value of the fitness feature is taken into account when

adapting a coyote with its environment. The coyotes or agents
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TABLE 3. Estimated model parameters for TDM R.T.C. France solar cell, obtained by various optimization methods.

TABLE 4. Statistical measurement of the applied COA method for R.T.C. France solar cell based on different models.

TABLE 5. Estimated model parameters for SDM of photowatt-PWP201 module, obtained by various optimization methods.

are pseudo-random within the search area during the COA

start process, and the following are formulated:

soc
p,t
c,j = LBj + rj

(

UBj − LBj
)

(12)

where LBj is the lower limit of the variable j, UBj denotes

the upper limit of the design variable j, and rj is an arbi-

trary number ranges between [0, 1]. Therefore, the fitness

value of each coyote is calculated according to the following
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TABLE 6. Estimated model parameters for DDM of photowatt-PWP201 module, obtained by various optimization methods.

TABLE 7. Estimated model parameters for TDM of photowatt-PWP201 module, obtained by various optimization methods.

FIGURE 9. Comparison of the characteristics of RTC France solar cell
based on measured data and estimated ones using DDM.

expression:

fitp,tc = f
(

socp,tc
)

(13)

FIGURE 10. Comparison of the characteristics of RTC France solar cell
based on measured data and estimated ones using TDM.

The Coyotes participate randomly in groups at the begin-

ning of the COA but sometimes they switch from group to

group. This coyote departure is linked to a probability PL,
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FIGURE 11. Best cost of 30 runs of the COA of RTC France solar cell; (a) SDM, (b) DDM, (c) TDM (d) Comparison SMD, DDM and TDM.

which is formulated as follows:

Pe = 0.005 · N 2
c (14)

The suggested mechanism helps to change the culture of

coyotes between the groups. In each group, the leader of the

coyotes called the Alpha coyote is known as themost environ-

mentally responsible coyote. The mathematical identification

of the alpha coyote can be described as follows:

alphap,t = socp,tc for minfitp,tc (15)

The COA believes that coyotes are arranged in groups to

share the social behavior and to share in the maintenance of

the system due to the obvious signs of swarm-intelligence

in this species. The COA, therefore, ties all coyote data and

estimates it as a cultural trend in the pack.

cult
p,t
j =



















O
p,t
Nc+1
2 ,j

, Nc is odd

O
p,t
Nc
2 ,j

+ O
p,t
Nc+1
2 ,j

2
otherwise

(16)

where Op,t is the listed social conditions of the group p

coyotes at t factor J size Coyotes such as birth and death are

taken into account in the COA life cycle. The development

of coyotes is a mixture of two parents ′ social conduct,

which is randomly selected within the search area plus an

environmental factor. The following is written for this life

event:

pup
p,t
j =











soc
p,t
r1j, rndj < Ps orj = j1

soc
p,t
r1j, rndj ≥ Ps + Pa orj = j2

Rj, otherwise

(17)

where, Rj denotes a randomly distributed number within the

boundaries of the design variable, while, r1 and r2 are the

random coyote unit p, j1 and j2, two random design variables,

Ps and Pa are the scatter plate and association probability, and

Rj is the arbitrary number between 0 and 1. These probabil-

ities indicate the cultural diversity of group coyotes and the

following equations determine their values:

Ps = 1
/

D (18)

Pa = (1 − Ps)
/

2 (19)

where D is the development variables dimension. The COA

uses two factors δ1 and δ2 to evaluate the cultural interaction

between the different groups.

This behavior can be mathematically formulated as

follows:

δ1 = alphap,t − soc
p,t
cr1 (20)
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FIGURE 12. Best cost of 30 runs of the COA of Photowatt-PWP201 module; (a) SDM, (b) DDM, (c) TDM (d) Comparison SMD, DDM and TDM;
(e) Convergence trends of RMSE for Photowatt-PWP201 module under study corresponding to the COA-based models.

δ2 = cultp,t − soc
p,t
cr2 (21)

where δ1 denotes the culture deviation between a random

coyote (cr1) and alpha one in the same group and δ2 denotes

the culture difference between a randomly selected coyote

(cr2) and the cultural tendency of the corresponding group.

Then the social behavior of the coyote is revised, and the

group control is modified as follows:

new_socp,tc = socp,tc + r1.δ1 + r2.δ2 (22)

where r1 and r2 are arbitrary numbers that range between

[0, 1]. The new value of the fitness function of the coyotes

is calculated as follows:

new_fitp,tc = f
(

new_socp,tc
)

(23)

If the social behavior in the present iteration is better

than that of the last one, the current behavior will take

place the previous one and mathematically presented as
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TABLE 8. Comparison of the statistical results of the COA method for Photowatt-PWP201 module.

FIGURE 13. Comparison of the characteristics of Photowatt-PWP201
module regards the measured and computed data for SDM.

follows:

new_socp,t+1
c =

{

new_soc
p,t+1
c new_fit

p,t+1
c < fit

p,t
c

soc
p,t
c otherwise

(24)

FIGURE 14. Comparison of the characteristics of Photowatt-PWP201
module regards the measured and computed data for DDM.

In the last stage of the process, the best environmental

adaptation social behavior is chosen as the best solution.

A flowchart describing the operation of the COA optimiza-

tion technique is shown in Fig. 4.

VOLUME 8, 2020 111113



A. A. Z. Diab et al.: COA for Parameters Estimation of Various Models of SC and PV Modules

TABLE 9. The estimated parameters for the three PV modules by COA under different intensities of solar radiation and temperature of 25 ◦C (SDM).
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TABLE 9. (Continued.) The estimated parameters for the three PV modules by COA under different intensities of solar radiation and temperature of 25 ◦C
(SDM).

FIGURE 15. Comparison of the characteristics of
Photowatt-PWP201 module regards the measured and computed data for
TDM.

IV. RESULTS AND DISCUSSION

The applied COA optimization algorithm has been validated

by estimating the optimal parameters of the different mod-

els of SCs and PV modules. The estimating models SDM,

DDM, and TDM have been used for computing the PV

characteristics as curves of power via voltage and current

via voltage. The estimated performance (I/V) of each model

has been compared with those of the datasheet of the tested

cells and modules. The COA optimization algorithm has been

applied to estimate the design parameters for models of the

following commercial cells and PV modules; a typical (RTC

France) silicon solar cell, (PhotoWatt-PWP 201) PVmodule,

Mono-crystalline SM55 module, Thin-film ST40 module,

andMulti-crystalline module. The measured data and charac-

teristics of the tested SCs and PVmodules have been reported

from several manufacturer’s datasheets and Refs. [42]–[46].

For the applied optimization technique, the maximum num-

ber of iterations is adjusted at 1000 iterations while each

population consists of 5 packs with 20 coyotes in each group.

For each model, the optimization program has been imple-

mented 30 times. The validation of the used optimization

techniques has been taking place using the platform of MAT-

LABR2018a. Figure 5 shows the flow process of the applica-

tion of COA for extracting the model parameters of SCs and

PV modules. The results of the applied COA algorithm have

been compared with those of other techniques based on the

criterion of the best optimal value of the objective function.

A. CASE STUDY 1: R.T.C. FRANCE SOLAR CELL

In this case of the study, the applied COA optimization

algorithm was utilized to extract the parameters of the three

proposed models of R.T.C. France solar cell. The measured

data of the (I-V) characteristic curves of R.T.C. France solar

cell are reported in [42], [43]. The optimization algorithm of

COA is applied for extracting the parameters of the SDM,

DDM, and TDM. The results of the optimized parameters

based on the COA-based SDM model are listed in Table 1.

Table 1 also includes the results of the estimated parameters

based on COA and those estimated based on other optimiza-

tion techniques such as ABSO [40], HS [36], PSO [25],

GA [47], An.5-Pt. [48], LW [49], Newton [50], CM [51],

and PS [52]. From this table, it can be noticed that for the

SDM model, the application of the proposed COA algorithm

results in the minimum value of the RMSE that is equal to

7.75470161606E-04.

Moreover, Table 2 listed the results obtained from the

application of the COA technique for extracting the param-

eters of DDM of the R.T.C. France solar cell. For validating

the applied technique, the table also introduces the results of

the application of other techniques of ABSO [53], HS [36],
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FIGURE 16. Comparison between experimentally measured data and the estimated results by COA at different solar radiation (SDM): (a) I-V curves
for Mono-crystalline SM55, (b) P-V curves for Mono-crystalline SM55, (c) I-V curves for Thin-film ST40, (d) P-V curves for Thin-film ST40, (e) I-V curves
for Multi-crystalline KC200GT, (f) P-V curves for Multi-crystalline KC200GT.

111116 VOLUME 8, 2020



A. A. Z. Diab et al.: COA for Parameters Estimation of Various Models of SC and PV Modules

TABLE 10. Statistical measurement of the COA technique for the three PV modules under different intensities of solar radiation and temperature of 25 ◦C
(SDM).
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TABLE 10. (Continued.) Statistical measurement of the COA technique for the three PV modules under different intensities of solar radiation and
temperature of 25 ◦C (SDM).

PSO [25], GA [47], ABC [42], SBMO [43], SSO [54],

MSSO [54]. The table shows that the applied COA opti-

mization technique has the best results with the minimum

objective function of the RMSE that is 7.648012794E-04.

For more validation, the COA algorithm has been applied

for extracting the parameters of the TDM. The results of

the TDM have been listed in Table 3. The results of the

applied COA algorithm have been compared with those of

other techniques of ABC [42], OBWOA [55], STBLO [48].

The recorded results of Table 3 validate that the applied COA

optimization algorithm is better than the other techniques.

The value of RMSE using the applied COA algorithm is the

minimum and equals to 7.59756935254174E-04.

Moreover, a comparison between the results of the three

different models of SDM, DDM, and TDMbased on the COA

optimization technique has been introduced. Fig. 6 shows

the convergence trends of the objective function (RMSE) for

R.T.C. France solar cell based on COA for the three models

(SDM, DDM, and TDM). From Fig. 6 and Tables 1, 2 and 3,

it is noticeable that the convergence curve of the TDM is

better than those of SDM and DDM. However, the results

of the SDM and DDM are better than those of the reported

methods from literature as listed in Figs. 1 and 2.

Error curves of the estimated and measured current data

of RTC France solar cell for the three models based on

the indices of individual absolute error (IAE) values and

relative error (RE) values have been shown in Fig. 7 in

order to confirm the precision of the optimized parame-

ters and power of the applied optimization technique. Fur-

thermore, the characteristics of the tested solar cell have
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TABLE 11. The estimated parameters for the three PV modules based on COA at various intensities of solar radiation and temperature of 25 ◦C (DDM).
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TABLE 11. (Continued.) The estimated parameters for the three PV modules based on COA at various intensities of solar radiation and temperature
of 25 ◦C (DDM).

been plotted based on the estimated parameters for the

three different models compared with the measured ones as

presented in Figs 8, 9, and 10 for SDM, DDM, and TDM,

respectively.

Statistical analysis should be performed in order to trust the

performance of the optimization technique and evaluate the

robustness behavior of the COA. So, the optimization algo-

rithm of COA has been executed for 30 implements. For each

run, the best minimum objective function has been recorded

and reported. Moreover, statistical indices such as the mean,

standard deviation, relative error, the minimum and maxi-

mum over the 30 runs have been computed. The results of the

statistical analysis of the application of the applied COA for

the three different models have been listed in Table 4. The end

values of the objective function over the 30 runs are shown

in Fig. 11. The results of the statistical analysis prove that

the COA algorithm is an effective algorithm for solving the

optimization problem of parameters’ identification of various

mathematical models of R.T.C. France solar cell.

Moreover, the Wilcoxon signed-rank test has been

applied for more validation of the applied algorithm. The

results have been shown in Table 4. From the table,

the P-value of the results for the SDM, DDM, and TDM

are 1.7344E-06, 1.7344E-06, and 1.7344E-06, respectively

while the Ranke is 1 for the three models. At the default

5% significance level, the value h = 1 indicates that

the test rejects the null hypothesis of zero medians. The

results of the P-values in Table 4 generated from the

Wilcoxon test show that the results of COA are statistically

significant.

B. CASE STUDY 2; PHOTOWATT-PWP201 MODULE

For more validating of the applied COA technique,

the Effectiveness of the COA is assessed with the esti-

mation of the optimal parameters of different models

of the Photowatt-PWP201 PV module, which consists

of 36 series connected silicon cells under operating con-

dition of 1000 W/m2 solar radiation and cell temperature

of 45 ◦C [42], [43]. In this case of study, to validate the

effectiveness and precision of the applied methodology, the

obtained results have been compared with those reported in

literature based on other techniques.

The superior performance of the COA optimization algo-

rithm has been tested for determining the parameters of the

SDM regarding such module. The results have been listed

in Table 5. The table also introduces a comparison with the

111120 VOLUME 8, 2020



A. A. Z. Diab et al.: COA for Parameters Estimation of Various Models of SC and PV Modules

FIGURE 17. Comparison between experimentally measured data and the estimated results by COA at different solar radiation (DDM): (a) I-V curves
for Mono-crystalline SM55, (b) P-V curves for Mono-crystalline SM55, (c) I-V curves for Thin-film ST40, (d) P-V curves for Thin-film ST40, (e) I-V curves
for Multi-crystalline KC200GT, (f) P-V curves for Multi-crystalline KC200GT.
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TABLE 12. Statistical measurements of the COA technique for the three PV modules under different intensities of solar radiation and temperature of
25 ◦C (DDM).
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TABLE 12. (Continued.) Statistical measurements of the COA technique for the three PV modules under different intensities of solar radiation and
temperature of 25 ◦C (DDM).

results of other techniques of Newton [13], PS [52], OIS [56]

and 1DAB [49]. The comparison validated the effectivity of

the COA with respect to the other techniques. The RMSE

based on the application of COA for extracting the param-

eters of SDM equals 2.94960692837E-3 which is the best

one.

For more validating, the COA is applied for estimat-

ing the parameters of the DDM and TDM models of

Photowatt-PWP201 PV module. The optimized parameters

of the DDMand TDMbased on COA have been introduced in

Table 6 and Table 7, respectively. Table 6 is also for compar-

ing the results of the DDM-based COA with other techniques

of WDOWOAPSO [50], GCPSO[57], TVACPSO [58], and

ABC-DE [59]. The table validates the superiority of the

applied COA algorithm with respect to the minimum value of

the RMSE which equals 2.40412239424184E-3. Moreover,

Table 7 shows the results of the COA for extracting the

parameter of the TDM model for the Photowatt-PWP201 PV

module and the value of the RMSE is 2.07378235398E-03.

All results which are presented in Table 5 to Table 7 prove

that the COA is effective with high accuracy to estimate the

parameters of the different models of the Photowatt-PWP201

PV module, which is reflected in the reduction of

RMSE value as the objective function. The convergence

characteristics of the RMSE for the Photowatt-PWP201

module based on COA optimization method accord-

ing to the three applied models have been illustrated

in Fig. 12. Also, Fig. 12 shows the best value of the

VOLUME 8, 2020 111123



A. A. Z. Diab et al.: COA for Parameters Estimation of Various Models of SC and PV Modules

TABLE 13. The estimated parameters for the three PV modules based on COA under various intensities of solar radiation and temperature of 25 ◦C (TDM).
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TABLE 13. (Continued.) The estimated parameters for the three PV modules based on COA under various intensities of solar radiation and temperature
of 25 ◦C (TDM).

cost function for 30 separately run of the estimation

process.

The optimized parameters for the SDM, DDM, and TDM

have been applied to plot the estimated I-V and P-V

curves of the Photowatt-PWP201 module. The measured

and the estimated curves based on COA have been visu-

alized in Figs 13 to 15 for SDM, DDM and TDM models,

respectively. The figures show that the estimated curves
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TABLE 14. Statistical measurements of the COA technique for the three PV modules at different intensities of solar radiation and temperature of 25 ◦C
(TDM).
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TABLE 14. (Continued.) Statistical measurements of the COA technique for the three PV modules at different intensities of solar radiation and
temperature of 25 ◦C (TDM).

based on COA agreed with the experimental data. Moreover,

the regression between the computed and experimentally

measured curves is 1, which validates the COA based

methodology. The statistical analysis has been applied to

prove the robustness of COA optimization technique. The

results of the statistical analysis have been listed in Table 8.

The table shows that the COA algorithm has accept-

able indices of statistical analysis such as standard divi-

sion (SD) and relative error (RE) for the three estimated

models.

From the results, it is shown that the WDOWOAPSO [44],

GCPSO [50] and TVACPSO [51] algorithms have RMSE

values, which are better than that of COA with the DDM

for Photowatt-PWP201 module. This may be one of COA

limitations. However, the results of the COA are the best with

the cases of SDM andi TDM.

C. CASE 3. DIFFERENT TYPES OF PV MODULES

For this case study, the parameters of SDM, DDM and TDM

have been estimated based on the COA optimization algo-

rithm for three different PV modules of Mono-crystalline

SM55, Thin-film ST40 and Multi-crystalline KC200GT. The

estimated parameters have been extracted for the three PV

modules under different operating conditions of solar radia-

tion ranges between 200W/m2 and 1000W/m2 while the cell

temperature is kept constant at 25 ◦C. To further investigate

effectiveness, the applied COA algorithm was utilized to

estimate the parameters of the SDM, DDM and TDM of the
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FIGURE 18. Comparison between experimentally measured data and the estimated results by COA at different solar radiation (TDM): (a) I-V
curves for Mono-crystalline SM55, (b) P-V curves for Mono-crystalline SM55, (c) I-V curves for Thin-film ST40, (d) P-V curves for Thin-film ST40, (e)
I-V curves for Multi-crystalline KC200GT, (f) P-V curves for Multi-crystalline KC200GT.
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FIGURE 19. Comparison between experimentally measured data and the estimated results by COA at different temperature for Mono-crystalline
SM55 module: (a) I-V curves (SDM), (b) P-V curves (SDM), (c) I-V curves (DDM), (d) P-V curves (DDM), (e) I-V curves (TDM), (f) P-V curves (TDM).
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FIGURE 20. Comparison between experimentally measured data and the estimated results by COA at different temperature for Thin-film
ST40 module: (a) I-V curves (SDM), (b) P-V curves (SDM), (c) I-V curves (DDM), (d) P-V curves (DDM), (e) I-V curves (TDM), (f) P-V curves (TDM).
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TABLE 15. The estimated parameters using COA method for Mono-crystalline SM55 under various temperature and 1000 W/m2.
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TABLE 16. Comparison of the statistical results of the COA method for Mono-crystalline SM55 under various values of temperature and 1000 W/m2.
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TABLE 17. The estimated parameters using COA method for Thin-film ST40 under various values of temperature and 1000 W/m2.

three PV modules at cell temperature ranges between 25 ◦C

and 75 ◦C with 1000 W/m2 solar radiation intensity.

1) DIFFERENT INTENSITIES OF SOLAR RADIATION AND

TEMPERATURE OF 25 ◦C

The results of the extracting parameters of the SDM for

the three PV modules under different intensities of solar

radiation and temperature of 25 ◦Chave been listed in Table 9.

The table shows that under each intensity of solar radiation,

the COA optimization algorithm is capable to estimate the

parameters of SDM with acceptable values of RMSE for

each PVmodule. The characteristics of the three different PV

modules have been shown in Fig. 16. The figure shows a good

agreement between the actual and estimated curves for the
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TABLE 18. Comparison of the statistical results of the COA method for Thin-film ST40 under various values of temperature and 1000 W/m2.
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TABLE 19. The estimated parameters using COA method for Multi-crystalline KC200GT under various values of temperature and 1000 W/m2.

current and the power against voltage. For further validation

of the COA based estimator; a comparison of the statistical

results of the COA method for the three PV modules under

study at various solar radiations and cell temperature of 25 ◦C

according to the SDM have been listed in Table 10. The

results prove that the COA can be used for extracting the PV
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FIGURE 21. Comparison between experimentally measured data and the estimated results by COA at different temperature for Multi-crystalline
KC200GT module: (a) I-V curves (SDM), (b) P-V curves (SDM), (c) I-V curves (DDM), (d) P-V curves (DDM), (e) I-V curves (TDM), (f) P-V curves (TDM).

111136 VOLUME 8, 2020



A. A. Z. Diab et al.: COA for Parameters Estimation of Various Models of SC and PV Modules

TABLE 20. Comparison of the statistical results of the COA method for Multi-crystalline KC200GT under various values of temperature and 1000 W/m2.
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model parameters under the different conditions of the solar

radiation.

For DDM, Table 11 shows the extracted parameters of the

DDM of the three PV modules under different intensities

of solar radiation and temperature of 25 ◦C. Moreover,

Fig. 17 shows the characteristics of the PV modules based on

the estimated parameters. The results show a good matching

between the estimated and datasheet characteristics under the

different intensities of solar radiation. Table 12 has the results

of the statistical analysis of the COAmethod for the three PV

modules under different solar radiation and cell temperature

of 25 ◦C based on the DDM.

Furthermore, the parameters of TDM for each PVmodules

have been estimated based on the optimization algorithm of

COA. The results of the TDM parameters have been listed

in Table 13. Moreover, Fig. 18 shows that the estimated char-

acteristics of each PV modules have a good agreement with

actual characteristics under the different intensities of solar

radiation. Table 14 has the results of the statistical analysis

of the COA method for the three PV modules under different

solar radiation and cell temperature of 25 ◦C using TDM.

2) OPERATION UNDER DIFFERENT TEMPERATURES

To further validate the COA, the optimization algorithm has

been tested in order to estimate the unknown design param-

eters of different models for the three PV modules under

different cell temperatures. The optimized results of such case

of studies have been illustrated in Table 15 to Table 20 and

Figs 19 to 21. Table 15, Table 17 and Table 19 show the

estimated parameters for Mono-crystalline SM55 and Thin-

film ST40 Multi-crystalline KC200GT, respectively, using

COAmethod at different temperature and 1000W/m2. While

the statistical results of the COAmethod forMono-crystalline

SM55, Thin-film ST40 and Multi-crystalline KC200GT at

different temperatures and 1000 W/m2 have been listed

in Tables 16, 18 and 20, respectively. The tables show that

the COA can accurately extract the parameters of the SDM,

DDM and TDM for the three PV modules. The characteris-

tics of the different PV modules of Mono-crystalline SM55,

Thin-film ST40 and Multi-crystalline KC200GT have been

shown in Figs 19, 20 and 21, respectively.

V. CONCLUSION

In this paper, a recent coyote optimization algorithm has been

utilized for tackling with the optimization problem of param-

eters’ identification of solar cells and various PV modules.

To evaluate the power of the applied optimization method,

data from the datasheet of the manufacturer and measured

data obtained from the literature for different solar cells

and PV modules at various intensities solar radiations and

temperature have been used. Three different models of solar

cells and PV modules, namely single diode model (SDM),

double diode model (DDM), and three diode model (TDM),

have been involved in this study. The results obtained from the

application of the COA have been compared with the results

reported in the literature for other optimization methods,

where the applied COA achieves the best values of the objec-

tive function (RMSE). In addition, three different types of PV

modules; mono-crystalline, thin-film, and multi-crystalline

have been used for the validation of the applied technique

under different intensities of solar radiation and module tem-

perature. Furthermore, parametric and non-parametric statis-

tical study of the results of the optimization of the parameters

of solar cells and PV modules have been conducted in order

to ensure the accurateness and stability of the COA in solving

the optimization problem. Accordingly, the simulation results

proved the good agreement between the V-I characteristics

based on the optimized parameters and the corresponding

ones reported in the datasheet of the manufacturer. Finally,

the applied COA successes to introduce itself as a competitor

to other optimization algorithms for parameter extraction of

different solar cells and PVmodules. The application of COA

for extracting the maximum power point of PV under partial

shading may be considered in the future work. Moreover,

the COA can be applied to optimize other engineering prob-

lems in numerous research areas such as smart grids and other

renewable energy systems.
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