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Cp*Co
III
-Catalyzed Site-Selective C-H Activation of Unsymmetrical 

O-Acyloximes: Multi-substituted Isoquinoline Synthesis from 

Terminal and Internal Alkynes 

Bo Sun,[a] Tatsuhiko Yoshino,[b,c] Motomu Kanai,*[a] and Shigeki Matsunaga*[b,c] 

Abstract: Cp*Co
III
-catalyzed isoquinoline synthesis via site-selective 

C-H activation of O-acyloximes is described. C-H activation of 

various unsymmetrically substituted O-acyloximes selectively 

occurred at a sterically less hindered site under Cp*Co
III
 catalysis, 

and reactions with terminal as well as internal alkynes afforded 

products in up to 98% yield. The Cp*Co
III
 catalyst exhibited high site 

selectivity (15/1–>20/1), whereas Cp*Rh
III
 catalysts exhibited low 

selectivity and/or yield when unsymmetrical O-acyloximes and 

terminal alkynes were used. Deuterium labeling studies indicated a 

clear difference in the site selectivity of the C-H activation step 

between the Cp*Co
III
 catalyst and the Cp*Rh

III
 catalyst.  

Transition metal-catalyzed C-H bond functionalization is an 

atom-[1] and step-economical[2] organic transformation that has 

emerged over the last two decades.[3] A directing group-assisted 

C-H bond activation process to form metallacyclic intermediates 

is frequently used to realize regio- and chemoselective 

transformation of desired C-H bonds. Among the numerous 

catalysts explored in this field, Cp*RhIII complexes are prominent 

catalysts for directing group-assisted functionalization of 

aromatic C-H bonds due to their high reactivity, generality, and 

functional group compatibility.[4] The high cost of Cp*RhIII 

complexes, however, can be an obstacle to future large scale 

application for producing valuable materials and biologically 

active compounds. In this context, in 2013 we began to 

investigate Cp*CoIII catalysis as an inexpensive alternative to 

Cp*RhIII catalysis.[5,6] Since then, we and other groups revealed 

that several Cp*CoIII complexes indeed catalyze various C-H 

bond functionalization reactions[7] that have already been 

established with Cp*RhIII catalysts. On the other hand, reports 

on the unique catalytic activity of Cp*CoIII in comparison with 

Cp*RhIII catalysts are still limited.[8] Our group utilized the high 

nucleophilicity of alkenyl-CoIII species in a one-pot 

pyrroloindolone synthesis.[8a] Glorius et al. also utilized the high 

Lewis acidity of a cationic CoIII to produce 6H-pyrido[2,1-

a]isoquinolin-6-ones.[8b] More recently, our group[8c] and Glorius’ 

group[8d] independently utilized the oxophilic property of CoIII in 

dehydrative C-H allylation with free allylic alcohols. Herein we 

describe our efforts to further explore the unique catalytic activity 

of Cp*CoIII over Cp*RhIII. Cp*CoIII exhibited superior site 

selectivity in the C-H activation of unsymmetrically substituted 

O-acyloximes, producing multi-substituted isoquinolines from 

terminal and internal alkynes. 

Isoquinoline is an important structural motif found in a series 

of biologically active natural products and pharmaceuticals.[9] 

Cyclization reactions of oxime derivatives and alkynes via C-H 

activation to give isoquinolines without any external oxidants[10,11] 

have been developed under various transition metal 

catalyses.[12-14] Among them, Chiba and co-workers reported a 

Cp*RhIII-catalyzed annulation reaction of O-acyloximes with 

internal alkynes (Scheme 1a).[13a] Zhao, Jia, Li, and co-workers 

also reported the reaction with oximes under Cp*RhIII-

catalysis.[13b] The substrate scope in both cases, however, was 

limited to internal alkynes.[13,15] Moreover, site selectivity of the 

C-H activation step to form a metallacycle was also problematic 

when unsymmetrical m-substituted oxime derivatives were used 

as substrates. Only very limited substrates bearing methyl or 

alkoxy groups showed sufficient site selectivity in previous 

transition metal-catalyzed isoquinoline syntheses from oxime 

derivatives.[13,14] We hypothesized that steric repulsion between 

the Cp* ligand and substrates would be larger with the Cp*CoIII 

catalyst than with the Cp*RhIII catalyst, because the ionic radius 

of cobalt is smaller than that of rhodium. Thereby, Cp*CoIII would 

efficiently differentiate the steric difference in unsymmetrical m-

substituted oxime derivatives.  

 

Scheme 1. Cp*Rh
III

- and Cp*Co
III

-catalyzed isoquinoline synthesis; site 

selectivity with unsymmetrical oxime derivatives and alkynes. 

We optimized the reaction conditions using m-Cl-substituted 

O-acyloxime 1a and a terminal alkyne 2a as model substrates 

(Table 1). A cationic benzene complex, [Cp*Co(C6H6)][PF6]2, 

combined with KOAc at 120 °C afforded the desired annulated 

product 3aa and its isomer 4aa in 46% yield and good selectivity 
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(entry 1, 3aa:4aa = 14/1). The less hindered C-H bond was 

selectively functionalized under Cp*CoIII catalysis. In situ 

generation of an active catalyst using Cp*Co(CO)I2 and cationic 

Ag salts showed higher reactivity (entries 2–5), and AgSbF6 

afforded the best result (82% isolated yield, 17/1 selectivity, 

entry 5). Other bases, shown in entries 6-8, were less effective. 

In the absence of KOAc, the yield of 3aa decreased (entry 9, 

55% yield). We also evaluated the catalytic activity of Cp*RhIII 

catalysts under several conditions to investigate the difference 

between CoIII and RhIII. The reported reaction conditions for 

internal alkynes using acetate bases in MeOH[13a,b] at 60–80 °C 

resulted in no reaction (entries 10, 11). When using AgSbF6 and 

carboxylate/carbonate bases in 1,2-dichloroethane at 120 °C, 

the annulated products were obtained in 9–28% yield, but poor 

site selectivity in C-H activation was observed in all cases 

(entries 13–16). 

The scope of unsymmetrically substituted O-acyloximes 1 is 

summarized in Table 2. O-acyloximes bearing halogen 

substituents at the m-position generally exhibited high site-

selectivity, and the less hindered C-H bond was functionalized 

(3aa-3ib). Another substituent at the p-position (Y in 1) did not 

affect the selectivity or reactivity (3ca, 3db, 3eb, 3fa). Various 

Table 1. Optimization studies and control experiments.
[a] 

 
Entry Catalyst [mol %] Ag-salt 

[mol %] 

Base 

[mol %] 

T   

[°C] 

Yield 

[%]
[b] 

Ratio 

of 3/4 

1 [Cp*Co(C6H6)][PF6]2 (10) None  KOAc (20) 120 46 14/1 

2 Cp*Co(CO)I2 (10) AgPF6 (20)  KOAc (20) 120 73 17/1 

3 Cp*Co(CO)I2 (10) AgBF4 (20)  KOAc (20) 120 65 19/1 

4 Cp*Co(CO)I2 (10) AgNTf2 (20)  KOAc (20) 120 70 16/1 

5 Cp*Co(CO)I2 (10) AgSbF6 (20)  KOAc (20) 120 82
[c]

 17/1 

6 Cp*Co(CO)I2 (10) AgSbF6 (20)  K2CO3 (20) 120 71 13/1 

7 Cp*Co(CO)I2 (10) AgSbF6 (20)  CsOAc (20) 120 63 19/1 

8 Cp*Co(CO)I2 (10) AgSbF6 (20)  CsOPiv (20) 120 64 17/1 

9 Cp*Co(CO)I2 (10) AgSbF6 (20)  None 120 55 17/1 

10
[d]

 [Cp*RhCl2]2 (2.5) None  NaOAc (30) 60 trace N.D. 

11
[d]

 [Cp*RhCl2]2 (2.5) None  CsOAc (30) 80 trace N.D. 

12 [Cp*RhCl2]2 (5) AgSbF6 (20)  KOAc (20) 80 trace N.D. 

13 [Cp*RhCl2]2 (5) AgSbF6 (20)  KOAc (20) 120 11 1/1.3 

14 [Cp*RhCl2]2 (5) AgSbF6 (20)  K2CO3 (20) 120 9 1/1.6 

15 [Cp*RhCl2]2 (5) AgSbF6 (20)  CsOAc (20) 120 28 1/1.3 

16 [Cp*RhCl2]2 (5) AgSbF6 (20)  CsOPiv (20) 120 13 1/1.3 

[a] Reactions were run using 1a (0.15 mmol) and 2a (0.18 mmol) in 

ClCH2CH2Cl unless otherwise noted. [b] Combined yield of 3aa and 4aa 

determined by 
1
H NMR analysis with an internal standard. [c] Isolated yield 

after silica gel column chromatography. [d] The reaction was run in MeOH  

(conditions  reported in ref 
[13a,13b]

). 

 
Table 2. Scope of unsymmetrical O-acyloximes 1.

[a] 

 

[a] Reactions were run using 1 (0.15 mmol), 2 (0.18 mmol), Cp*Co(CO)I2 (10 

mol %), AgSbF6 (20 mol %), and KOAc (20 mol %) in ClCH2CH2Cl at 120 °C 

for 24 h unless otherwise noted. Indicated yields are combined isolated yield 

of 3 and its regioisomer 4. Number in parentheses is ratio of 3/4 determined by 
1
H NMR analysis of the crude mixture. [b] CsOAc (20 mol %) was used 

instead of KOAc. 1 (0.10 mmol) and 2 (0.15 mmol) were used. [c] Reaction 

was run at 80°C.  [d] Reaction was run at 100°C. 

substituents at the m-position, such as an ester, methyl, and CF3 

groups were compatible, and high site-selectivity was observed 

with terminal aryl alkyne 2b. By slightly modifying the reaction 
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conditions using CsOAc as a base, terminal alkyl alkynes 2d-2g 

also afforded products with high site-selectivity (>20:1) and good 

to moderate yield (3hd, 3kd, 3md-3mg). We evaluated the 

reactivity of the Cp*RhIII catalyst with several terminal alkynes 

and unsymmetrical O-acyloximes, but the yield and/or site 

selectivity were much less satisfactory (3db/4db: 38%, 1/1.7; 

3eb/4eb: 62%, 1/1.2; 3hb/4hb: 18%, 1.1/1; 3kb/4kb: 9%, >20/1; 

3lb/4lb: 30%, >20/1; 3mb/4mb: trace, n.d.; 3md/4md: 6%, 

>20:1). In the previous report, Cp*RhIII also resulted in low site-

selectivity when using m-Br substituted O-acyloxime 1b and 

internal alkyne 2h (3bh:4bh = 2.7/1).[13a] The Cp*CoIII catalyst 

exhibited much superior site-selectivity using either aryl or alkyl 

internal alkynes (2h and 2i), and a broad range of 

unsymmetrically substituted O-acyloximes afforded products 

3ah-3ki with >20:1 site selectivity and 45-97% yield.  

Table 3. Scope of terminal alkynes 2.
[a] 

 

[a] Reactions were run using 1 (0.15 mmol), 2 (0.18 mmol), Cp*Co(CO)I2 (10 

mol %), AgSbF6 (20 mol %), and KOAc (20 mol %) in ClCH2CH2Cl at 120 °C 

for 24 h unless otherwise noted. Isolated yield of 3 was determined after 

purification by silica gel column chromatography. [b] Yield in parenthesis was 

obtained using 1n (5.0 mmol, 1.06 g) and 2b (6.0 mmol). [c] CsOAc (20 

mol %) was used instead of KOAc. 1 (0.10 mmol) and 2 (0.15 mmol) were 

used. 

Because Cp*RhIII exhibited only modest to poor reactivity 

with terminal alkynes,[15,16] we further examined the synthetic 

utility of the Cp*CoIII with various terminal alkynes and 

symmetrical O-acyloximes. Aryl, alkyl, heteroaryl, and ferrocenyl 

terminal alkynes reacted smoothly with O-acyloxime 1n, giving 

products 3na–3nr in 52-92% yield (Table 3). The reaction also 

proceeded in gram-scale without difficulty, and 3nb was 

obtained in 88% yield. Regarding the scope of symmetrical O-

acyloximes, 1o-1u gave 3oa-3ub in 72-81% yield. An ortho-

substituted bicyclic O-acyloxime 1v gave 3vb in 73% yield, and 

a benzophenone-derived O-acyloxime 1w also afforded the 

product in excellent yield (3wb, 98%). With 1w and 2b as model 

substrates, we attempted to reduce the catalyst loading. The 

reaction proceeded smoothly with 5.0 mol % of the cobalt 

catalyst, and 3wb was obtained in 97% yield. Decreasing the 

catalyst loading to 2.5 mol % resulted in diminished reactivity, 

but an acceptable yield (82%) was obtained.  

High site-selectivity in C-H bond activation step under 

Cp*CoIII catalysis in comparison with Cp*RhIII catalysis was 

confirmed by deuterium exchange experiments, shown in 

Scheme 2. When O-acyloxime 1a was subjected to the 

optimized reaction conditions using Cp*CoIII in the presence of 

CD3CO2D, selective deuterium incorporation was observed at 

the less hindered position (Scheme 2a; 37%D vs 3%D). On the 

other hand, the Cp*RhIII catalyst promoted non-selective H/D 

exchange under the same conditions (Scheme 2b; 34%D vs 

36%D). The results clearly indicated that Cp*CoIII more efficiently 

differentiated the steric difference in unsymmetrical m-

substituted O-acyloxime than did Cp*RhIII. We assume that 

steric repulsion between the Cp* ligand and substrates would be 

larger with the Cp*CoIII catalyst than that with the Cp*RhIII 

catalyst, because the ionic radius of cobalt is smaller than that of 

rhodium.[17] Further mechanistic studies, however, are required 

to clarify the precise origin of the high site-selectivity.   

 

Scheme 2. H/D exchange experiments under (a) Cp*Co
III

 catalysis and (b) 

Cp*Rh
III

 catalysis. 

Possible reaction pathways to form isoquinolines 3 are 

summarized in Figure 1. Coordination of O-acyloxime 1a to the 

CoIII center, followed by acetate-assisted C-H activation[18] at 

sterically less hindered site, gives 5-membered metallacycle (I). 

Alkyne insertion leads to a common intermediate (II). Path (a) 

consists of reductive elimination of the C-N bond to form the N-

acetoxyisoquinolinium cation (III) and subsequent reduction of 

the intermediate (III) by the resulting CoI species. In path (b), a 

concerted C-N bond formation and N-O bond cleavage process 

would provide isoquinoline 3 and regenerate the catalyst.[11a] 

Path (c) involves formal oxidative addition of the N-O bond to the 

CoIII center to give CoV species (IV),[7o] which undergoes 

reductive elimination leading to 3. At present, it is difficult to 

determine which pathway is more plausible under Cp*CoIII 
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catalysis. On the other hand, we ruled out the possibility of the 

reaction via 6-electrocyclization of ortho-alkenylated 

intermediate V (path d)[14b,19], because 3 was not obtained when 

separately synthesized intermediate V (X = Cl, R = Ph) was 

subjected to the reaction conditions. 

 

Figure 1. Possible reaction pathways to form isoquinolines under Cp*Co
III
 

catalysis 

In summary, we demonstrated the unique catalytic activity of 

the Cp*CoIII complex for multi-substituted isoquinoline synthesis 

from O-acyloximes 1 and terminal as well as internal alkynes 2 

via site-selective C-H bond activation. The Cp*CoIII catalyst 

exhibited much higher site selectivity for unsymmetrical O-

acyloximes and higher reactivity towards terminal alkynes than 

Cp*RhIII catalysts. An oxidizing directing group bearing an N-O 

bond was successfully utilized as an internal oxidant in Cp*Co III-

catalyzed oxidative C-H bond functionalization reactions. Further 

mechanistic studies as well as trials to broaden the unique 

catalytic activity of Cp*CoIII catalysis are actively ongoing in our 

group. 
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