
Research Article

CP-ABE Access Control Scheme for Sensitive Data Set Constraint
with Hidden Access Policy and Constraint Policy

Nurmamat Helil1,2 and Kaysar Rahman1

1College of Mathematics and System Science, Xinjiang University, Xinjiang, China
2Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA

Correspondence should be addressed to Nurmamat Helil; nur924@sina.com

Received 15 June 2017; Accepted 23 August 2017; Published 28 September 2017

Academic Editor: Huaizhi Li

Copyright © 2017 Nurmamat Helil and Kaysar Rahman.
is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

CP-ABE (Ciphertext-Policy Attribute-Based Encryption) with hidden access control policy enables data owners to share their
encrypted data using cloud storage with authorized users while keeping the access control policies blinded. However, a mechanism
to prevent users from achieving successive access to a data owner’s certain number of data objects, which present a con�ict of
interest or whose combination thereof is sensitive, has yet to be studied. In this paper, we analyze the underlying relations among
these particular data objects, introduce the concept of the sensitive data set constraint, and propose a CP-ABE access control scheme
with hidden attributes for the sensitive data set constraint.
is scheme incorporates extensible, partially hidden constraint policy.
In our scheme, due to the separation of duty principle, the duties of enforcing the access control policy and the constraint policy are
divided into two independent entities to enhance security.
e hidden constraint policy provides �exibility in that the data owner
can partially change the sensitive data set constraint structure a�er the system has been set up.

1. Introduction

With the advancement of cloud computing [1], an increasing
number of organizations and individual users are willing to
store their private data in cloud storage to share with others.
Unlike traditional access control, the data owner reserves
the right to de
ne the access control policy for his/her data
for release on the cloud. Moreover, the data owner encrypts
his/her data according to his/her access control policy before
putting the data on the cloud because the cloud might be
compromised or untrusted. Attribute-Based Encryption [2–
5] provides desirable solutions to meet the data owner’s
needs. Compared to KP-ABE (Key-Policy Attribute-Based
Encryption) [4] and fuzzy identity-based encryption [2], CP-
ABE (Ciphertext-Policy Attribute-Based Encryption) [3, 5] is
more appropriate, as it enables the data owner to more freely
de
ne the access control policy. Moreover, because the access
control policy itself may leak critical information, e�orts have
beenmade [6–10] to hide the access control policy by blinding
the attributes within it.

However, the data owner may unavoidably release some
data onto the cloud storage whereby either there may exist a
con�ict of interest or one can derive sensitive or con
dential
data from the released data. For example, the data owner
may release two data objects (a data object refers to an
encryption data unit in CP-ABE scenario, e.g., a
le, a
message) �company A and �company B to the cloud, to which
the Chinese Wall security policy [11] should be applied, as
company A and company B are competitors. Any authorized
user of the two data objects can freely access either data
object, but once he/she has accessed one of them, he/she
can no longer access the other. In the CP-ABE scenario, it
is inappropriate to split all users into two mutually disjoint
sets beforehand by choosing an access structure for the two
data objects.
is is because an authorized user is initially
supposed to be able to access either of the two data objects
freely.
e relations among the data released to the cloud
storage are substantially more complicated. Other types of
data sets exist as well. In [12, 13], we emphasized the situation
in which a user’s consecutive access to any � data out of

Hindawi
Security and Communication Networks
Volume 2017, Article ID 2713595, 13 pages
https://doi.org/10.1155/2017/2713595

https://doi.org/10.1155/2017/2713595

2 Security and Communication Networks

� may yield a con�ict of interest or disclosure of some
sensitive data.
is type of data set has been studied in
primary access control constraints such as SOD (Separation
of Duty) of RBAC (Role-Based Access Control) [14–16] and
the Chinese Wall security policy [11]; we call this kind of
data set a sensitive data set in this paper.
e handling of
the sensitive data set problem for cloud storage should be
considered. Some work has been conducted on such data sets
[17, 18]. However, for cloud storage, where the access control
is realized via CP-ABE, there remains no suchmechanism for
e�ectively controlling a user’s successive access to data objects
from a data owner’s sensitive data set to prevent commercial
fraud, mistakes, or the leakage of critical information.

To handle the constraint for a sensitive data set stored
in cloud storage that utilizes CP-ABE, we propose a CP-ABE
access control scheme for sensitive data sets with a �exible,
partially hidden constraint policy; in addition, the scheme
retains the features of the hidden access control policy. In
this work,
rst, we analyze the general characteristics and
structures of the sensitive data set constraint and present
a formal de
nition of it. Second, we utilize the concept of
dummy attributes [19] for the data objects in the sensitive data
set, and we also introduce a semitrusted constraint monitor
that is responsible for keeping track of the user’s access to
data objects from the sensitive data set using these dummy
attributes. In our scheme, the constraint policies de
ned by
the data owner are fully hidden from entities, except for the
constraint monitor; the policies are partially hidden from the
constraint monitor, and the access control policies are hidden
from all entities.

e user’s previous successful access to data objects in a
sensitive data set constraint may a�ect the user’s future access
to other data objects in the same set. To handle the sensitive
data set constraint, an entity in the system needs to know
whether the user has the ability to decrypt the data objects in
the sensitive data set without knowing any information about
the access control policy of the data object. In addition, we
choose the tree access structure with “AND,” “OR,” and “�
OF �” gates. For the above reasons, we construct our scheme
based on Hur’s promising scheme [8], but our emphasis is on
the constraint.

e remainder of this paper is organized as follows.
Section 2 explores the essential features of a sensitive data set
constraint alongwith its structure.
e assignment of dummy
attributes for the sensitive data set constraint is introduced
in Section 3. Section 4 provides the system architecture,
assumptions, and requirements for our scheme.
e formal
speci
cation of the CP-ABE access control scheme for the
constraint is presented in Section 5. A detailed scheme
construction is provided in Section 6. In Section 7, we discuss
extra costs due to the enforcement of the constraint, in
comparison with [8]. In Section 8, security, consistency, and
accessibility analyses are given. In Section 9, we survey related
works. Section 10 summarizes our work.

2. Sensitive Data Set Constraint

Some data objects released to the cloud storage may be
characterized by certain correlations.
e combination of

such data objects may induce a con�ict of interest; a user
may easily derive highly sensitive or con
dential data that
are not supposed to be disclosed to any user from other
legitimately accessed but otherwise insigni
cant data objects.
Although the data owner is aware of the hazard posed by
releasing such data objects to the cloud, he/she might accept
the tradeo� of information protection for sharing his/her
data.We
rst analyze the underlying relations among the data
objects released by the data owner and present the formal
de
nition of the sensitive data set constraint.

2.1. Implicit Data. ∃�� ∉ {�1,�2, . . . ,��}, if all data
objects from a data set {�1,�2, . . . ,��} are accessed by one
user; then, these combined access instances are equivalent
to accessing data �� by this user. {�1,�2, . . . ,��} is the
minimal set that satis
es the above condition. We call ��

implicit data [12].
If the implicit data are sensitive or con
dential and are

not supposed to be available to any user, then we should add
constraints to a user’s successive access to these data objects
to prevent the user’s derivation of the implicit data.

2.2. Structure

(a) Chinese Wall Structure. For the two disjoint data sets
{�1,�2, . . . ,��} and {��

1,��
2, . . . ,��

� }, once a user
accesses a data object fromone data set, he/she should
no longer be authorized to access any data object from
another data set [11].

(b) (�, �) Structure. Denoted as ({�1,�2, . . . ,��}, #�),2 ≤ � ≤ �, this structure requires that no user
can access � or more data objects from the data set
{�1,�2, . . . ,��}.
is implies that the combination
of any � or more data objects from {�1,�2, . . . ,��}
is sensitive or induces a con�ict of interest [13].

e Chinese Wall structure is equivalent to the (�, �)
structure if we set (�, �) = (2, 2) and use the concept of
equivalence classes. For example, two disjoint data sets {�1}
and {�2,�3} have a Chinese Wall structure. If [�1] =
{�1} and [�2] = [�3] = {�2,�3}, then we have
({[�1], [�2]}, #2) or ({[�1], [�3]}, #2).

Based on the aforementioned analysis, we introduce
a general and formal de
nition of the sensitive data set
constraint.

De�nition 1 (SDS constraint). De
ne ({[�1], [�2], . . . ,[��]}, #�), 2 ≤ � ≤ �, as a sensitive data set (SDS) constraint
if any user is forbidden from accessing data objects from �
or more di�erent equivalence classes out of � classes, and
[��] ∩ [��] = 0, 0 ≤
, � ≤ �,
 ̸= �.

For an SDS constraint, we say that data objects
from di�erent equivalence classes are incompatible; on
the contrary, we say that data objects from the same
equivalence class are compatible. For example, for
({[�1], [�2], . . . , [��]}, #�), 2 ≤ � ≤ �, ∀��

1,��
2, if

��
1 ∈ [��], ��

2 ∈ [��],
 ̸= �, then ��
1 and ��

2 are

Security and Communication Networks 3

incompatible; if ��
1,��

2 ∈ [��], then ��
1 and ��

2 are
compatible.

A data object can be under multiple SDS constraints.
Assume that ({[�1], [�2], . . . , [��]}, #�1) and ({[��

1],
[��

2], . . . , [��
�]}, #�2) are two SDS constraints; then,

(⋃�
�=1[��]) ∩ (⋃�

�=1[��
�]) ̸= 0 is allowed.

We also have an extra rule about SDS constraints.

Rule 1. Any two compatible data objects in an SDS constraint
cannot be incompatible in any other SDS constraint and vice
versa.

Let us consider an example.
ere is a database table
of an organization; the table has columns �, �, �1, �2,�, and �.
e data of column � for each row is sensitive
or con
dential; however, it can be inferred from any three
corresponding columns out of�, �,�1,� or�, �,�2,�.
e
organization releases this table to the cloud storage without
column �. If any user is authorized to access data of any
three columns out of �, �, �1, � or �, �, �2, �, then he/she
can infer the data of column � despite the fact that he/she is
not authorized to access the data of column � [12]. So, the
organization should specify an SDS constraint for this case,
that is, ({{��}, {�	}, {�
1 ,�
2}, {��}}, #3).

3. SDS Constraint Specific Attributes

In CP-ABE, attributes play a key role in the enforcement
of access control.
erefore, to handle the SDS constraint,
additional SDS constraint speci
c attributes can be used.
Because the additional attributes are only used to handle
the SDS constraint and have no special meaning, we adopt
dummy attributes [19] in our scheme.

If a data object is organized into an SDS constraint, then
we need to upgrade the original access requirement for the
data object. Because the data object is no longer independent,
a user’s access to the data objectmay a�ect later access to other
data objects under the same SDS constraint. We upgrade the
original access requirements with dummy attributes. Below,
we
rst discuss the assignment of dummy attributes for the
SDS constraints.

Suppose that

SDS(�)� = ({{�1,1,�1,2, . . . ,�1,�1} ,
{�2,1,�2,2, . . . ,�2,�2} , . . . , {�
,1,�
,2, . . . ,�
,��}} ,
#�)

(1)

is one of the SDS constraints for data owner ��. As shown in

Figure 1, we use �dummyarti
cial attributes �(�)
�,1 , �(�)

�,2 , . . . , �(�)
�,
 ,

which are unique to SDS(�)� . �(�)
�,1 , �(�)

�,2 , . . . , �(�)
�,
 are used to

distinguish between di�erent equivalence classes.
erefore,

�(�)
�,� corresponds to the data set {��,1,��,2, . . . ,��,��} in

SDS(�)� in this example.We assume that these attributes do not
overlapwith the same data owner’s other dummy attributes or
with the normal attributes used in the whole system.

Consider a case in which a data object is orga-

nized into two di�erent SDS constraints. If SDS(�)�1 =
({[�1], [�2], . . . , [�
1]}, #�1) and SDS(�)�2 = ({[��

1], [��
2], . . .,

[��

2]}, #�2), with � ∈ (⋃
1

�=1[��]) ∩ (⋃
2
�=1[��

�]), assume

that the corresponding SDS constraint speci
c attributes

for the two SDS constraints are �(�)
�1 ,1, �(�)

�1 ,2, . . . , �(�)
�1 ,
1 and

�(�)
�2 ,1, �(�)

�2 ,2, . . . , �(�)
�2 ,
2 , respectively. If � ∈ [��1] in SDS(�)�1 and

� ∈ [��2] in SDS(�)�2 , then �(�)
�1 ,�1 and �(�)

�2 ,�2 are both used to

upgrade the access requirement for�.

4. CP-ABE Access Control System Architecture
for SDS Constraint

4.1. System Architecture and Assumptions.
e system archi-
tecture is as shown in Figure 2.
e entities in the system are
described as follows.

Cloud Storage Server.
e cloud storage server provides the
data sharing service.

Data Owner.
e data owner owns the data objects and
releases them to the cloud storage server a�er encryption
under his/her access control policies. Furthermore, he/she
de
nes the SDS constraints based on De
nition 1 and Rule 1.

User (Consumer).
e user accesses encrypted data objects on
the cloud storage server.

Key Generation Center (KGC).
e KGC generates public and
private keys for the system. It is assumed to be semitrusted.

e KGC performs legitimate tasks assigned to it by other
entities, but itmay peek at the data owner’s data objects, access
control policies, and constraint policies.

Proxy Server.
e proxy server enforces access control for the
data objects and performs partial decryption. It is assumed
to be semitrusted.
e proxy server performs legitimate tasks
assigned to it by other entities, but it may peek at the data
owner’s data objects, access control policies, and constraint
policies. Another additional assumption about the proxy
server is that it does not tamper with any component of the
ciphertext of the data object.

SDS Monitor.
e SDS monitor enforces the SDS constraint
for the data objects. It is assumed to be semitrusted.
e
SDSmonitor performs legitimate tasks assigned to it by other
entities, but it may peek at the data owner’s data objects.
Another critical assumption about the SDS monitor is that
it will destroy the partially decrypted ciphertext if the user’s
accessing of the corresponding data object is about to violate
any SDS constraint.

4.2. Security, Privacy, Consistency, and

Accessibility Requirements

Security. Data con
dentiality and collusion resistance [3, 8]
should be guaranteed. Moreover, as per our contribution, the

4 Security and Communication Networks

k of l

OR OR OR
(a)
i,1

M1,1 M1,2

· · ·

M1,n1


(a)
i,2

M2,1 M2,2· · · M2,n2
· · ·


(a)

i,l

Ml,1 Ml,2 · · · Ml,n

３＄３
(a)
i

Figure 1: Dummy attributes corresponding to the data objects in an SDS constraint.

Partially decrypt
KGC

Cloud storage server

Proxy server

Data owner

User

SDS monitor

Response
(partially decrypt)

SK

PK

Access request

Response
(partially decrypt)

Encrypt data

Token

SDS parameters

Figure 2: CP-ABE access control system architecture for SDS constraints.

SDS constraint in De
nition 1 should also be guaranteed;
accessing data objects should not cause a violation of any SDS
constraint.

Policy Privacy. No entities have any information about the
attributes of the access control policy. No entities, except for
the SDS monitor, have any valuable information about the
SDS constraint policy or its structure.
e SDS monitor has
limited information about the SDS constraint policy and its
structure.

Consistency. Any two compatible data objects in an SDS
constraint cannot be incompatible in any other SDS con-
straint and vice versa (Rule 1).
e reason for the consistency
requirement is simple: a user’s access to data objects in an

SDS constraint may a�ect his/her subsequent access to other
data objects that are incompatible with the initial data objects
being accessed but will not a�ect his/her subsequent access
to other data objects that are compatible with the initial
data objects being accessed.
us, we have the consistency
requirement to support the SDS constraint policy.

Accessibility. A user whose valid attributes match the tree
access structure of a data object can access the data object
even if it is organized into an SDS constraint unless the access
violates any SDS constraint. In contrast, a user whose valid
attributes do not match the tree access structure of the data
object still cannot access the data object a�er it is organized
into an SDS constraint.

Security and Communication Networks 5

5. CP-ABE Access Control Scheme for
SDS Constraint

5.1. Cryptographic Background. In this section, we specify the
formal de
nition of the CP-ABE access control scheme for
the SDS constraint. Our proposal is based on [8]. We brie�y
review the cryptographic background on the reason for the
integrity of the content.

5.1.1. Attribute Access Structure

De�nition 2 (attribute access structure). Let {�1, �2, . . . , ��}
be a set of attributes. A collection A ⊆ 2{�1 ,�2 ,...,��} is
monotone if ∀�, �: if � ∈ A and � ⊆ �, then � ∈ A. An
attribute access structure (resp., monotone attribute access
structure) is a collection (resp., monotone collection) A of

nonempty subsets of {�1, �2, . . . , ��}, that is,A ⊆ 2{�1 ,�2 ,...,��}\
{0}. We call the sets inA the authorized sets of attributes, and
the sets not in A are the unauthorized sets of attributes.

e attribute access structure is a monotone access
structure for all data objects regardless of whether they are
in the SDS constraint.

Bilinear Pairings. G0 and G1 are two multiplicative cyclic
groups of prime order �. � is a generator of G0, and is a
bilinearmap, : G0×G0 → G1. has the following properties:

(i) Bilinearity: ∀�, V ∈ G� and ∀", # ∈ Z
∗
�, (��, V�) =

 (�, V)��.
(ii) Nondegeneracy: (�, �) ̸= 1.
(iii) Computability: computing the bilinear map : G0 ×

G0 → G1 is e�cient.

Bilinear Di�e-Hellman (BDH) Assumption. Based on the
aforementioned notations, given a generator � of G0 and
elements ��, ��, �� for ", #, $ ∈ Z

∗
�, the BDH problem is to

nd (�, �)���.
One-Way Anonymous Key Agreement. Kate et al. [20] pro-
posed a one-way anonymous key agreement scheme and
proved that it is secure in the random oracle model under
the assumption that the BDHproblem in ⟨�,G0,G1, ⟩ is hard
with respect to unconditional anonymity, session key secrecy,
and impersonation.

5.2. CP-ABE Access Control Components for the SDS Con-
straint.
e CP-ABE access control components for the SDS
constraint are as follows:

(i) USERS = {�1, �2, . . . , �
}: the user set.
(ii) O ATTR = {�1, �2, . . . , ��}: original attributes.
(iii) SDS ATTR(��) = {�(�)

�,1 , �(�)
�,2 , . . . , �(�)

�,��}1≤�≤�, � = 1, 2,
. . . , �: SDS constraint speci
c attributes for a user ��;�� has' di�erent SDS constraints;' can be di�erent
for di�erent users.

(iv) SDS INFO
(�)
� = {�(�)

�,1 , �(�)
�,2 , . . . , �(�)

�,�� , ��}, 1 ≤
 ≤ ',

� = 1, 2, . . . , �: SDS constraint information for user��’s
th SDS constraint.

(v) H Attr(��, SDS(�)�): historical SDS constraint speci
c
attribute set; it is initially an empty set; when user
�� successfully accesses data owner ��’s data object
under ��’s
th SDS constraint, then the SDS constraint
speci
c attribute that corresponds to the equivalence
class the accessed data object belongs to will be put
into the set.

(vi) SDS ATTR = ⋃

�=1 SDS ATTR(��): all SDS con-

straint speci
c attributes in the system.

(vii) ATTR = O ATTR ∪ SDS ATTR, all attributes in the
system, O ATTR ∩ SDS ATTR = 0.

5.3. CP-ABE Access Control Scheme for SDS Constraint.
e
access control scheme for the SDS constraint with the hidden
access control policy and the constraint policy includes
the algorithms below. In our scheme, we omit the access
control process for data objects that are not under the SDS
constraints, as it is the same as the process in Hur’s scheme
[8].

Setup. Setup(1�) → (PKKGC,MKKGC), (PK�,MK�), (PKSDS,
MKSDS).
e KGC generates public parameters for the whole
system.
en, the KGC, the proxy server, and the SDS
monitor output their public key and master private key
pairs (PKKGC,MKKGC), (PK�,MK�), and (PKSDS,MKSDS),
respectively.

Key Generation. KeyGen(MKKGC, +) → SK�.
e KGC takes

MKKGC and a set of attributes + ∈ 2O ATTR \ {0} as input, and
it outputs the private key SK� for the user �.
Data Encryption. Encrypt(PKKGC,PK�,PKSDS,�,T) → CT.

e data owner takes PKKGC, PK�, and PKSDS and the tree
access structure T as parameters to encrypt the data object
�.
e data owner outputs a ciphertext CT.

Token Generation. GenToken(SK�, +�) → TK�� ,�.
e user �
takes SK� and the set of attributes +� ⊆ + as input and outputs
a token TK�� ,�.

Partial Decryption

(a) Proxy-Server-Side Partial Decryption.
+PartDecrypt(CT,TK�� ,�) → CT�.
e proxy

server determines if +� matches the access control
policy. If so, then the server partially decrypts CT
and outputs CT� for further partial decryption by the
SDS monitor; otherwise, it returns ⊥.

(b) SDS-Monitor-Side Partial Decryption.
SDSPartDecrypt(CT�) → CT��.
e SDS monitor
determines if the current data access violates any
SDS constraint; if so, then CT� is destroyed, and ⊥ is
returned; otherwise, the monitor takes CT� as input
and outputs CT�� for the user.

6 Security and Communication Networks

Data Decryption. Decrypt(CT��, SK�) → �.
e user takes

CT�� and SK� as input and outputs data object � if the

decryption is successful.

6. Construction of CP-ABE Access Control
Scheme for SDS Constraint

e construction of the scheme is partly based on Hur’s

scheme [8]. However, we add the partially hidden, �exible

SDS constraint policy to his scheme. To enforce the SDS

constraint, the systemmust have the ability to determine if the

user can successfully decrypt the data object before sending

it to the user.
is is because the user’s current and previous

successful access to data objects under an SDS constraint

may a�ect the user’s future access to other data objects under

the same SDS constraint. In [8], the storage server happened

to have the desired ability without having any knowledge

about the attributes in the access structure.
erefore, Hur’s

work comes in handy here.
e access tree speci
cation and

satisfying the access tree are the same as in [3]; we thus omit

them here.

6.1. CP-ABE Access Control Scheme Construction for the SDS
Constraint. Let G0 be a bilinear group of prime order �, and
let � be the generator of G0. In addition, let : G0 × G0 →
G1 denote the bilinear map. A security parameter, �, will
determine the size of the groups. We use two hash functions,

/ : {0, 1}∗ → G0 and /1 : G1 → {0, 1}log�, which we will

model as a random oracle. For the Lagrange coe�cients Δ �,�
for any
 ∈ Z

∗
� and a set, +, of elements in Z

∗
�, we de
ne

Δ �,�(") = ∏�∈�,� ̸=�((" − �)/(
 − �)).

Setup.
eKGC, proxy server, and SDSmonitor produce their

public and master private key pairs.

e KGC chooses G0 of prime order �, where � is its

generator.
e KGC chooses / : {0, 1}∗ → G0, /1 : G1 →
{0, 1}log� and the following public parameters: (G0, �,/,/1).

eKGC chooses two random exponents 7, 8 ∈ �Z
∗
�, ℎ =

��; then, the public and private keys for theKGC are PKKGC =
(ℎ, (�, �)�) and MKKGC = (8, ��), respectively.

e proxy server chooses a random exponent ; ∈ �Z
∗
�;

then, the public and private keys for the proxy server are

PK� = �� and MK� = /(ID�)�, respectively.

e SDS monitor chooses a random exponent < ∈ �Z

∗
�;

then, the public and private keys for the SDS monitor are

PKSDS = �� and MKSDS = /(IDSDS)�, respectively.

Key Generation.
e KGC produces private keys for users

by running the KeyGen(MKKGC, +) algorithm.
e algorithm

takes as input MKKGC and + and outputs a private key for

a user that holds all attributes in +.
e KGC selects two

random exponents >� ∈ �Z
∗
� and >� ∈ �Z

∗
�, where >� is a

unique secret to user �� and >� is a unique secret to attribute

�� ∈ +.
en, the KGC generates the following private key for
the user:

SK�� = (� = �(�+ �)/�, ∀�� ∈ + : �� = � �

⋅ / (��) � , ��
� = � � , ���

� = /(��)�) .
(2)

Data Encryption. Suppose that a data owner�� has'di�erent

SDS constraints, SDS(�)� = ({[�1], [�2], . . . , [���]}, #��),
 =
1, 2, . . . , ', where the corresponding dummy attributes

are {�(�)
�,1 , �(�)

�,2 , . . . , �(�)
�,��}1≤�≤�. For an SDS, the data owner

selects a random B ∈ �Z
∗
� and then computes C!�,� =

((��)�, /(��,�)), � = 1, 2, . . . , ��,
 = 1, 2, . . . , '.
ese
computations can be completed beforehand.
e data owner

only releases the SDS constraint information SDS INFO(�)
� =

{��,1, ��,2, . . . , ��,�� , ��}, 1 ≤
 ≤ ', to the cloud storage server.
Suppose that the data owner �� wants to release his/her

data object � ∈ G1 to the cloud storage server, � ∈
[�"], where �" ∈ SDS(�)# = ({[�1], [�2], . . . , [���]}, #�#).
Before releasing the data object, �� encrypts the data object
under an access tree T de
ned by him/her by running
the Encrypt(PKKGC,PK�,PKSDS,�,T) algorithm.
e algo-
rithm
rst chooses a polynomial D� for each node", including
the leaves, in the tree T. For additional details, see the
de
nition of access trees in [3].

Let E be the set of leaf nodes in T.
e data owner
computes F� = ((��)�, /(��)) for all # ∈ E in the leaf node
of the access tree and then computes/1(F�).

To encrypt the data object � under T, the data owner
computes a session key between the data owner and the
proxy server C� = ((��)�, /(ID�)) as well as the session
key between the data owner and the SDS monitor CSDS =
 ((��)�, /(IDSDS)).
en, the algorithm constructs a cipher-
text as

CT = (T, �̃ = � ⋅ C� ⋅ CSDS ⋅ (�, �)�� , � = ℎ�, ∀#

∈ E : �� = �$	(0), ��
� = /(��)$	(0) , /1 (C!�,
)) .

(3)

edata owner �� sends (ID�, ��,CT) to the proxy server.
Token Generation. When a user �� sends an access request for
a data object, where the data object’s owner is ��, to the proxy
server using a set of attributes +� ⊆ +, where + is the set of
all valid attributes �� held, user �� obtains �� from the proxy
server
rst.
en, he/she generates a token TK�� ,�� by running

the GenToken(SK�� , +�) algorithm.

For all �� ∈ +�, the algorithm computes F� = (��, ���
�) =

 (��, /(��)�).
en, the algorithm selects a random L ∈ �Z
∗
�

and constructs the token for +� as
TK�� ,�� = (∀�� ∈ +� : M� = /1 (F�) , (��)% , (��

�)
%) . (4)

If +� ̸⊆ +, then the algorithm outputs ⊥.

Security and Communication Networks 7

Next, user �� sends the token to the proxy server and a
request for the partial decryption of the ciphertext with this
token. Tokens can also be precomputed.

Partial Decryption

(a) Proxy-Server-Side Partial Decryption. A�er receiving the
token from the user, the proxy server determines whether
the set of attribute indices M� in the token matches the
blinded access control policy embedded in CT. If the
token matches the access control policy of the data object,
then it partially decrypts the ciphertext by running the
+PartDecrypt(CT,TK�� ,��) algorithm for user ��.

e +PartDecrypt(CT,TK�� ,��) algorithm operates in a
recursive manner. We
rst de
ne a recursive algorithm
DecryptNote(CT,TK, ") that takes as input a ciphertext CT,
a token TK, which is associated with a set of attributes +�,
and a node " from the treeT.
e algorithm outputs a group
element of G1 or ⊥.

Suppose that the proxy server runs the algorithm with a
token TK�� ,�� provided by a user ��. Suppose that an attribute
assigned to a leaf node " is blinded as/1(F�).
en, make the
following de
nition: If /1(F�) ∈ I, where I is a set of all
attribute indices M� associated with the token, then

DecryptNote (CT,TK�� ,�� , ") = ((��)% , ��)
 ((��

�)% , ��
�)

= ((� � ⋅ / (��) �)% , �$�(0))
 ((� �)% , / (��)$�(0))

= (�, �) �%$�(0) .
(5)

If/1(F�) ∉ I, de
ne DecryptNote(CT,TK, ") =⊥.
Now, consider the recursive case in which " is a nonleaf

node.
e DecryptNote(CT,TK�� ,�� , ") algorithm is executed
as follows: For all nodes $ that are children of ", the algorithm
calls DecryptNote(CT,TK�� ,�� , $) and stores the output as N�.
Let +� be an arbitrary ��-sized set of child nodes $ such that
N� ̸= ⊥; then, the algorithm computes

N� = ∏
�∈��

NΔ �,��� (0)
� ,

where
 = index ($) , +�� = {index ($) : $ ∈ +�}

= ∏
�∈��

((�, �) � ⋅%⋅$
(0))Δ �,��� (0)

= ∏
�∈��

((�, �) � ⋅%⋅$parent(
)(index(�)))Δ �,��� (0)

= ∏
�∈��

((�, �) � ⋅%⋅$�(�))Δ �,��� (0) = (�, �) �⋅%⋅$�(0)

(6)

and returns the result.

e algorithm begins by calling the function on the root

nodeR of the access treeT. If the access tree is satis
ed by the
token associated with the set of attributes +�, then the proxy
server extracts DecryptNote(CT,TK�� ,�� , R) = (�, �) �%�.

e proxy server computes C� = (��,MK�) =
 (��, /(ID�)�) and �̃� = �̃/C� = � ⋅ CSDS ⋅ (�, �)�� in CT;

then, it sends CT� = (�̃�, � = ℎ�, �,/1(C!�,
)) to the SDS

monitor, where

� = DecryptNote (CT,TK��,�� , R) = (�, �) �%� . (7)

(b) SDS-Monitor-Side Partial Decryption. A�er receiving CT�

from the proxy server, the SDS monitor determines if the
current data access violates any SDS constraint de
ned by the
data owner. If so, the SDS monitor destroys CT� and returns
⊥, and the user’s access request will be denied. Otherwise, the
SDSmonitor takes CT� as input and outputs CT�� for the user
by running the SDSPartDecrypt(CT�) algorithm.

Now, we give the determination process in detail.
e
SDS monitor precomputes all Θ�,� = /1(C!�,�), � =
1, 2, . . . , ��,
 = 1, 2, . . . , ', a�er computing C!�,� =
 (��, /(��,�)�), � = 1, 2, . . . , ��,
 = 1, 2, . . . , ', for

{��,1, ��,2, . . . , ��,��}1≤�≤�; and it compares /1(C!�,
) in CT�

to these precomputed dummy attribute indices Θ�,�, � =
1, 2, . . . , ��,
 = 1, 2, . . . , '. By comparison, it
nds out
that Θ#," = /1(C!�,
) and determines the SDS constraint

information SDS INFO(a)
= {�(�)

#,1 , �(�)
#,2 , . . . , �(�)

#,�� , �#}, and

the threshold �# should be applied to the current data.
According to the threshold value �#, the SDS monitor checks

if |H Attr(��, SDS(�)#) ∪ {�#,"}| = �#, and then it determines
whether the current data access violates SDS constraint
SDS(�)# and destroys the data immediately; otherwise, the SDS
monitor performs its partial decryption.
e SDS monitor

rst computes CSDS = (��,MKSDS) = (��, /(IDSDS)�) and
then computes �̃�� = �̃�/CSDS = � ⋅ (�, �)��.

Next, the SDS monitor updates the historical SDS

constraint speci
c attribute set as H Attr(��, SDS(�)#) =
H Attr(��, SDS(�)#) ∪ {�#,"} and sends CT�� = (�̃��, � = ℎ�, �)
to the user.

Data Decryption. When user �� receives the ciphertext CT
��

from the SDS monitor, he/she uses the Decrypt(CT��, SK�� ,��)
algorithm to decrypt the ciphertext by computing

�̃��

((�,�) / (�)1/%)

= �̃��

((ℎ�, �(�+ �)/�) / ((�, �) �%�)1/%)

= �̃��

((���, �(�+ �)/�) / (�, �) ��) = � (�, �)��
 (�, �)��

= �.

(8)

6.2. A Case Study. We illustrate through an example how the
SDS monitor checks whether the current data access violates
any SDS constraint. Suppose a data ownerAlice released three
data objects �1, �2, and �3 and de
ned Tth SDS constraint

8 Security and Communication Networks

over them; that is, SDS(Alice)# = {{�1}, {�2,�3}, #2}.
e cor-

responding SDS constraint information SDS INFO(Alice)
=

{�#,1, �#,2, 2} is released to the cloud storage server. �#,1 and
�#,2 are the two dummy attributes corresponding to {�1} and{�2,�3}, respectively. Suppose a user Bob’s attributes match
the access structures of data objects �1 and �2. When Bob
sends an access request for �1, the proxy server uses Bob’s
token to partially decrypt the following ciphertext:

CT1 = (T1, �̃1 = �1 ⋅ C� ⋅ CSDS ⋅ (�, �)��1 , �1

= ℎ�1 , ∀# ∈ E1 : �� = �$	(0), ��
�

= /(��)$	(0) , /1 (C!�,1)) ,

(9)

where T1 is the tree access structure of �1 and E1 is the set
of leaf nodes inT1.

Since Bob’s attributes matchT1, then the partial decryp-
tion by the proxy server will be successful.
e proxy
server knows that �1 is under an SDS constraint because
there is /1(C!�,1) in the ciphertext, and then it transfers

the ciphertext CT�
1 = (�̃�

1, �1 = ℎ�1 , �1, /1(C!�,1)) to

the SDS monitor. When the SDS monitor receives the
partially decrypted ciphertext from the proxy server, it
compares /1(C!�,1) in the ciphertext to the precomputed

values Θ�,� = /1(C!�,�), where C!�,� = (��, /(��,�)�), � =
1, 2, . . . , ��,
 = 1, 2, . . . , ', for {��,1, ��,2, . . . , ��,��}1≤�≤�, and
then it gets Θ#,1 = /1(C!�,1).
erefore, the SDS monitor

determines that SDS INFO(Alice)
= {�#,1, �#,2, 2} is the SDS

constraint information applied to the data �1.
e SDS

monitor checks if |H Attr(Bob, SDS(Alice)#) ∪ {�#,1}| = 2. Since
H Attr(Bob, SDS(Alice)#) = 0, we have

UUUUUH Attr (Bob, SDS(Alice)#) ∪ {�#,1}UUUUU = 1 < 2. (10)

erefore, the SDS monitor knows that the current access
to �1 does not violate SDS(Alice)# . A�er that, it updates

H Attr(Bob, SDS(Alice)#) as
H Attr (Bob, SDS(Alice)#)

= H Attr (Bob, SDS(Alice)#) ∪ {�#,1}
(11)

and then sends CT��
1 = (�̃��

1 , �1 = ℎ�1 , �1) to Bob. Bob
successfully accesses �1.

When Bob sends another access request for�2, the proxy
server uses Bob’s token to partially decrypt the following
ciphertext:

CT2 = (T2, �̃2 = �2 ⋅ C� ⋅ CSDS ⋅ (�, �)��2 , �2

= ℎ�2 , ∀# ∈ E2 : �� = �$	(0), ��
�

= /(��)$	(0) , /1 (C!�,2)) ,

(12)

where T2 is the tree access structure of �2 and E2 is the set
of leaf nodes inT2.

Since Bob’s attributes matchT2, then the partial decryp-
tion by the proxy server will be successful.
e proxy
server knows that the ciphertext is under an SDS constraint
because there is/1(C!�,2), and then it transfers the ciphertext

CT�
2 = (�̃�

2, �2 = ℎ�2 , �2, /1(C!�,2)) to the SDS monitor.

When the SDS monitor receives the partially decrypted
ciphertext from the proxy server, it compares /1(C!�,2) in

the ciphertext to the precomputed values Θ�,� = /1(C!�,�),
where C!�,� = (��, /(��,�)�), � = 1, 2, . . . , ��,
 =
1, 2, . . . , ', for {��,1, ��,2, . . . , ��,��}1≤�≤�, and then it gets

Θ#,2 = /1(C!�,2).
erefore, the SDS monitor determines

that SDS INFO(Alice)
= {�#,1, �#,2, 2} is also the SDS constraint

information applied to the data�2.
e SDS monitor checks

if |H Attr(Bob, SDS(Alice)#) ∪ {�#,2}| = 2. Now, we have
UUUUUH Attr (Bob, SDS(Alice)#) ∪ {�#,2}UUUUU = 2, (13)

so the SDS monitor knows that the current access to �2
violates SDS(Alice)# . It destroys the corresponding ciphertext
immediately. Bob cannot access �2.

7. Extra Costs due to the SDS
Constraint and Comparison

We discuss the additional costs due to the enforcement of
the SDS constraint, in comparison with [8]. We also compare
our scheme with [9, 10]. We use notations in the Notations
Section.

In Table 1, we compare the user’s private key size,
ciphertext size, public key size, and computational cost used
in the whole system with those in [8–10]. Compared to [8],
the user’s private key size is the same, the ciphertext size is
increased by the bit size of an element inG1 because/1(C!�,�)
is embedded into it, and the public key size is increased by the
bit size of an element inG0 because PKSDS = �� is used as one
of the public keys in the system.

In addition, we have the additional dummy attributes
{��,1, ��,2, . . . , ��,��}1≤�≤� for a data owner who has ' di�erent

SDS constraints. However, the obfuscation of these dummy
attributes by the data owner and the computation of the
attribute indices of these dummy attributes by the SDS
monitor can be performed beforehand.

Compared to [8–10], our scheme has an extra network
communication cost per data object if the data object is
under an SDS constraint.
e proxy server sends the partially
decrypted ciphertext to the SDS monitor, and the SDS
monitor sends the further partially decrypted ciphertext to
the user.

8. Security, Consistency, and
Accessibility Analysis

e security, policy privacy, consistency, and accessibility
analyses are presented in this section with respect to the
requirements enumerated in Section 4.2.

Security and Communication Networks 9

Table 1: Comparison of di�erent schemes.

Hur’s [8] Lai et al.’s [9] Lai et al.’s [10]
e proposed scheme

Ciphertext size (2W + 1)Y0 + Y1 (Z + 1)Y0 + Y1 (4ℓ + 2)Y0 + 2Y1 (2W + 1)Y0 + 2Y1
Private key size (3� + 1)Y0 (� + 1)Y0 (� + 2)Y0 (3� + 1)Y0
Public key size 2Y0 + Y1 (Z + 2)Y0 + Y1 (� + 5)Y0 + Y1 3Y0 + Y1
Encryption cost (3W+3)exp+(W+1) ̂ (Z + 2)exp (8ℓ + 4)exp (3W + 4)exp + (W + 2) ̂
Partial decryption cost (storage server
or proxy server)

(2|R| + 1) ̂ + exp / / (2|R| + 1) ̂ + exp

Partial decryption cost (SDS monitor) / / / ̂ + exp

Decryption cost (user) ̂ + 3 exp (Z + 1) ̂ (4ℓ + 2) ̂ + (2ℓ + 3)exp ̂ + 3 exp
Token generation cost (user) |R| ̂ + 2|R|exp / / |R| ̂ + 2|R|exp

8.1. Security

Data Con�dentiality. For data objects that are not under
any SDS constraint, con
dentiality is guaranteed because we
follow [8] for these data objects.
e SDS monitor can just
be regarded as an external user who does not have su�cient
attributes.

Considering data objects that are under the SDS con-
straints, we introduced the following concepts: the SDS
monitor, the SDS constraint speci
c dummy attributes, and
additional partial decryption by the SDS monitor.
erefore,
we mainly analyze the e�ect of the corresponding changes
regarding the data con
dentiality.

An external user �� whose attributes do not match the
tree access structure in the ciphertext cannot produce a valid
token for partial decryption.
is results in the fact that the
proxy server cannot extract the expected value (�, �) �%� with
the invalid token without knowing >� and L, which are unique
secrets to the user.

Assuming that the unauthorized user �� directly fetches
the ciphertext from the cloud storage server without using
the token, he/she cannot compute (�, �) �� because his/her
attributes do not match the access tree. Moreover, he/she
cannot cast o� the session keysC� andCSDS embedded in the

ciphertext component �̃ = � ⋅ C� ⋅ CSDS ⋅ (�, �)�� because
C� is only shared by the data owner and the proxy server, andCSDS is only shared by the data owner and the SDS monitor.

e proxy server, similar to other external unauthorized
users, not only does not have su�cient attributes to decrypt
the ciphertext but also cannot cast o� CSDS embedded in the

ciphertext component �̃ = � ⋅ C� ⋅ CSDS ⋅ (�, �)�� because
CSDS is only shared by the data owner and the SDS monitor.

e KGC cannot decrypt the ciphertext because the
session keys C� and CSDS are embedded in the ciphertext

component �̃ = � ⋅ C� ⋅ CSDS ⋅ (�, �)��. In addition, C� is
shared only by the data owner and the proxy server, andCSDS

is shared only by the data owner and the SDS monitor.
e
KGC cannot determine C� and CSDS because of the session
key secrecy property of the key agreement [20]. Assuming
that the KGC can access the partially decrypted ciphertext

CT� = (�̃�, � = ℎ�, �,/1(C!�,�)), where �̃� = �̃/C� =
� ⋅ CSDS ⋅ (�, �)�� from the proxy server, it still cannot cast
o� CSDS because CSDS is only shared by the data owner and
the SDS monitor. Moreover, the KGC cannot cast o� L from

� = (�, �) �%� to obtain the expected value (�, �) �� because
L is a unique secret to the user.

e SDS monitor cannot decrypt the ciphertext for two
reasons. First, it cannot cast o� L from � = (�, �) �%� to
obtain the expected value (�, �) �� because L is a unique
secret to the user. Second, the SDS monitor does not know
8, >�, or �� to obtain the expected value �(�+ �)/� because 8
and �� are private keys of the KGC and because >� is a unique
secret to the user.

In addition, the SDS constraint speci
c dummy attributes
themselves do not disclose any information about the content
of the data object because they are completely independent of
the content of the data object.

Collusion Resistance. For both ordinary data objects and the
data objects that are under the SDS constraints, collusion

resistance is guaranteed.
e ciphertext component �̃ = � ⋅
C� ⋅ CSDS ⋅ (�, �)�� is di�erent from that in Hur’s scheme
for the data that are under an SDS constraint, but this does
not a�ect collusion resistance.
e random value >�, which is
unique to each user in the users’ private keys, prevents several
users from combining their private keys to produce a token
to decrypt the ciphertext unless one of the users has su�cient
valid attributes to produce a token to achieve (�, �)��.
SDS Constraint.
e data object that is under an SDS
constraint must pass through the SDS constraint checkpoint,
the SDS monitor, because the session key CSDS is embedded

in the ciphertext component �̃ = � ⋅ C� ⋅ CSDS ⋅ (�, �)��.
Neither the proxy server, the KGC, nor the user can cast
o� CSDS because CSDS is only shared by the data owner
and the SDS monitor. When the SDS monitor receives the
partially decrypted ciphertext from the proxy server, the SDS
monitor checks if the user’s current data access violates an
SDS constraint by comparing /1(C!�,
) in the ciphertext to

the precomputed values Θ�,� = /1(C!�,�), � = 1, 2, . . . , ��,
 =
1, 2, . . . , ', where C!�,� = (��, /(��,�)�), � = 1, 2, . . . , ��,
 =
1, 2, . . . , ', for SDS INFO(�)

� = {�(�)
�,1 , �(�)

�,2 , . . . , �(�)
�,�� , ��}1≤�≤�,

and it checks if |H Attr(��, SDS(��)#) ∪ {�#,"}| = �#. If
the SDS monitor determines that the current data access
violates an SDS constraint, the SDS monitor destroys the
data immediately. We consider that the duty of access control
policy enforcement and the duty of SDS constraint policy

10 Security and Communication Networks

enforcement should be separated into two di�erent entities.

erefore, we add an SDS monitor to the system architecture
instead of only using the proxy server to perform both
duties. Performing this separation follows the access control
principle of separation of duty.

8.2. Policy Privacy

Access Control Policy Privacy. For both ordinary data object
and the data objects that are under the SDS constraint, access
control policy privacy is guaranteed because we follow Hur’s
scheme [8]. We omit the description here.

Constraint Policy Privacy. First, when the data owner
only releases the SDS constraint information {��,1, ��,2, . . .,��,�� , ��}1≤�≤� to the cloud storage server, he/she does not

disclose any information about which dummy attributes are
used for which data object. Initially, other entities only have
knowledge that {��,1, ��,2, . . . , ��,�� , ��}1≤�≤� are used for SDS

constraint and nothing else.
If the user receives the partially decrypted ciphertext

from the SDS monitor, and not from the proxy server, then
he/she only knows that the current data object is under
an SDS constraint.
e user does not know to which SDS
constraint the data object belongs; the relations among this
data object and other data objects received from the SDS
monitor previously are also unknown to him/her.

e KGC and the proxy server know that the ciphertext
is under an SDS constraint if there is a ciphertext component
/1(C!�,�). If they observe that several ciphertexts that belong
to a data owner have the same /1(C!�,�), then they only

know that the corresponding data objects belong to the same
equivalence class in an SDS; this does not pose a security
threat. However, they still do not know other structure
information of an SDS constraint, including the threshold ��,
and other data objects that are in a di�erent equivalence class
of the same SDS constraint.

e SDS monitor can observe the relations among the
ciphertexts but does not know the entire SDS structure
exactly. For example, it does not know howmany data objects
are contained in the same equivalence class.
e total number
of equivalence classes can vary over time as the number of
corresponding dummy attributes varies. However, the SDS
monitor is responsible for enforcing the SDS constraint;
therefore, the SDS monitor is the entity that possesses the
most knowledge about the SDS constraint structure; this
situation is indispensable.

8.3. Consistency. Any two compatible data objects under an
SDS constraint cannot be incompatible under any other SDS
constraint and vice versa.
e data owner is required to de
ne
consistent SDS constraints.
is can be achieved as follows.
For each data object �, we maintain its global current

incompatible set � = {�� | ∃SDS,�,�� ∈ SDS ∧ �� ∉
[�]}. If the data owner needs to add a new SDS constraint
or add new data objects into an existing SDS constraint that
includes the data object �, then he/she should ensure that

data objects from � are not put into [�].
e details on

how to maintain SDS constraint consistency are beyond the
scope of this paper. However, if we cannot guarantee this
consistency, this may result in a violation of both security and
accessibility requirements.

8.4. Accessibility. A user whose valid attributes match the
tree access structure of a data object can access the data
object even if it is organized into an SDS constraint, unless
the data access violates an SDS constraint. Access control
policy enforcement is implemented by the proxy server using
the user’s token, which is associated with the user’s valid
attributes; thus, the proxy server can partially decrypt the
ciphertext if the user has the valid attributes.
e partially
decrypted ciphertext must pass through the SDS monitor to
enforce the SDS constraint. If the current data access does
not violate the SDS constraint, then the SDS monitor also
partially decrypts the ciphertext to send it to the user for
full decryption; otherwise, the SDS monitor destroys it, and
the user cannot receive the partially decrypted ciphertext.

erefore, this requirement is guaranteed to be met.

In contrast, a user whose valid attributes do not match
the tree access structure of a data object still cannot access
the data object a�er it is organized into an SDS constraint.
Access control policy enforcement is performed
rst by the
proxy server using the user’s token, which is associated
with the user’s valid attributes.
erefore, the proxy server
cannot partially decrypt the ciphertext if the user does not
possess valid attributes. In that case, the proxy server does
not pass the ciphertext to either the SDS monitor or the user;
the user thus cannot access the data object.
erefore, this
requirement is guaranteed to be met.

9. Related Work

ere are quite a few research works on the formal spec-
i
cation of access control constraints [13, 16, 17, 21–24].
Crampton [16] analyzed and classi
ed RBAC constraints in
detail. In our previous works [13, 24], we proposed general
access control constraints against similar users’ successive
access to permissions from a sensitive combination of per-
missions. Joshi et al. [21] presented the formal speci
cation
of RBAC constraints, therein considering time and location
in access control decision-making. Shari
 and Tripunitara
[17] proposed an approach for enforcing the Chinese Wall
security policy in a least-restrictive manner compared to
Brewer and Nash’s speci
cation [11]. Bijon et al. [23]
rst
introduced ABCL (Attribute-Based Constraint Speci
cation
Language) to specify constraints in ABAC (Attribute-Based
Access Control), which supports the SOD of RBAC. In
contrast to these works, we intended to generalize access
control constraints for data released to a cloud storage server,
on which the promising CP-ABE access control mechanism
is utilized; we handled the constraint in a less-restrictive
manner based on accessibility requirements. Our proposal
coincides asmuch as possible with the CP-ABE access control
paradigm.
e SDS constraint proposed in this paper is a
compact and generalized constraint that mostly covers the
SOD constraint and Chinese Wall security policy. However,
we did not consider write actions on the data by the user

Security and Communication Networks 11

(consumer); the main action described in this paper is the
read action.

In data outsourcing environments, access control is
supported by cryptographic methods [25–29]. Di Vimercati
et al. [25, 26] introduced a novel approach that combines
cryptography with access control. Data are placed with an
honest but curious third party; therefore, their approach
adopted a two-layer encryption method; the
rst layer of
encryption is performed by the data owner, as the server is
not fully trusted, and the server performs the second layer of
encryption to re�ect dynamic changes over the access control
policy. Asghar et al. used RBAC policies for outsourced
environments [28]. In their work, the actual RBAC policy
is hidden via encryption from the service provider, as the
service provider is honest but curious.
e PDP (Policy
Decision Point) can perform the policy evaluation without
disclosing the contents of the requests or policies to the
service provider. However, [25–28] did not consider access
control constraints. Compared to [25–28], our emphasis
is placed on the generalization and enforcement of access
control constraints, which covers most of static SOD and
ChineseWall security policies, on outsourced data released to
the cloud with the objective of achieving better synergy with
the CP-ABE access control mechanism.

e privacy of the access control policy de
ned for the
outsourced data, where CP-ABE realizes the access control,
is also a nontrivial issue. Researchers have been focusing on
hiding access control policies from outsiders [6–10]. Yu et al.
[6] and Nishide et al. [7] proposed CP-ABE schemes with a
hidden access control policy.
eir schemes only used “AND”
gates, which restrains the expressiveness of the policy; the key
size of each user is proportional to the number of attributes.
In Nishide et al.’s second scheme [7], new possible values for
attributes can be added a�er system setup. Hur’s work [8] is
also a variant of CP-ABE with a hidden access control policy.
In his work, the computation-intensive work, the partial
decryption of the ciphertext, is completed by the storage cen-
ter; the access control policy has the same expressiveness as in
Bethencourt et al.’s work [3].
emain reason why we extend
Hur’s scheme is because the handling of the SDS constraint in
our approach needs an entity, aside from the data owner, to
determine if the user’s attributes satisfy the access control pol-
icy of the data object before sending the data object to the user
without knowing the policy; inHur’s scheme, the storage cen-
ter possesses the desired ability. Lai et al. [9, 10] proposed CP-
ABE with a partially hidden access policy. In their work, the
attributes have two parts: the attribute name and the attribute
value.
e data owner hides the attribute value, and thus
the access policy is partially hidden.
eir schemes are fully
secure in the standard model. Compared to these works, we
followedCP-ABEwith the hidden access control policy; how-
ever, our emphasis focused on how to handle the SDS con-
straint, where the SDS constraint policy structure is hidden
from all entities except for the SDS monitor.
e constraint
policy structure is partially hidden from the SDS monitor.

Asghar et al. [29] proposed a cryptographic approach for
enforcing the dynamic SODandChineseWall security policy.

eir proposal hides users’ access histories with respect to
dynamic SOD via encryption because a user’s access history

might reveal critical information to the service provider, who
is not fully trusted.
ey utilized Bethencourt et al.’s [3] access
structure to describe the access control constraint.
eir work
is on hiding conventional constraints. Compared to their
work, our work is suitable for outsourced data access control
realized by CP-ABE with a hidden access control policy. In
our work, the constraint policy related attributes are blinded
and embedded in the ciphertext; most of the computations
related to the constraint policy can be precomputed, and the
SDS constraint policy can be partially changed a�er system
setup. We can easily extend our scheme by adding a time
duration to transform the SDS constraint into a time-aware
dynamic constraint.

10. Conclusion

In this paper, we proposed an access control approach for
generalized SDS constraints for cloud storage; the constraint
originated from the SOD of RBAC and the Chinese Wall
security policy. Our approach is based on CP-ABE with a
hidden access control policy. We handled the SDS constraint
using additional arti
cial attributes through the participation
of an additional entity: the SDS monitor. To enforce the
SDS constraint, a session key, established between the data
owner and the SDS monitor, is embedded in the ciphertext
component to force the proxy server to pass the initial
partially decrypted ciphertext to the SDSmonitor to perform
the second partial decryption.
e SDS constraint policy
structure is hidden from the KGC, the proxy server, and the
user. To prevent commercial fraud or mistakes, the duties of
enforcing both the access control policy and the constraint
policy are divided between the proxy server and the SDS
monitor.
e security, policy privacy, consistency, and acces-
sibility analyses indicated that the approach is secure and
e�ective.
e SDS constraint policy is also extensible in that
the data owner puts more data objects into the equivalence
classes of an SDS constraint a�er system setup; the data owner
can increase the total number of equivalence classes and
the threshold in an SDS constraint at a lower cost following
system setup. To our knowledge, the generalized concept of
SDS constraints and their structure as well as the use of
dummy attributes to enforce a partially hidden constraint
policy represents the novelty of our work.

As our future work, we will consider how to fully hide the
constraint policy structure from all entities, especially from
the SDS monitor, without a�ecting the enforcement of the
SDS constraint. To improve the expressiveness of the SDS
constraint, we will also consider using “AND,” “OR,” and “�
OF �” in the SDS constraint.

Notations

Y0: Bit-length of element in G0Y1: Bit-length of element in G1W:
e number of attributes associated with
the ciphertext

�:
e number of attributes associated with
the private key of a user

�:
e size of original attribute universe

12 Security and Communication Networks

Z:
e total number of possible values of all
attributes

|R|:
e number of user’s attributes satisfying
an access structure

ℓ:
e number of rows in LSSS matrix
exp: Exponentiation in group operation
 ̂: Bilinear pairing.

Conflicts of Interest

e authors declare that they have no con�icts of interest.

Acknowledgments

e authors would like to thank Professor David Du at
the Department of Computer Science and Engineering,
University of Minnesota, for providing the necessary support
to conduct the research and also for providing valuable sug-
gestions.
is research work was supported by the National
Natural Science Foundation of China (Grants nos. 61562085,
11261057, and 11461069).

References

[1] P. Mell et al., “
e NIST de
nition of cloud computing,” 2011.

[2] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,”
in Proceedings of the Annual International Conference on the
�eory and Applications of Cryptographic Techniques, pp. 457–
473, Springer, Berlin, Germany, 2005.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proceedings of the IEEE Sympo-
sium on Security and Privacy (SP ’07), pp. 321–334, May 2007.

[4] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-
based encryption for
ne-grained access control of encrypted
data,” in Proceedings of the 13th ACM Conference on Computer
and Communications Security (CCS ’06), pp. 89–98, November
2006.

[5] B. Waters, “Ciphertext-policy attribute-based encryption: an
expressive, e�cient, and provably secure realization,” in Pro-
ceedings of the International Workshop on Public Key Cryptog-
raphy, pp. 53–70, Springer, Berlin, Germany, 2011.

[6] S. Yu, K. Ren, andW. Lou, “Attribute-based content distribution
with hidden policy,” in Proceedings of the 4th IEEEWorkshop on
Secure Network Protocols, NPSec’08, pp. 39–44, October 2008.

[7] T. Nishide, K. Yoneyama, andK.Ohta, “Attribute-based encryp-
tion with partially hidden encryptor-speci
ed access struc-
tures,” in Proceedings of the International Conference on Applied
Cryptography and Network Security, pp. 111–129, Springer,
Berlin, Germany, 2008.

[8] J. Hur, “Attribute-based secure data sharingwith hidden policies
in smart grid,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 11, pp. 2171–2180, 2013.

[9] J. Lai, R. H. Deng, and Y. Li, “Fully secure cipertext-policy
hiding CP-ABE,” in Proceedings of the International Conference
on Information Security Practice and Experience, pp. 24–39,
Springer, Berlin, Germany, 2011.

[10] J. Lai, R. H. Deng, and Y. Li, “Expressive CP-ABE with partially
hidden access structures,” in Proceedings of the 7th ACM
Symposium on Information, Computer and Communications

Security (ASIACCS ’12), pp. 18-19, ACM, Seoul, Republic of
Korea, May 2012.

[11] D. F. C. Brewer and M. J. Nash, “
e Chinese Wall security
policy,” in Proceedings of the IEEE Symposium on Security
and Privacy, pp. 206–214, IEEE Computer Society Press, Los
Alamitos, CA, USA, May 1989.

[12] Q. Tayir, K. Rahman, and N. Helil, “Risky permission set
based access control constraint,” in Proceedings of the 2015
International Conference on Computer Science And Technology
(ICCST ’15), 517, 510 pages, 2015.

[13] N. Helil and K. Rahman, “Secret sharing scheme based
approach for access control constraint against similar users’
collusive attack,” JISE. Journal of Information Science and
Engineering, vol. 32, no. 6, pp. 1455–1470, 2016.

[14] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman,
“Role-based access controlmodels,”Computer, vol. 29, no. 2, pp.
38–47, 1996.

[15] D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and R.
Chandramouli, “Proposed NIST standard for role-based access
control,”ACMTransactions on Information and System Security,
vol. 4, no. 3, pp. 224–274, 2001.

[16] J. Crampton, “Specifying and enforcing constraints in role-
based access control,” in Proceedings of Eighth ACM Symposium
onAccess ControlModels andTechnologies, pp. 43–50, June 2003.

[17] A. Shari
 andM. V. Tripunitara, “Least-restrictive enforcement
of the chinese wall security policy,” in Proceedings of the 18th
ACM Symposium on Access Control Models and Technologies,
SACMAT ’13, pp. 61–72, June 2013.

[18] R. Wu, G.-J. Ahn, H. Hu, and M. Singhal, “Information �ow
control in cloud computing,” in Proceedings of the 6th Inter-
national Conference on Collaborative Computing: Networking,
Applications and Worksharing, CollaborateCom ’10, pp. 1–7,
IEEE, Ottawa, ON, Canada, October 2010.

[19] M. Chase, “Multi-authority Attribute Based Encryption,” in
Proceedings of the �eory of Cryptography Conference, pp. 515–
534, 2007.

[20] A. Kate, G. Zaverucha, and I. Goldberg, “Pairing-Based Onion
Routing,” in Proceedings of the International Workshop on
Privacy Enhancing Technologies, pp. 95–112, Springer, Berlin,
Germany, 2007.

[21] J. B. D. Joshi, E. Bertino, U. Latif, andA. Ghafoor, “A generalized
temporal role-based access control model,” IEEE Transactions
onKnowledge andData Engineering, vol. 17, no. 1, pp. 4–23, 2005.

[22] D. Basin, S. J. Burri, and G. Karjoth, “Separation of duties as
a service,” in Proceedings of the 6th International Symposium on
Information, Computer andCommunications Security, ASIACCS
2011, pp. 423–429, March 2011.

[23] K. Z. Bijon, R. Krishman, and R. Sandhu, “Constraints speci
-
cation in attribute based access control,” Science, vol. 2, pp. 131–
144, 2013.

[24] N. Helil and K. Rahman, “Attribute based access control
constraint based on subject similarity,” in Proceedings of the
2014 IEEE Workshop on Advanced Research and Technology in
Industry Applications, WARTIA ’14, pp. 226–229, IEEE, Ottawa,
ON, Canada, September 2014.

[25] S. D. C. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Over-encryption: management of access
control evolution on outsourced data,” in Proceedings of the
33rd International Conference on Very Large Data Bases, VLDB
’07, pp. 123–134, VLDB endowment, Washington, Wash, USA,
September 2007.

Security and Communication Networks 13

[26] S. D. C. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Encryption policies for regulating access to
outsourced data,” ACM Transactions on Database Systems, vol.
35, pp. 12:1–12:46, 2010.

[27] M. R. Asghar, M. Ion, G. Russello, and B. Crispo, “ESPOON:
Enforcing encrypted security policies in outsourced environ-
ments,” in Proceedings of the 2011 6th International Conference
on Availability, Reliability and Security, ARES ’11, pp. 99–108,
IEEE, Vienna, Austria, August 2011.

[28] M. R. Asghar, M. Ion, G. Russello, and B. Crispo, “ESPOON
ERBAC: enforcing security policies in outsourced environ-
ments,” Computers and Security, vol. 35, pp. 2–24, 2013.

[29] M. R. Asghar, G. Russello, and B. Crispo, “E-GRANT: enforcing
encrypted dynamic security constraints in the cloud,” in Pro-
ceedings of the 3rd International Conference on Future Internet
of�ings and Cloud, FiCloud ’15, pp. 135–144, IEEE, Rome, Italy,
August 2015.

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at

https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

