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The CP-conserving contribution to the decay K.~ n°e*e” is reexamined. The general form of
the decay rates for K.—»n°yy and K;—n°yy—n"e*e” (the absorptive part) is obtained. Using the
vector meson dominance (VMD) model, the branching ratios for K;~»z°yy and K.~ "7y~ n'e*e”
(the absorptive part) are shown to be Br[Ki.~ e e |l2,=1.7x 107", Br[K.~> n°ry]=14X107°. Our
result suggests that the CP-conserving contribution with VMD model may be larger than the
CP-violating one in the standard model.

§1. Introduction

As is well known, the decay K.~ m°e*e” via one photon exchange is a CP-
violating process.) Furthermore in this mode, the standard Kobayashi-Maskawa
model yields a contribution from the direct CP violation which is larger than that
from state mixing.® Hence if the CP-conserving piece is very small compared with
the CP-violating signal, the direct CP-violating amplitude is detectable. In a recent
paper® Donoghue et al. in the KM model predijct the branching ratio

K. -»rete iy
T'[K,.—all]

=3.7x107"2. (1)

This necessitates considering the CP-conserving piece which proceeds via two photon
exchange.

In Ref. 3), the authors suggest that the CP-conserving amplitude is small com-
pared to the CP-violating one, because the CP-conserving pieces are regarded as
being accompanied by the chirality mismatch of the electron and positron and sup-
pressed by the factor me. (electron mass). However, in this evaluation the soft pion
limit is assumed, which does not reflect the general features of the three body decay.
Indeed, the chirality conserving part of the decay amplitude vanishes in this limit, i.e.,

lim () (s k* = lim i yuo(si* + s+ 5)=0, | | @)

where £*, p*, si* and s;* are the four-momenta of K;, 7°, e* and e, respectively. If
the pion momentum is not set to zero, the helicity suppression does not necessarily
occur, and the chirality conserving form %2“#Zy.v may appear. ’

In this paper, after reexamining the chirality conserving part in the CP-
conserving amplitude, we shall demonstrate that the amplitude without suppression
does actually occur in the calculation based on the vector meson dominance (VMD)

*) On leave of absence from Kyoto University, Kyoto 606.

2z0z ¥snbny oz uo 1senb Aq 269¢261/1 LE/2/z8/e1onie/d)d/woo dno olwsepede//:sdiy Wwoly papeojumog



372 A T. Movozumi and H. Iwasaki

model. Furthermore, the decay ratios for K;—»n"yy and K.~ 7’ yy—>n’e*e” (the
absorptive part) are calculated. Recently there has been an evaluation? of these
“ratios in chiral perturbation theory, in which there is an unknown coupling constant
which is not determined properly. - Therefore, it is worth estimating these ratios with
the VMD model and comparing the results with those of the chiral perturbation.
This paper is organized as follows: In § 2, the general form of the CP-conserving
amplitudes is discussed and the simple formulae for the decay widths of K.~ 7°yy and
K —~nyy-on'e e’ (the ‘absorptive part) are obtained. In § 3, the model calculations
~ for the decay K.~ n°yy, K.~ n°yy— n°e*e™ are performed, while § 4 is devoted to the
conclusion and discussion.

§2. The general form of the CP-conserving amplitude

The chirality conserving form of the CP-conserving amplitude in the decay
K:— n°e”e” and its characteristic distribution in the Dalitz plot are first discussed in
Ref. 3).. In this section, for completeness we first reexamine the CP-conserving
amplitude of the decay K:—7n°e*e”. The chirality conserving form of the decay
amplitude should be of the form

A=17(s2, 02) Y (51, Ul)k#f(k°31, kess), _ (3)

where f is a function of the two independent Lorentz invariants of the external

momenta, and ¢; and ¢; are the helicity states of ™ and e, respectively. Under the

CP transformation, Eq. (3) becomes
AP =7(51, 00)7:0( 52, 02) B f(k-so, ko51), , 4)

where k*=Fk,, etc. In Eq. (4) there is no extra sign change, because the internal CP
of K; is the same as that of #°. In the center of mass frame of eTe™, the time
component of #y.w is actually zero, because (s;+s:)“#y.v=0. Moreover in the
massless limit of the electron, the chirality conserving nature leads to the following
relation in the same frame,

#(s2, 02) 7uv(s1, o1)=1( 51, 01)70( 52, 02) . (5)

Therefore, if CP invariance is assumed, in Eq. (3), f must be odd with respect to its
two arguments :

F(kesy, kess)=—f(k s2, kes1) . _ : (6)

As discussed previously, a CP-conserving contribution to the decay K.~ n°e*e™ can
arise from a two photon intermediate state. Then in two-photon-exchange, the
following quantity is important:

TW(lIl, qz, k)zfeiql'zleiqz'xz<ﬂp| T[jé‘m(x1)jé'm(xz)Hw(O)]|sz>d4x1a’4xz , (7)

where j5» is the hadronic part of the electromagnetic current and Hw is the effective
Hamiltonian of the weak interaction. If we assume CP invariance of Hw, T* must
satisfy the relation,
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CP-Conserving Contribution in the Decays 373

T*(qu, g2, B)=Tu(q1, T2, k). (8)

Further, taking into account Bose symmetry and gauge invariance, we can express
T* in terms of the four independent form factors. (See also the Appendix in Ref. 4)
for the amplitude of the on-mass-shell photons.)

T (qu, gz, B)=A(k~q1, b+ 02)(qouqrv— q1° Gogu)

+B(k quk Q)(i—q'lk—qz ,uu’l"k/-tku k V C]z;:ku_ k'QZ LIwk/z>

a1+ q di*qz qi* gz
g q g3 o’
+C(k ‘qi, k- Ch)( rg’ Qieq1y— .1 QZ;z42u+611uC12u)
q 91 qz
+D(k-q1, k- 42)((112 kige, kg Gruqryt quuky— qz;qu)
’ q* 02 qi° gz q q
2 ke 611 k-q )
+D(k qzyk 611)((12 a 02 ey a- 6]2#Q2u+(]2uk;z . (] Q QZUky
C))
where A(z, v), B(x,y) and C(z, y) satisfy the relations,
Az, »)=Aly,z), B(z,v)=B(,z), Cz,y)=C(,x). (10)
The decay amplitude of Kz~ 7°yy is obtained from Eq. (9):
A(Ko~ " yy)=elucty T* (g1, @2, k) . ' (11)

Then the decay width is

. . ,
mLf%[(As - BmK2)2 + (g) (mxzmnz —h tz)2:| X % ,

I'K.-»ryy]= f dh dtzré'n_a—
' (12)

where s=(k—pP’=(q1+ @), h=(k—q1)?, b=(k—q2)*. Futhermore the amplitude for
K- r°ete” via two photons is obtained by contracting the hadronic tensor T* in
Eq. (9) with the e*e™ conversion amplitude;

. . _ d 1
AKz- ete)|s,= /(27[‘])14 (2—7;1)24(271') M+ ag—s1—s2) PR qui‘Z.E .

_ 1 PN 1 ]
X [u(Sz) (e s 7uv(s1)+ 7 (s2) T e ==t 7v(s1)

X5 T4, a0 1) a3)

We can use Eq. (13) to yield the absorptive part of K.~ 7°yy— n°e*e™ amplitude with
the Cutkosky rule:
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374 T. Morozumi and H. Iwasaki

Abs. A(Ki—n°yy-rtete)

-—n'e

/ Y 8(s—2q- (81+Sz))6(qz)0(q°)c9((sl+Sz)°—q)

1 ]. t1_2 2 2\ ( 1 1 >
X _— _ -— . J— —_—
[(q-32+q-sl s (—dk-gts+ma mz)uqv—k q-s: q-s

X8k )~ 1+ qls+ = m?) + (ma*—me2F+ s(s—2me2)) g

_< qilSz + q-151 >>(tls—' fz) 7,7,}{1)“‘( q-lsz - q-lsl >{4k. q—(s+ mK-Z—' mﬂz)}.ﬁﬁv} ’
(14)

where the electron mass has been neglected. Thus, only the term with the form
factor B gives a non-vanishing contribution. Note that Eq. (14) shows the general
feature of the CP-conserving amplitude, i.e., the r.h.s. is actually an odd function of
(i—t). (See also Eq. (6)).. From Eq. (14), the lower bound for K;—~ 7°e*e™ via two
photons is obtained,

I'Ki-»nete sy

> LY fas [ doatmet, mat, 577 (0) -1~ PLEY, (15)

where
Aa, b, c)=a*+b*+c*—2ab—2bc—2ca;
[t 1 [(2*+1 _ Y
J(o)= fp dxB(xs, x—)[—l_ p< 5 px) 1], (16)

tL—h

o= VA(mx?, ma2, s)

mx’— m+ st/ Amil, m, 8)x
4 .

Te=

In the above expressions arccos(p) stands for the angle between K; and the electron

in the cm frame of e* and e, and arccos(x) for the angle between K. and the photon
in the same frame. The functlon J(p) is free from a singularity at =1, which'means
the collinear singularities are absent in:this process as claimed by the authors of
Ref. 6). Equations (12).and (15) are the‘general expressions. They are written on
the assumption that the form factors have the following simple kinematical depen-
dence,

_ S
Bz, 5)=F 50 an

where F is a constant. Now using the form: factor, we calculate Eq. (15),

et 216 Almr®, ma®, s 0 o
INK,»re’e ]27_(27%1( )(16) fa’/a’ 556 s (1—pHp?. (18)
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CP-Conserving Contribution in the Decays 375

Equation (18) coincides with the result of Ref. 6). We shall now proceed in § 3 to
examining the CP-conserving contribution to the decay Kz~ n°e*e¢” in a VMD model
without the approximation to momentum dependence of the form factor.

§3. A vector meson dominance model

The model we use to calculate the form factors (Eq. (9)) is a vector meson
dominance model, which has successfully predicted the radiative decays of the neutral
pseudoscalar mesons (P) and vector mesons (V). We assume in the calculation that
the decay K:— 7°yy is dominated by the weak transition K:— P followed by the
radiative decays, P~ Vy and V- "y (cf. Fig. 1). Other processes in which the weak
transition takes place after one or two photons are emitted are neglected, because the
mass of the vector mesons, (K*, ¢), which join them are large and their contribution
is small compared with that of p and w. The same process was considered in Refs. 5)
and 6). However the explicit formulae for the differential decay rates are still
lacking, then we shall derive them from the following (Egs. (31) and (33)). First, the
weak transition matrix element <{x°|Hw|K>> is evaluated by using the effective chiral
Lagrangian in which 47=1/2 dominance.is assumed:”

<7r°[Hw|Kg>= —3.71x1072 MeV?, , 19)

where for hadronic states, we use the relativistic invariant normalization. Then, the
other matrix elements <P|Hw|K>> are related to it by the following nonet relation:

<7Z‘°|HWIK2>:1/§<778|HW|K2>=:Z@<771|HWIK2> s (20)

where 7s and 7 are the SU(3)-octet and -singlet pseudoscalar meson states, re-
spectively. Further, the matrix elements between the physical states of the pseudo-
scalars and the kaons are easily obtained by using the following relations:

7=1nscosd — msind ,
o 7’ =nssind+mcosf, (21)

where 6 is the mixing angle (=~ —20°).

Thus the weak transition amplitudes are

evaluated, and what remains to be calcu-

V= (p,w_) lated is the PVy vertex. We take the
)4 simplest form consistent with . the

requirements of SU(3) flavor symmetry:

6#uﬂo‘tr[ Q/l“/lb]aﬂAuap r o_a b , (22)

where V.*s and IT%s (a=0, ---, 8) are the

o nonets of the vector and pseudoscalar
- 1 . «

P=(m ,7] ,'I'] ) mesons, respectively. A, is the photon

Fig. 1. The Feynman diagram of Ki~z"yy in the field. The matrlces_ A* (a=1,-8) are

vector meson dominance model. the Gell-Mann matrices and A°=v2/31.

KZ,'@ WWY
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376 ' T. Morvozumi and H. Iwasak:i

Table I. The table of gvey/gwr-r-

p¥%(uﬁ—dd’_) v a)=%(uﬁ—d@ ¢=s5%

[==3

T /3 1

7 %(ﬁcosﬁ—ﬁsinﬁ) %(«/?cosﬁ—ﬁisin&) _9 VBeos G+ 4/3sind)

7 %(ﬁsinﬁ-_i—ﬁcos&) %(ﬁsin0+@cos€) %(fcosﬁ—«/@sin@)

Q is the charge matrix. The magnitude of the coupling constants is determined from
w- 71"y decay. The ratio of the coupling constants are shown in Table I where ideal
mixing of the vector mesons is assumed. By calculating the amplitude of Fig. 1, we
obtain the following results:

Ao kea)=—, B O el (23)

B(k-q, k-qz)='—v=2a},'vaq1-qz[ (k_qz)lz_mvz + (k_ql)lz__sz] , (24)

Ck-q, k- q2)=0, : (25)

D(kq, k*g2)= 2 GW ‘ (26)
where

Gp:gczon'7<7[0lHW2iK2>r L 1

Mk Lg 1_AIL'2

+%(*/§C°S(’ —/Bsin 5)(%%59 +%Sin6)ﬁ

+ (J—31n0+fcos¢9)(731n0 ch059>1 7z ], (27)

Ax° lHW‘K2>l— 1 1 _ . 1 4 . 1
Go=gonr s - | 1= Az+9(J§cos€ ﬁsm&)(ﬁcosﬁ—l—ﬁsmﬁ)il_dvz

—I—%(x/gsin@%—«/@cos 6)<%sin9——j—écos 0>1_—1Z] , (28)
. _{ mp 2 . »
ap=(ZeY (29)

From Eq. (9) and the form factors determined above, it is easy to see that the
amplitude is vanishing in soft pion limit. The numerica] values of the dimensionless
coupling constants Gvmx® are estimated using the value guwr,=6.84X107*MeV ™"
determined from w- 7°y decay:®

Gomx®=—0.46%1078,
Gomgi=—021%10"", - (30))
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where we assume that the mixing angle is §=—20°. With the form factors, Eqgs. (23)
and (24), we obtain the decay width for K;— 7°yy in the VMD model.

. o 1 1 1r< < h ty >>22
IK.~> 7 77]““”—/ dhdtrase w1512, O\ T m?)) S

Y EEERES) AP

V=00 —my t:— mv*

We also evaluate the branching ratio,

F[KL_>7T° YY]VMD _ >—6 '
T K, —all] =1.4%X107°, ‘ (32)

which is significantly below the present experimental upper bound, 2.4 X107 The
calculation of Eq. (15) with the form factor B(x+, z-) in Eq. (24) gives a lower bound
for the branching ratio of the decay K.~ n°e*e” via a two photon intermediate state
in this model,

INK.-»rete Iz
o 2 ! 1 2 2 \3/2(1__ 2 2 \
2(16) /dS[IdPWﬂ(mK , mat, $)(1—p )(sza;’vafv) , (33)

where

_AV2+1 <AV—1>_(AV2_1+202> (AV“O)__ < AV2—1 )
fr= 1—o? oln! A, 71 1= o7 Inl AT 20AvIn A=)

_ S 2my — mik— mit

A
’ VA(mg?, mat, s)

'K ~nete ]z
T K.~ all]

From Egs. (32) and (34), the ratio I' K.~ m°e* e |2,/ K.~ 7°7y]lvmo is at least of the
order of 107°

IEK.-rete ]z s
et 100 (35)

>1.7x1071, o (34)

The main results are Egs. (31) and (33). In the calculation, there are uncertainties in
the weak transition matrix element (Eq. (19)) and in the PVy couplings. However
the ratio 'l K.~ m°e*e” |2/l [Ki—= 7°7y)lvmo is free from such uncertainties. There-
fore in the VMD model the chirality suppression does not occur, which should be
compared with the result of Ref. 3).

‘§4. Conclusions and discussion

In this paper we obtain the formulae of the decay rates for K.~ z°e*e” and
K, - n°yy. Further using these formulae, in the VMD model the branching ratios for

these decay modes are also predicted. We have seen that chirality suppression does
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378 | T. Morozumi and H. Iwasaki

not always occur in the CP-conserving amplitudes for the decay K;— n°e*e™ with the
general, kinematical configuration of the three body decay. The calculation using
the VMD model has explicitly shown that the chirality suppression does not occur and
the CP-conserving contribution is comparable with or larger than the CP-violating
piece. The same conclusions were obtained by the authors of Refs. 5) and 6). The
authors of Ref. 4) evaluate the form factors in Eq. (9) with chiral perturbation theory.
Their result is that only the form factor A gives a'non-vanishing contribution to the
lowest non-trivial order in K, > 7°yy. Since A does not contribute to the absorptive
part of K.~ n°e*e” in the massless limit of the electron and the positron, the chirality
suppression does occur in the calculation of the lowest non-trivial order. Further-
more they suggest that the next order contribution to the form factor B is small,
nevertheless the chirality suppression does not occur. In contrast to the results of
Ref. 4), in the VMD model, even in the tree level evaluation, the form factor B is
non-vanishing and gives a large contribution to K~ n’e*e™ as well as to Kr~>7°yy.
Then a detailed study of the coefficient in the form factor B is neccessary in chiral
perturbation theory.” ’ '

The general form of the decay amplitude for K.~ 7°77, given in Eq. (12), can be
applied to other two-current effects, such as 7—->7"yy, i.e., if experiment could give
further information on the invariant mass distribution of the two photons, the angular
distribution, etc., it could be determined which of the invariant tensors actually
describes the data. This kind of analysis is effective to select the appropriate model
for the process.
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L= gsTr(lisa;LMaFM) 5

M=exp(iﬂ;‘/}(a>,

%=358%10" m.?,
Fr=93.3 MeV.
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8) The decay width for w— 7"y is Twrry=(g%+/96 7)Mo (1—{ma’/m.?))’. We quote the value, ur,
=0.68(MeV).
Note added: There was a mistake about-Eq. (15) in our original preprint (KEK-Preprint-88-4). In the
previous version of our paper, there remained the collinear singularities. However, as pointed out in Ref. 6),
the singularities are cancelled. Then we can neglect the masses of electron and positron from the beginning
of the calculation.
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