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Abstract

We present an up-to-date profile of the Cabibbo-Kobayashi-Maskawa matrix with emphasis on the in-
terpretation of recent CP -violation results from the B factories. For this purpose, we review all relevant
experimental and theoretical inputs from the contributing domains of electroweak interaction. We give
the “standard” determination of the apex of the Unitarity Triangle, namely the Wolfenstein parameters
ρ and η, by means of a global CKM fit. The fit is dominated by the precision measurement of sin 2β by
the B factories. A detailed numerical and graphical study of the impact of the results is presented. We
propose to include sin 2α from the recent measurement of the time-dependent CP -violating asymmetries
in B0 → ρ+ρ−, using isospin relations to discriminate the penguin contribution. The constraint from
ε′/ε is discussed. We study the impact from the branching fraction measurement of the rare kaon de-
cay K+ → π+νν, and give an outlook into the reach of a future measurement of K0

L
→ π0νν. The B

system is investigated in detail. We display the constraint on 2β + γ and γ from B0 → D(∗)±π∓ and
B+ → D(∗)0K+ decays, respectively. A significant part of this paper is dedicated to the understand-
ing of the dynamics of B decays into ππ, Kπ, ρπ, ρρ and modes related to these by flavor symmetry.
Various phenomenological approaches and theoretical frameworks are discussed. We find a remarkable
agreement of the ππ and Kπ data with the other constraints in the unitarity plane when the hadronic
matrix elements are calculated within QCD Factorization, where we apply a conservative treatment of
the theoretical uncertainties. A global fit of QCD Factorization to all ππ and Kπ data leads to precise
predictions of the related observables. However sizable phenomenological power corrections are preferred.
Using an isospin-based phenomenological parameterization, we analyze separately the B → Kπ decays,
and the impact of electroweak penguins in response to recent discussions. We find that the present data
are not sufficiently precise to constrain either electroweak parameters or hadronic amplitude ratios. We
do not observe any unambiguous sign of New Physics, whereas there is some evidence for potentially
large non-perturbative rescattering effects. Finally we use a model-independent description of a large
class of New Physics effects in both B0B0 mixing and B decays, namely in the b→ d and b→ s gluonic
penguin amplitudes, to perform a new numerical analysis. Significant non-standard corrections cannot
be excluded yet, however Standard Model solutions are favored in most cases. In the appendix to this
paper we propose a frequentist method to extract a confidence level on ∆ms from the experimental infor-
mation on B0

sB
0
s oscillation. In addition we describe a novel approach to combine potentially inconsistent

measurements. All results reported in this paper have been obtained with the numerical analysis package
CKMfitter, featuring the frequentist statistical approach Rfit.

http://ckmfitter.in2p3.fr http://www.slac.stanford.edu/xorg/ckmfitter
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Part I

Introduction

Within the Standard Model (SM), CP violation (CPV) is generated by a single non-vanishing
phase in the unitary Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix V [1,2]. A
useful parameterization of V follows from the observation that its elements exhibit a hierar-
chy in terms of the parameter λ ≃ |Vus| [3,4]. Other parameters are A, ρ and η, where CP
violation requires η 6= 0. The parameters λ and A are obtained from measurements of semilep-
tonic decay rates of K mesons, and of B meson decays involving beauty-to-charm transitions,
respectively. The constraints on ρ and η are conveniently displayed in the complex plane where
they determine the apex of the Unitarity Triangle1 (UT), which is a graphical representation of
the unitarity relation between the first and the third column of the CKM matrix. For example,
semileptonic B decays yielding |Vub|, predictions of B0B0 oscillation and of indirect CP violation
in the neutral kaon sector depend on ρ, η. However the understanding of this dependence is
limited by theoretical uncertainties, which are mainly due to long distance QCD. In the era of
the B factories, a large number of measurements has appeared that are related to the CKM
phase. The most famous of them is the measurement of the CP -violation parameter sin 2β in
b→ cc̄s transitions, which is theoretically clean. Other modes are sensitive to the angles α and
γ of the UT, where in many cases one has to deal with interfering amplitudes with different
CP -violating phases, complicating the extraction of the CKM-related parameters.

A focus of this work is the phenomenological interpretation of B-physics results. The spec-
tacular performance of the first five years of the asymmetric-energy B factories, PEP-II and
KEK B, and their experiments BABAR and Belle, with published results on up to 270 fb−1 in-
tegrated luminosity (combined), has produced an avalanche of publications, many of which are
related to CP violation. In spite of the difficulties due to small branching fractions and/or
hadronic uncertainties, the goal of overconstraining the UT from tree-level-dominated B decays
seems achievable even if the precision may turn out insufficient to reveal a failure of the SM.
Since tree decays are not expected to lead to large inconsistencies with the SM, more and more
experimental and theoretical effort goes into the determination of UT angles and/or other pa-
rameters from B decays dominated by penguin-type diagrams, the most prominent of which are
b→ sγ(∗) and b→ ss̄s (e.g., B0 → φK0). A number of other decay modes with net strangeness
in the final state, which are now being studied, may reveal specific signs of physics beyond the
SM through unexpected CP violation or enhanced branching fractions.

The CKM analysis performed in this paper is threefold: the first goal of the global CKM fit
is to probe the validity of the SM, that is to quantify the agreement between the SM and the
experimental information; if this is confirmed, one secondly enters the metrology phase where
allowed ranges for the CKM matrix elements and related quantities are determined, assuming
explicitly the SM to be correct; finally, within an extended theoretical framework, one may
search for signals of New Physics and constrain parameters of specific New Physics scenarios.

Analyzing data in a well defined theoretical scheme ceases to be a straightforward task when
one moves away from Gaussian statistics. This is the case for the theoretically limited precision
on the SM predictions of the neutral K and B mixing observables and, to a lesser extent, for
the semileptonic decay rates of B decays to charmed and charmless final states. Also the inter-

1Throughout this paper, we adopt the α, β, γ convention for the angles of the Unitarity Triangle. They are
related to the φ1, φ2, φ3 “historical” convention [5] as α = φ2, β = φ1 and γ = φ3. Angles are given in units of
degrees.
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pretation of results on CP violation in terms of the UT angles often invokes unknown phases
occurring in absorptive parts of non-leptonic transitions. The statistical approach Rfit developed
and described in detail in Ref. [6] treats these uncertainties in a frequentist framework, which
allows one to determine confidence levels. The ensemble of the statistical analyses reported here
is realized with the use of the program package CKMfitter2.

This paper is the second edition [6] of our effort to collect all significant information on the
CKM matrix and to combine it in a global CKM fit [8–10]. All figures given in this document
as well as partially updated results can be found on the CKMfitter web site [7].

The paper is organized as follows. Part I provides a brief introduction of the CKM matrix
and mainly serves to define the conventions adopted in this paper. We review in Part II the sta-
tistical approach and the analysis tools implemented in CKMfitter, the understanding of which is
necessary for an adequate interpretation of the results derived in this work. Part III first defines
the observables that are used as input in the so-called “standard CKM fit”, which is defined as
the global CKM fit that includes only those observables, which provide competitive constraints
and of which the SM prediction can be considered to be quantitatively under control. We put
emphasis on the discussion of the theoretical uncertainties. This introduction is followed by a
compendium of numerical and graphical results of the standard CKM fit for all parameters and
observables of the electroweak sector that significantly depend on the CKM matrix. Beginning
with Part IV we perform rather detailed investigations of specific subsystems, related to CP
violation in the quark sector and to the Unitarity Triangle, with emphasis on the discussion
of observables not used in the standard CKM fit. We study direct CP violation in the kaon
system and specifically derive constraints on the non-perturbative bag parameters. We discuss
the impact of the measurement of rare kaon decays and give an outlook into the future where
we attempt to quantify the expected uncertainties. Part V displays the constraints related to
the Unitarity Triangle angle γ from the time-dependent analysis of B0 → D(∗)±π∓ decays and
the Dalitz analysis of B+ → D0K+. Part VI describes in detail the analysis of charmless B
decays to ππ, Kπ, ρπ and ρρ, which, besides the global CKM fit, represents a central pillar of
this work. We discuss constraints on the CP -violating CKM phase using various phenomeno-
logical and theoretical approaches based on flavor symmetries and factorization. In Part VII we
use a model-independent parameterization of a large class of New Physics effects in both B0B0

mixing and B decays, namely in the b→ d and b→ s gluonic penguin amplitudes, to perform a
tentative numerical analysis. In the appendix to this work we describe the frequentist treatment
of the measurement of B0

sB
0
s oscillation incorporated in our CKM fit, and we propose a novel

method to handle the problem of (apparently) inconsistent measurements.

1 The CKM Matrix

Invariance under local gauge transformation prevents the bare masses of leptons and quarks to
appear in the SU(3) × SU(2) × U(1) Lagrange density of the SM. Instead, the spontaneous
breakdown of electroweak symmetry dynamically generates masses for the fermions due to the
Yukawa coupling of the fermion fields to the Higgs doublet. Since the latter has a non-vanishing
vacuum expectation value, the Yukawa couplings g give rise to the 3 × 3 mass matrices

Mi =
vgi√

2
, (1)

2CKMfitter is a framework package that hosts several statistical approaches to a global CKM fit and the
interpretation of CP -violation results. It is available to the public [7]. Please contact the authors for more
information.
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with i = u(d) for up(down)-type quarks and i = e for the massive leptons. To move from the
basis of the flavor (electroweak) eigenstates to the basis of the mass eigenstates, one performs
the transformation

Uu(d,e)Mu(d,e)Ũ
†
u(d,e) = diag

(

mu(d,e),mc(s,µ),mt(b,τ)

)

, (2)

where Ui and Ũi are unitary complex rotation matrices and the masses mi are real. The neutral-
current part of the Lagrange density in the basis of the mass-eigenstates remains unchanged (i.e.,
there are no flavor-changing neutral currents present at tree level), whereas the charged current
part of the quark sector is modified by the product of the up-type and down-type quark mass
matrices,

V = UuU
†
d , (3)

which is the CKM mixing matrix. By convention, V operates on the −1/3 charged down-type
quark mass eigenstates

V =







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb






(4)

and, being the product of unitary matrices, V itself is unitary

V V † = I . (5)

There exists a hierarchy between the elements of V both for their value (the diagonal elements
dominate) and their errors (since they dominate, they are better known). The unitarity and the
phase arbitrariness of fields reduce the initial nine complex elements of V to three real numbers
and one phase, where the latter accounts for CP violation. It is therefore interesting to over-
constrain V since deviations from unitarity would reveal the existence of new generation(s) or
new couplings.

The charged current couplings among left-handed quark fields are proportional to the ele-
ments of V . For right-handed quarks, there exist no W boson interaction in the SM and the
Z, photon and gluon couplings are flavor diagonal. For left-handed leptons the analysis pro-
ceeds similarly to the quarks with the notable difference that, since the neutrinos are (almost)
massless, one can choose to make the same unitary transformation on the left-handed charged
leptons and neutrinos so that the analog of V in the lepton sector becomes the unit matrix.

There are many ways of parameterizing the CKM matrix in terms of four parameters. The
following section summarizes the most popular representations.

1.1 The Standard Parameterization

The Standard Parameterization of V was proposed by Chau and Keung [11] and is advocated by
the Particle Data Group (PDG) [12]. It is obtained by the product of three (complex) rotation
matrices, where the rotations are characterized by the Euler angles θ12, θ13 and θ23, which are
the mixing angles between the generations, and one overall phase δ 3

V =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13






(6)

where cij = cos θij, sij = sin θij for i < j = 1, 2, 3. This parameterization strictly satisfies the
unitarity relation (5).

3This phase δ is a CP -violating phase; it should not be confused with the CP -conserving hadronic phases that
will be introduced later with the same symbol.
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1.2 The Wolfenstein Parameterization

Following the observation of a hierarchy between the different matrix elements, Wolfenstein [3]
proposed an expansion of the CKM matrix in terms of the four parameters λ, A, ρ and η (λ ≃
|Vus| ∼ 0.22 being the expansion parameter), which is widely used in contemporary literature,
and which is the parameterization employed in this work and in CKMfitter. We use in the
following as definitions to all orders in λ [4]

s12 ≡ λ ,

s23 ≡ Aλ2 , (7)

s13e
−iδ ≡ Aλ3(ρ− iη) ,

inserted into the standard parameterization (6), so that unitarity of the CKM matrix is achieved
to all orders4.

1.3 The Jarlskog Invariant

It was shown by Jarlskog [13] that the determinant of the commutator of the up-type and
down-type unitary mass matrices (1) reads

det[Mu,Md] = −2iFuFdJ , (8)

with Fu(d) = (mt(b) −mc(s))(mt(b) −mu(d))(mc(s) −mu(d))/m
3
t(b). The phase-convention indepen-

dent measurement of CP violation, J , is given by

Im
[

VijVklV
∗
ilV

∗
kj

]

= J
3
∑

m,n=1

εikmεjln , (9)

where Vij are the CKM matrix elements and εikm is the total antisymmetric tensor. One
representation of Eq. (9) reads, for instance, J = Im[VudVcsV

∗
usV

∗
cd]. A non-vanishing CKM

phase and hence CP violation necessarily requires J 6= 0. The Jarlskog parameter expressed in
the Standard Parameterization (6) reads

J = c12c23c
2
13s12s23s13sinδ , (10)

4The Taylor expansion of Eqs. (7), inserted into (6), up to order O(λ9) reads

Vud = 1 − 1

2
λ2 − 1

8
λ4 − 1

16
λ6
(

1 + 8A2(ρ2 + η2)
)

− 1

128
λ8
(

5 − 32A2(ρ2 + η2
)

,

Vus = λ − 1

2
A2λ7(ρ2 + η2) ,

Vub = Aλ3(ρ − iη) ,

Vcd = −λ +
1

2
A2λ5 (1 − 2(ρ + iη)) +

1

2
A2λ7(ρ + iη) ,

Vcs = 1 − 1

2
λ2 − 1

8
λ4(1 + 4A2) − 1

16
λ6
(

1 − 4A2 + 16A2(ρ + iη)
)

− 1

128
λ8
(

5 − 8A2 + 16A4
)

,

Vcb = Aλ2 − 1

2
A3λ8

(

ρ2 + η2
)

,

Vtd = Aλ3 (1 − ρ − iη) +
1

2
Aλ5(ρ + iη) +

1

8
Aλ7(1 + 4A2)(ρ + iη) ,

Vts = −Aλ2 +
1

2
Aλ4 (1 − 2(ρ + iη)) +

1

8
Aλ6 +

1

16
Aλ8

(

1 + 8A2(ρ + iη)
)

,

Vtb = 1 − 1

2
A2λ4 − 1

2
A2λ6

(

ρ2 + η2
)

− 1

8
A4λ8 .
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Figure 1: The rescaled Unitarity Triangle in the Wolfenstein parameterization.

and, using the Wolfenstein parameterization, one finds

J = A2λ6η
(

1 − λ2/2
)

+ O(λ10) ∼ 10−5 . (11)

The empirical value of J is small compared to its mathematical maximum of 1/(6
√

3) ≃ 0.1
showing that CP violation is suppressed as a consequence of the strong hierarchy exhibited by
the CKM matrix elements. Remarkably, to account for CP violation (see Eq. (8)) requires not
only a non-zero J but also a non-degenerated quark-mass hierarchy. Equal masses for at least
two generations of up-type or down-type quarks would eliminate the CKM phase.

Phase convention invariance of the V -transformed quark wave functions is a requirement
for physically meaningful quantities. Such invariants are the moduli |Vij |2 and the quadri-
products VijVklV

∗
ilV

∗
kj (cf. the Jarlskog invariant J). Non-trivial higher order invariants can be

reformulated as functions of moduli and quadri-products (see, e.g., Ref. [14]). Indeed, Eq. (9)
expresses the fact that, owing to the orthogonality of any pair of different rows or columns of V ,
the imaginary parts of all quadri-products are equal up to their sign. We will use phase-invariant
representations and formulae throughout this paper.

2 The Unitarity Triangle

The allowed region in the ρ and η space can be elegantly displayed by means of the Unitarity
Triangle (UT) described by the rescaled unitarity relation between the first and the third column
of the CKM matrix (i.e., corresponding to the B meson system)

VudV
∗
ub

VcdV
∗
cb

+
VcdV

∗
cb

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

= 0 . (12)

Note that twice the area of the non-rescaled UT corresponds to the Jarlskog parameter J . This
identity provides a geometrical interpretation of the phase convention invariance of J : a rotation
of the CKM matrix rotates the UT accordingly while leaving its area, and hence J is invariant.
It is the remarkable property of the UT in the B system that its three sides are governed by
the same power of λ and A (so that the sides of the rescaled UT (12) are of order one), which
predicts large CP -violating asymmetries in the B sector. As a comparison, the corresponding
UT for the kaon sector is heavily flattened

0 =
VudV

∗
us

VcdV ∗
cs

+
VcdV

∗
cs

VcdV ∗
cs

+
VtdV

∗
ts

VcdV ∗
cs

∼ O

(

λ

λ

)

+O (1) +O

(

A2λ5

λ

)

, (13)
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Figure 2: Constraints in the unitarity plane for the most relevant observables. The theoretical
parameters used correspond to some “standard” set chosen to reproduce compatibility between
the observables.

exhibiting small CP asymmetries. The UT (12) is sketched in Fig. 1 in the complex (ρ, η) plane,
where the apex is given by the following phase-convention independent definition, to all orders
in λ [4],

ρ+ iη ≡ −VudV
∗
ub

VcdV
∗
cb

, (14)

of which the inverse reads to all orders5

ρ+ iη =

√
1 −A2λ4(ρ+ iη)√

1 − λ2 [1 −A2λ4(ρ+ iη)]
. (17)

Equation (17) is the definition used in CKMfitter. The sides Ru and Rt of the UT (the third
side being normalized to unity) read to all orders

Ru =

∣

∣

∣

∣

∣

VudV
∗
ub

VcdV
∗
cb

∣

∣

∣

∣

∣

=
√

ρ2 + η2 , (18)

5Expanding Eq. (14) in λ gives [4]

ρ = ρ − 1

2
ρλ2 +

(

1

2
A2ρ − 1

8
ρ − A2

(

ρ2 − η2
)

)

λ4 + O(λ6) , (15)

η = η − 1

2
ηλ2 +

(

1

2
A2η − 1

8
η − 2A2ρη

)

λ4 + O(λ6) . (16)
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Rt =

∣

∣

∣

∣

∣

VtdV
∗
tb

VcdV
∗
cb

∣

∣

∣

∣

∣

=
√

(1 − ρ)2 + η2 . (19)

The three angles, α, β, γ, of the UT are defined by

α = arg

[

− VtdV
∗
tb

VudV
∗
ub

]

, β = arg

[

−VcdV
∗
cb

VtdV
∗
tb

]

, γ = arg

[

−VudV
∗
ub

VcdV
∗
cb

]

, (20)

and the CKM phase in the Standard Parameterization (6) reads δ = γ + A2λ4η + O(λ6). The
relations between the angles and the ρ, η coordinates, again to all orders in λ, are given by

cos γ = ρ/Ru , sin γ = η/Ru , (21)

cos β = (1 − ρ)/Rt , sin β = η/Rt , (22)

α = π − β − γ . (23)

A graphical compilation of the most relevant present and future constraints (without errors)
is displayed in Fig. 2. Some “standard” values for the theoretical parameters are used for this
exercise in order to reproduce compatibility between the constraints.

Over-constraining the unitary CKM matrix aims at validating the three-generation SM. The
interpretation of these constraints requires a robust statistical framework which protects against
misleading conclusions. The following part describes the statistical approach applied for the
analysis reported in this work.
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Part II

The Statistical Approach Rfit

The statistical analysis performed in this paper is entirely based on the frequentist approach Rfit
described in detail in Ref. [6] and recalled below.

We consider an analysis involving a set of Nexp measurements collectively denoted by xexp =
{xexp(1), . . . , xexp(Nexp)}, described by a set of corresponding theoretical expressions xtheo =
{xtheo(1), . . . , xtheo(Nexp)}. The theoretical expressions xtheo are functions of a set of Nmod

parameters ymod = {ymod(1), . . . , ymod(Nmod)}. Their precise definition is irrelevant for the
present discussion (cf. Section III.2 for details) besides the fact that:

• a subset of Ntheo parameters within the ymod set are fundamental and free parameters of
the theory (i.e., the four CKM unknowns in the SM, the top quark mass, etc.); these are
denoted ytheo, where ytheo = {ytheo(1), . . . , ytheo(Ntheo)}.

• the remainingNQCD = Nmod−Ntheo parameters are due to our present inability to compute
precisely strong interaction quantities (e.g., fBd

, Bd, etc.), and are denoted yQCD, where
yQCD = {yQCD(1), . . . , yQCD(NQCD)}.

There are three different goals of the global CKM analysis:

1. within the SM, to quantify the agreement between data and the theory, as a whole.

2. within the SM, to achieve the best estimate of the ytheo parameters: that is to say to
perform a careful metrology of the theoretical parameters.

3. within an extended theoretical framework, e.g. Supersymmetry, to search for specific signs
of New Physics by quantifying the agreement between data and the extended theory, and
by pinning down additional fundamental and free parameters of the extended theory.

These goals imply three distinct statistical treatments all of which rely on a likelihood function
meant to gauge the agreement between data and theory.

1 The Likelihood Function

We adopt a χ2-like notation and denote

χ2(ymod) ≡ −2 ln(L(ymod)) , (24)

where the likelihood function, L (defined below), is the product of two contributions:

L(ymod) = Lexp(xexp − xtheo(ymod)) · Ltheo(yQCD) . (25)

The first term, the experimental likelihood Lexp, measures the agreement between xexp and
xtheo, while the second term, the theoretical likelihood Ltheo, expresses our present knowledge
of the yQCD parameters.

It has to be recognized from the outset that the χ2 of Eq. (24) is a quantity that can be
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misleading. In general, using ”Prob” the well known routine from the CERN library, one cannot
infer a confidence level (CL) from the above χ2 value using

CL = Prob(χ2(ymod), Ndof ) , (26)

=
1√

2Ndof Γ(Ndof/2)

∞
∫

χ2(ymod)

e−t/2tNdof/2−1 dt . (27)

This is because neither Lexp nor Ltheo (they are further discussed in the sections below) are built
from purely Gaussian measurements.

• In most cases Lexp should handle experimental systematics, and, in some instance, it has
to account for inconsistent measurements.

• In practice, Ltheo relies on hard to quantify educated guesswork, akin to experimental
systematic errors, but in most cases even less well defined.

The first limitation is not specific to the present analysis and is not the main source of concern.
The second limitation is more challenging: its impact on the analysis is particularly strong with
the data presently available. The statistical treatment Rfit is designed to cope with both of
the above limitations. Notwithstanding its attractive features, the Rfit scheme does not offer a
treatment of the problem at hand free from any assumption: an ill-defined problem cannot be
dealt with rigorously. However the Rfit scheme extracts the most out of simple and clear-cut a
priori assumptions.

1.1 The Experimental Likelihood

The experimental component of the likelihood is given by the product

Lexp(xexp − xtheo(ymod)) =

Nexp
∏

i,j=1

Lexp(i, j) , (28)

where the Nexp individual likelihood components Lexp(i, j) account for measurements that may
be independent or not.

Ideally, the likelihood components Lexp(i) are independent Gaussians

Lexp(i) =
1√

2πσexp(i)
exp



−1

2

(

xexp(i) − xtheo(i)

σexp(i)

)2


 , (29)

each with a standard deviation given by the experimental statistical uncertainty σexp(i) of the
ith measurement. However, in practice, one has to deal with correlated measurements and with
additional experimental and theoretical systematic uncertainties.

• Experimental systematics are assumed to take the form of a possible biasing offset the
measurement could be corrected, were it known. Their precise treatment is discussed
in Section II. 6. In practice, these systematics are usually added in quadrature to the
statistical errors.

• Theoretical systematics, when they imply small effects, are treated as the experimental
ones. However because most theoretical systematics imply large effects and affect in a
non-linear way the xtheo prediction, most of them are dealt with through the theoretical
likelihood component Ltheo (cf. Section II. 1.2).
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Identical observables and consistency: when several measurements refer to the same ob-
servable (e.g., various measurements of ∆md) they have to be consistent, independently of the
theoretical framework used for the analysis. Similarly, when several measurements refer to
different observables that are linked to the same ytheo parameter, e.g., |Vud| and |Vus|, or de-
terminations of |Vub| stemming from different observables, or measurements of sin 2β obtained
from similar B decays, one may decide to overrule possible disagreement by requiring the mea-
surements to be consistent. By doing so, one is deliberately blinding oneself to possible New
Physics effects, which may have revealed themselves otherwise. Clearly, such overruling should
be applied with great caution, and it should be well advertized whenever it occurs. The method
to deal with this imposed consistency is to account for the measurements simultaneously by
merging them into a single component, and applying an “appropriate” rescaling method.

The normalization of each individual likelihood component is chosen such that its maximal
value is equal to one. This is not important for the analysis, but it is convenient: it ensures
that a measurement does not contribute numerically to the overall χ2 value if it is in the best
possible agreement with theory, and that the (so-called) χ2 takes only positive values. In the
pure Gaussian case, this simply implies dropping the normalization constant of Eq. (29): one
then recovers the standard χ2 definition.

1.2 The Theoretical Likelihood

The theoretical component of the likelihood is given by the product

Ltheo(yQCD) =

NQCD
∏

i=1

Ltheo(i) , (30)

where the individual components Ltheo(i) account for the imperfect knowledge of the yQCD pa-
rameters (e.g., fBd

) while more or less accurately including known correlations between them
(e.g., fBd

/fBs). Ideally, one should incorporate in Lexp measurements from which constraints
on yQCD parameters can be derived. By doing so, one could remove altogether the theoretical
component of the likelihood. However usually there is no such measurement: the a priori knowl-
edge on the yQCD stems rather from educated guesswork. As a result, the Ltheo(i) components
are incorporated by hand in Eq. (30) and they can hardly be treated as probability distribution
functions (PDF). In effect, their mere presence in the discussion is a clear sign that the problem
at hand is ill-defined. It demonstrates that here, a critical piece of information is coming neither
from experimental, nor from statistically limited computations, but from the minds of physicists.
At present, these components play a leading role in the analysis and it is mandatory to handle
them with the greatest caution.

In the default scheme, Range Fit (Rfit), we propose that the theoretical likelihoods Ltheo(i)
do not contribute to the χ2 of the fit while the corresponding yQCD parameters take values within
allowed ranges6 denoted [yQCD]. The numerical derivation of these ranges is discussed in Sec-
tions II.6 and III.2. Most of them are identified to the ranges

[yQCD − σsyst , yQCD + σsyst] , (31)

where σsyst is the theoretical systematics evaluated for yQCD. Hence yQCD values are treated on
an equal footing, irrespective of how close they are to the edges of the allowed range. Instances

6Note that the yQCD parameters can also have errors with (partly) statistical components. Examples for these
are parameters obtained by Lattice calculations. The treatment of this case is described in Section II.6.
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where even only one of the yQCD parameters lies outside its nominal range are not considered.

This is the unique, simple and clear-cut assumption made in the Rfit scheme: yQCD param-
eters are bound to remain within predefined allowed ranges. The Rfit scheme departs from a
perfect frequentist analysis only because the allowed ranges [yQCD] do not extend to the whole
physical space where the parameters could a priori take their values7.

This unique and minimal assumption, is nevertheless a strong constraint: all the results
obtained should be understood as valid only if all the assumed allowed ranges contain the true
values of their yQCD parameters. However, there is no guarantee that this is the case, and this
arbitrariness should be kept in mind.

2 Metrology

For metrology, one is not interested in the quality of the agreement between data and the theory
as a whole. Rather, taking for granted that the theory is correct, one is only interested in the
quality of the agreement between data and various realizations of the theory, specified by distinct
sets of ymod values. More precisely, as discussed in Section II.2.1, the realizations of the theory
one considers are under-specified by various subsets of so-called relevant parameter values. In
the following we denote

χ2
min;ymod

, (32)

the absolute minimum value of the χ2 function of Eq. (24), obtained when letting all Nmod

parameters free to vary.

In principle, this absolute minimum value does not correspond to a unique ymod location.
This is because the theoretical predictions used for the analysis are affected by more or less
important theoretical systematics. Since these systematics are being handled by means of allowed
ranges, there is always a multi-dimensional degeneracy for any value of χ2.

For metrological purposes one should attempt to estimate as best as possible the complete
ymod set. In that case, we use the offset-corrected χ2

∆χ2(ymod) = χ2(ymod) − χ2
min;ymod

, (33)

where χ2(ymod) is the χ2 for a given set of model parameters ymod. The minimum value of
∆χ2(ymod) is zero, by construction. This ensures that, to be consistent with the assumption
that the SM is correct, CLs equal to unity are obtained when exploring the ymod space.

A necessary condition is that the CL constructed from ∆χ2(ymod) provides correct coverage,
that is, the CL interval for a parameter under consideration covers the true parameter value
with a frequency of 1−CL if the measurement(s) were repeated many times. This issue will be
further adressed in several subsections.

2.1 Relevant and Less Relevant Parameters

Usually, one does not aim at a metrology of all the ymod values, but only in a subset of them.
This can be for two distinct reasons:

7Not all yQCD parameters need to be given an a priori allowed range, e.g., values taken by final state strong
interaction phases appearing in B decays are not necessarily theoretically constrained.
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• the other parameters being deemed less relevant. For instance, in the SM, CP violation can
be summarized by the value taken by the Jarlskog parameter J , or by the value of the CP -
violating phase determined by the parameters ρ and η in the Wolfenstein parameterization:
the other CKM parameters and the yQCD parameters may thus conceivably be considered
of lower interest.

• parameters that cannot be significantly constrained by the input data of the CKM fit.
This is the case for most of the non-CKM parameters: yQCD parameters, but also the
quark masses, etc.

In practice, the ymod parameters often retained as relevant for the discussion are ρ and η. The
other parameters λ, A, the quark masses (etc.) and all the yQCD are considered as subsidiary
parameters, to be taken into account in the analysis, but irrelevant for the discussion8. In that
case, the aim of the metrological stage of the analysis is to set CLs in the (ρ, η) plane.

We denote by a the subset of Na parameters under discussion (e.g., a = {ρ, η}) and µ the
Nµ remaining ymod parameters9. The goal is to set CLs in the a space, irrespective of the µ
values.

The smaller the region in the a space where the CL is sizable (above CLcut = 0.05, say) the
stronger the constraint is. The ultimate (and unattainable) goal is to shrink the allowed region
to a point: it would then correspond to the ’true’ a. This means that one seeks to exclude the
largest possible region of the a space. To do so, for a fixed value of a, one has to find the µ
values that maximize the agreement between data and theory, and set the CL on a at the value
corresponding to this optimized µ

CL(a) = Maxµ{CL(a, µ)} . (34)

Proceeding that way, one uses the most conservative estimate for a given a point: this point
will be engulfed in the excluded region only if CL(a, µ) < CLcut, ∀µ. As long as the theoretical
likelihoods contain the true value of the yQCD parameters, the CL obtained has correct coverage
and is to be understood as an upper limit of a CL.

2.2 Metrology of Relevant Parameters

According to the above discussion, we denote

χ2
min; µ(a) , (35)

the minimum value of the χ2 function of Eq. (24), for a fixed value of a, when letting all µ
parameters free to vary. For metrological purposes, we use the offset-corrected χ2

∆χ2(a) = χ2
min; µ(a) − χ2

min;ymod
, (36)

the minimum value of which is zero, by construction.

8This point of view does not mean that the role of the yQCD is irrelevant. In particular, if the agreement
between data and theory is not convincing one needs to set CLs in the yQCD space.

9It is worth stressing that this splitting is arbitrary and that it can be changed at will: for instance one may
decide to focus only on a = {J}, or to consider a = {sin 2α, sin 2β} or other experimental observables. In practice,
constraints on observables that are functions of the ymod parameters are obtained by means of the technique of
Lagrange multipliers.
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2.2.1 Gaussian Case

In a Gaussian situation, one directly obtains the CL for a as

CL(a) = P(a) = Prob(∆χ2(a), Ndof ) , (37)

where Ndof = min(N eff
exp −Nµ, Na) and N eff

exp is the effective number of constraints (observables).

To illustrate the use of Ndof , let us first consider the standard CKM fit (see Part III). Sev-
eral observables constrain the (ρ, η) plane so that the number of degrees of freedom exceeds the
dimension of the a space (Na). The offset-corrected ∆χ2(a), defined in Eq. (36), reduces the
number of degrees of freedom to the dimension Na = 2 of the (ρ, η) plane. However if one is
to consider the constraint of only one observable, e.g., sin 2β in the (ρ, η) plane, the number of
degrees of freedom is one, i.e., it is smaller than the dimension of the a space. Indeed, given
sin 2β and, e.g., ρ, the value of η is fixed.

Other cases exist where the situation is less clear-cut: for instance, in the presence of pen-
guins, the C+−

ππ parameters in B0 → π+π− decays may be non-zero and hence acquires some
information on the unitarity angle α. One would thus conclude that the appropriate number of
degrees of freedom should be Ndof = 2. However in comparison with the S+−

ππ parameter, the α
constraint from C+−

ππ is insignificant, so that using Ndof = 1 is the better approximation. One
concludes that even in a Gaussian case, ill-posed problems can occur, which must be individually
studied with (toy) Monte Carlo simulation.

2.2.2 Non-Gaussian Case

In a non-Gaussian situation, one has to consider ∆χ2(a) as a test statistic, and one must rely
on a Monte Carlo simulation to obtain its expected distribution in order to compute CL(a). As
further discussed in Section II.3, this does not imply taking a Bayesian approach and to make
use of PDFs for the unknown theoretical parameters µ.

For the sake of simplicity, we use Eq. (37) in the present work with one exception discussed
below. This implies that the experimental component Lexp(xexp − xtheo(ymod)) is free from non
Gaussian contributions and inconsistent measurements. However the ∆χ2(a) function itself does
not have to be parabolic. What matters is that the Lexp components are derived from Gaussian
measurements, being understood that no Ltheo components are present. Applying Eq. (37) using
Lexp may lead to an under-coverage of the CL for a branching fraction measurement with a very
small number of signal events. That is, the interval belonging to a given CL value constructed
in this way covers the true branching fraction value with a probability lower than 1 − CL.

Under the assumption that the measurement is free from background, the probability to
measure Nobs events for a true number of Ntrue events is given by the Poissonian probability
distribution

f(Nobs;Ntrue) =
e−NtrueNNobs

true

Nobs!
. (38)

One prominent example is the measurement of Nobs = 2 rare K+ → π+νν̄ events with almost
vanishing background probability by the E787 collaboration [15] (see Section IV.2, ignoring the
recent result from E949 [16] in the discussion here). In this case, the experimental likelihood
Lexp(Ntrue) for a true number of Ntrue events given the number of Nobs observed events is the
same Eq. (38). The corresponding CL is obtained by means of the following recipe.
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1. In the pure Poissonian case, the exact central confidence interval [a, b] at CL = 2α with
probabilities P (n ≥ Nobs; a) =

∑∞
n=Nobs

f(n; a) = α and P (n ≤ Nobs; b) =
∑Nobs

n=0 f(n; b) =
α is obtained by solving the following equations for a and b, respectively:

α =
∞
∑

n=Nobs

e−aan

n!
= 1 −

Nobs−1
∑

n=0

e−aan

n!
, (39)

β =
Nobs
∑

n=0

e−bbn

n!
. (40)

Their inverse reads

a =
1

2
F−1

χ2 (α;Ndof = 2Nobs) , (41)

b =
1

2
F−1

χ2 (1 − α;Ndof = 2(Nobs + 1)) , (42)

where Fχ2 is the cumulative distribution for a χ2 distribution for Ndof degrees of freedom.

The quantities F−1
χ2 can be calculated with the CERN library function CHISIN. Using

Eqs. (41) and (42) we construct the correct CL as a function of Ntrue.

2. The experimental likelihood, Linp
exp, is obtained from the inverse CL−1 = P−1(−2 lnLinp

exp, 1).
In this way, the CKM fit can again use Eq. (37) to infer a CL for the Poissonian case with
very small statistics.

The situation becomes more complicated if the statistics is very small and, in addition, the
amount of background is not negligible and possibly only known with limited precision. In this
case, there are two possible ways to proceed. Either the experiment publishes a CL which then
can be again translated into likelihood function using CL−1 (see above). This has been done,
for example, by the BNL experiment E949 [16] (see Section IV.2) the successor of E747. Or, if
this information is not available, the CL has to be constructed by means of a toy Monte Carlo
simulation provided that the experimental information needed has been published.

2.2.3 Physical Boundaries

Physical boundaries: in cases where the a value space is bounded, e.g., sin 2β ∈ [−1, 1], the
confidence level P(a) is modified close to the boundaries, even in a Gaussian case. In general, the
presence of physical boundaries improves the parameter knowledge. The easiest way to derive
the appropriate CL is to use Monte Carlo techniques. The procedure is as follows:

1. choose the coordinate a0 in the (bounded) a space at which the CL(a0) shall be determined.

2. determine for the measurements at hand the offset-corrected ∆χ2(a0) using Eq. (36).

3. generate Monte Carlo measurements that fluctuate according to the experimental likeli-
hoods Lexp.

4. determine the global minimum χ2
min;ymod

[MC] for each set of measurements by leaving all
ymod parameters free to vary.

5. determine the offset-corrected ∆χ2(a0)[MC] for each set of measurements using Eq. (36).

6. from the sample of Monte Carlo simulations, one builds Fa0(∆χ
2(a0)[MC]), the distribu-

tion of ∆χ2(a0)[MC], normalized to unity.
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Figure 3: Difference between Eq. (37) and a Monte Carlo evaluation of the confidence level for
various measurements of a hypothetical quantity sin(x). The Monte Carlo evaluation takes into
account the physical boundaries of the observable.

7. the CL referring to the coordinate a0 is then given by

P(a0) ≤
∫

∆χ2≥∆χ2(a0)

Fa0(∆χ
2) d∆χ2 . (43)

An illustration of the difference between a straight application of Eq. (37) and the accurate
Monte Carlo result is given for various measurements of a hypothetical quantity sin(x) in Fig. 3.
The effects can be significant close to the boundaries.

The inclusion of the physical boundaries in a one-dimensional case is semi-analytically real-
ized in CKMfitter as described in the digression below10. The results are identical to the toy
Monte Carlo simulation technique introduced above.

10Digression. We consider a measurement xm ±1 of an observable that is confined to the interval [xmin, xmax],
and derive the confidence level of a test value x ∈ [xmin, xmax]. The corresponding test statistic is given by

∆χ2 = χ2 − χ2
min , with χ2 = (x − xm)2 , (44)

and we aim at the solution of the convolution integral

CL(x) =

∞
∫

∆χ2

∞
∫

−∞
δ
(

(x − x′
m)

2 − ∆χ2′) 1√
2π

e−
1
2
(x′

m
−xm)2d∆χ2′dx′

m

∞
∫

0

∞
∫

−∞
δ
(

(x − x′
m)2 − ∆χ2′

)

1√
2π

e−
1
2
(x′

m−xm)2d∆χ2′dx′
m

. (45)

The integration of Eq. (45) leads to multiple Heaviside step functions, so that several cases must be distinguished:

• Measurement inside the allowed interval CL(xmin ≤ xm ≤ xmax):

Using P(χ2) ≡ Prob(χ2, 1) = erfc(
√

χ2/2) the CL obtained ignoring the possibly non-zero value of χ2
min

(the χ2 returned by the procedure below is offset-corrected into a ∆χ2 for metrology reasons in CKMfitter),
and denoting Px[x1, x2] the probability that x occurs in the range [x1, x2] (taken to be negative if x1 > x2)

Px[x1, x2] =











1
2

(

erfc
(

|x − x1|/
√

2
)

− erfc
(

|x − x2|/
√

2
))

if x < x1 ∧ x < x2

1
2

(

erfc
(

|x − x2|/
√

2
)

− erfc
(

|x − x1|/
√

2
))

if x > x1 ∧ x > x2

1 − 1
2

(

erfc
(

|x − x1|/
√

2
)

+ erfc
(

|x − x2|/
√

2
))

elsewhere

(46)
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3 Probing the Standard Model

By construction, the metrological phase is unable to detect if the SM fails to describe the
data. This is because Eq. (36) wipes out the information contained in χ2

min;ymod
. This value

is a measure (a test statistics) of the best possible agreement between data and theory. The
agreement can be quantified by the so-called p-value P(χ2

min;ymod
|SM): the probability to observe

a χ2 as large as or larger than χ2
min;ymod

if the Standard Model is the correct theory. Ideally, in

a pure Gaussian case, χ2
min;ymod

could be turned easily into a p-value referring to the SM as a
whole in a straightforward way

P(χ2
min;ymod

|SM) ≤ Prob(χ2
min;ymod

, Ndof) , (50)

with Ndof = N eff
exp − Nmod, if it were a positive value. The whole Standard Model being at

stake, one should not rely on Eq. (50), but use a Monte Carlo simulation to obtain the expected
distribution of χ2

min;ymod
. The Monte Carlo simulation proceeds as follows:

1. determine for the measurements at hand the global minimum χ2
min;ymod

and the corre-

sponding ymod values, which are assumed to be the true ones11

one obtains for the different domains of x

CL =































P(χ2) if 1
2
(xm + xmin) ≤ x ≤ 1

2
(xm + xmax)

1
2
P(χ2) if (x = xmin ∨ x = xmax) ∧ x 6= xm

P(χ2) − Px

[

1
2

(

x + xmin − (x−xm)2

x−xmin

)

, 2x − xm

]

if x < 1
2
(xm + xmin)

P(χ2) − Px

[

2x − xm, 1
2

(

x + xmax − (x−xm)2

x−xmax

)]

if x > 1
2
(xm + xmax)

(47)

• Measurement below the allowed interval CL(xm < xmin):

CL =











































1 if x = xmin

P(χ2) − Px

[

2x − xm, x +
√

Σ
]

if

{

xmin < x ≤ 1
2
(xmin + xmax) ∧

x + xmin + (xmax−x)2

xmin−x
≤ 2xm

}

P(χ2) − Px

[

[2x − xm, 1
2

(

x + xmax + Σ
xmax−x

)]

if

{

xmin < x ≤ 1
2
(xmin + xmax) ∧

x + xmin + (xmax−x)2

xmin−x
> 2xm

}

P(χ2) − Px

[

2x − xm, 1
2

(

x + xmax + Σ
xmax−x

)]

if x > 1
2
(xmin + xmax)

(48)
where Σ ≡ (x + xmin − 2xm)(x − xmin).

• Measurement above the allowed interval CL(xm > xmax):

CL =











































1 if x = xmax

P(χ2) − Px

[

x −
√

Ξ, 2x − xm

]

if

{

1
2
(xmin + xmax) ≤ x < xmax ∧

x + xmax + (xmin−x)2

xmax−x
≥ 2xm

}

P(χ2) − Px

[

1
2

(

x + xmin + Ξ
xmin−x

)

, 2x − xm

]

if

{

1
2
(xmin + xmax) ≤ x < xmax ∧

x + xmax + (xmin−x)2

xmax−x
< 2xm

}

P(χ2) − Px

[

1
2

(

x + xmin + Ξ
xmax−x

)

, 2x − xm

]

if x < 1
2
(xmin + xmax)

(49)

where Ξ ≡ (2xm − x − xmax)(xmax − x).

11As discussed above, in the presence of theoretical uncertainties various ymod realizations may yield identical
theoretical predictions. The choice made for a particular ymod solution (leading to χ2

min;ymod
) is irrelevant.
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2. generate the xexp(i) for all measurements (i), following the individual experimental likeli-
hood components Lexp(i), having reset their central values to the values xexp(i) = xtheo(i)
computed with the above ymod solution set.

3. in contrast to the above, the Ltheo component of the likelihood is not modified: their
central values are kept to their original settings. This is because these central values are
not random numbers, but parameters contributing to the definition of L.

4. compute the minimum of the χ2 by allowing all ymod to vary freely, as is done in the actual
data analysis.

5. from this sample of Monte Carlo simulations, one builds FSM(χ2), the distribution of
χ2

min;ymod
, normalized to unity.

6. the p-value referring to the SM as a whole is then

P(χ2
min;ymod

|SM) ≤
∫

χ2≥χ2
min;ymod

FSM(χ2) dχ2 . (51)

4 Probing New Physics

If the above analysis establishes that the SM cannot accommodate the data, that is the p-value
P(χ2

min;ymod
|SM) is small, the next step is to probe the New Physics (NP) revealed by the ob-

served discrepancy. The goal is akin to metrology: it is to measure new physical parameters yNP

(whose values, for example, are null if the SM holds) complementing the set of ytheo parameters
of the SM. The treatment is identical to the one of Section II.2, using a = {yNP}. The outcome
of the analysis is for example a 95% CL domain of allowed values for yNP defined, in a first
approximation, from Eq. (37)

CL(yNP) = Prob(∆χ2(yNP), NNP) ≥ 0.05 . (52)

Even if the SM cannot be said to be in significant disagreement with data, it remains worthwhile
to perform this metrology of new NP for the following reasons:

• it might be able to faster detect the first signs of a discrepancy between data and the SM
if the theoretical extension used in the analysis turns out to be the right one. The two
approaches are complementary, the first (cf., Section II.3) leading to a general statement
about the agreement between data and the SM independently of any assumption about
the NP, the second being specific to a particular extension of the SM. In that sense, it is
less satisfactory. The two approaches can nevertheless disagree: the first may conclude
that the SM is in acceptable agreement with data, while the second may exclude the SM
value yNP = 0, and, conversely, the first may invalidate the SM, while the second may lead
to a fairly good value of CL(yNP = 0) if the extension of the SM under consideration is
not on the right track.

• the most sensitive observables, and the precision to be aimed at for their determination
cannot be derived by any other means than by this type of analysis. When considering
new experiments, it is therefore particularly valuable to have a sensitive model of NP, to
prioritize the effort and set the precision to be achieved.
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5 Alternative Statistical Treatments

Several alternative statistical treatments are available and the reader is referred to Ref. [6] for
a detailed discussion of the merits and drawbacks of each of the methods. In the following, we
only recall the ERfit method as a conservative extension to Rfit, and briefly comment on the
use of Bayesian methods.

5.1 The Extended Conservative Method (ERfit)

The Rfit scheme uses Ltheo(i) functions that take only two values: either 1 within the allowed
range, or 0 outside, thereby restricting yQCD to the range [yQCD]. Instead, the extended ERfit
scheme allows intermediate values between 0 and 1 for Ltheo(i). They are equal to 1 within
[yQCD] (there, they do not contribute at all to the full χ2, and one recovers the Rfit scheme)
and drop smoothly to 0 outside. These functions are not treated as PDFs and hence the ERfit
scheme is not a Bayesian scheme.

The way the ERfit likelihood functions decrease down to zero is arbitrary: one needs to
define a standard. The proposed expressions for Ltheo(i) are presented in Section II.6. Because
ERfit acknowledges the fact that the allowed ranges should not be taken literally, it offers two
advantages over Rfit:

• ERfit is more conservative than Rfit: by construction, a ERfit CL is always equal or larger
than the corresponding Rfit one, and its CL surface in the a space exhibits the same
plateau of equal CL = 1.

• in the case where the SM appears to be ruled out by Rfit, the ERfit scheme is able to
detect the yQCD parameter(s) beyond the nominal allowed range that would restore an
acceptable agreement between data and theory.

Despite the two above arguments in favor of ERfit, we chose Rfit as the standard scheme used in
this paper rather than ERfit: because it uses a simpler and unique prescription to incorporate
theoretical systematics, it is less prone to be confused with a Bayesian treatment.

5.2 The Bayesian Treatment

The Bayesian treatment [8] considers L as a PDF, from which is defined F(a), the PDF of a,
through the convolution

F(a) = C

∫

L(ymod) δ(a− a(ymod)) dymod , (53)

where the constant C is computed a posteriori to ensure the normalization to unity of F(a). In
practice, the integral can be obtained conveniently by Monte Carlo techniques12. For each point
in the a space, one sets a confidence level CL(a), for example according to:

CL(a) =

∫

F(a′)≤F(a)

F(a′) da′ . (54)

Other definitions for the domain of integration can be chosen.

New Physics is not meant to be detected by the Bayesian treatment: it is aimed at metrology
mostly.

12This convenience may sometimes boost the application of Bayesian techniques, since no use of sophisticated
minimization techniques is necessary.
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5.3 Comparison with Rfit

Although the graphical displays appear similar, the Bayesian treatment and the Rfit scheme
are significantly different: the meaning attached to a given CL value is not the same. For the
Bayesian treatment, the CL is a quantity defined for example by Eq. (54). The justification
of this definition lies in the understanding that a CL value is meant to provide a quantitative
measure of our qualitative degree of belief. Whereas one understands qualitatively well what is
meant by degree of belief, because of its lack of formal definition, one cannot check that it is
indeed well measured by the CL: the argument is thus circular.

The key point in the Bayesian treatment is the use of Eq. (53), even though the likelihood
contains theoretical components. This implies that the yQCD parameters, which stem from
theoretical computations, are to be considered as random realizations of their true values. The
PDFs of these “random” numbers are then drawn from guess-work (the [yQCD] ranges do not
fare better with respect to that.). For self-consistency, if one assumes that a large number of
theorists perform the same yQCD computation, the distribution of their results should then be
interpreted as a determination of the yQCD PDF. Once injected in Eq. (53), this PDF, the shape
of which contains no information on nature, will be transformed into information pertaining
to nature. This entails to a confusion between what is an experimental result and what is a
thinking result. Illustrations of this are given in the appendix of Ref. [6]13.

6 Likelihoods and Systematic Errors

So far, we have reviewed the basic formalism of the Rfit scheme. The treatment of experimental
and theoretical systematics is the subject of this section.

Let x0 be a quantity, which is not a random variable, but which is not perfectly known. We
will consider two quantities of this type.

• A theoretical parameter which is not well determined (e.g., x0 = fBd
): the theoretical

prediction of an observable depends on x0 (e.g., ∆MBd
).

• An experimental bias due to detector/analysis defects: the measurement should be cor-
rected for this bias.

It is the purpose of this section to suggest a prescription of how to incorporate the limited
knowledge of such quantities into the analysis. The standard treatment of this problem relies

13Methodogical problems that may appear with the use of Bayesian statistics in metrological CKM analyses
are outlined below.

• The convolution of several, arbitrary a priori theoretical PDFs can lead to the creation of seemingly
accurate information (the convolved PDF) out of no initial knowledge. A quantification of the uncertainty
related to this information is impossible.

• All ymod parameters need a priori PDFs, also those that are to be determined by the fit. For instance,
if the CKM parameters are the physical unknowns of the global fit, the results obtained will depend on
the parameterization chosen to have a, say, uniform prior. This breaks a fundamental invariant of physics
theories. For example, the CKM-related physics depends on whether the CKM matrix is parameterized
with the Euler angles & phase, or with the Wolfenstein parameters.

• It frequently occurs in the phenomenological description of B decays that a priori unknown strong-
interaction phases contribute to the ymod parameters. While this is no problem in Rfit (or ERfit), where
these parameters are free to vary within their 2π periodicity, it may exhibit biases in a Bayesian approach:
in particular, in the presence of multiple unknown phases, the CL obtained may depend on whether the
validity range is chosen to be [−π, π] or [0, 2π] or any other 2π interval.
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on a χ2 analysis, which is satisfactory as long as the degree of belief we put on the knowledge
of the value of x0 is distributed like a Gaussian. However this is not necessarily what is meant
when one deals with systematic errors. Rather, the theorist (resp. the experimentalist) may
mean that the prediction (resp. the measurement) can take any value obtained by varying x0 at
will within the range [x0−ζσo, x0 +ζσo] (denoted the allowed range below, where ζ is a constant
scale factor of order unity and x0 is the expected central value of x0), but that it is unlikely that
x0 takes its true value outside the allowed range. This does not imply that the possible values
for x0 are equally distributed within the allowed range: they are not distributed at all.

If a systematic error is given such a meaning, then the statistical analysis should treat all
x0 values within the allowed range on the same footing (which again does not imply with equal
probability): this corresponds to the Rfit scheme (with ζ = 1). On the other hand, it may be
convenient to define specific tails instead of sharp cuts, thus allowing the theoretical parameters
to leave their allowed ranges, if needed: this corresponds to the ERfit scheme.

The idea is to move from a pure χ2 analysis to a log-likelihood one, redefining the χ2 to be

χ2 =

(

xexp − xtheo

σexp

)2

− 2 lnLsyst(x0) , (55)

where Lsyst(x0), hereafter termed the Hat function, is a function equal to unity for x0 within
the allowed range.

6.1 The Hat Function

The Hat function Lsyst(x0, κ, ζ) is a continuous function defined as

−2 lnLsyst(x0, κ, ζ) =







0 , ∀x0 ∈ [x0 ± ζσo]
(

x0 − x0

κσo

)2

−
(

ζ

κ

)2

, ∀x0 /∈ [x0 ± ζσo]
(56)

where the constant κ determines the behavior of the function outside the allowed range. For
the Rfit scheme κ = 0 is used. To define a standard κ can be chosen to be a function of ζ such
that the relative normalization of Lsyst(x0, κ, ζ) (considered here, for the purpose of defining a
standard, as a PDF) be equal to the one of a Gaussian of width σo

+∞
∫

−∞
Lsyst(x0, κ, ζ) dx0 ·

ζ/
√

2
∫

0

e−t2 dt =
√
π ζσ0 . (57)

The parameter κ is numerically computed as a function of ζ. For the limit ζ → 0 one obtains
κ→ 1, and the Hat becomes a pure Gaussian. The ERfit scheme is defined by ζ = 1, for which
one obtains κ ≃ 0.8.

Examples of Hat functions with x0 = 0 and σo = 1 are shown on the left plot of Fig. 4.
Being a likelihood and not a PDF, Lsyst(x0) needs not be normalized to unity.

6.2 Combining Statistical and Systematic Uncertainties

Having defined Lsyst(x0) one proceeds with the minimization of the χ2 of Eq. (55) by allowing
x0 to vary freely.

For theoretical systematics, the result depends on the way x0 enters xtheo, and not much
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Figure 4: Left: Hat functions (x0 = 0 and σo = 1) used for the Rfit scheme, the ERfit scheme,
and the Gaussian treatment. Right: combined likelihood expLsyst (with x0 = 0 and σexp = σo = 1)
for the Rfit scheme, the ERfit scheme, a convolution of a Gaussian with a uniform distribution
(hence taken as a PDF, following the Bayesian approach) and a convolution of two Gaussians.

more can be said in generality.

For experimental and theoretical systematics where x0 can be assumed to be an unknown
offset14: the quantity to be confronted to the theoretical prediction xtheo is simply xexp + x0.
Omitting the details of straightforward calculations, and assuming that x0 = 0 (otherwise xexp

should be corrected for it), one obtains, after minimization of the χ2 with respect to x0:

• | xexp − xtheo |≤ ζσo : χ2
min; x0

= 0 .

• ζσo ≤| xexp − xtheo |≤ ζσo(1 + (
σexp

κσo
)2) : χ2

min; x0
=
( |xexp−xtheo|−ζσo

σexp

)2
.

• | xexp − xtheo |≥ ζσo(1 + (
σexp

κσo
)2) : χ2

min; x0
=

(xexp−xtheo)
2

σ2
exp+(κσo)2 −

(

ζ
κ

)2
.

In the limit ζ → 0 (and hence, κ→ 1) only the third instance is met, and one recovers the usual
rule of adding in quadrature the statistical and the systematic uncertainties. Otherwise, the
result is non-trivial. An example of the effective likelihood expLsyst(xexp − xtheo) ≡ −1

2χ
2
min; x0

(with x0 = 0 and σexp = σo = 1) is shown in the right hand plot of Fig. 4 for the Rfit scheme,
the ERfit scheme, a convolution of a Gaussian with a uniform distribution (hence taken as a
PDF, following the Bayesian approach) and a convolution of two Gaussians.

14If systematics take the form of an unknown multiplicative factor, and this is often the case for theoretical
uncertainties, a treatment similar to the one discussed here applies.
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Part III

The Global CKM Fit

1 Introduction

With the remarkable exceptions of sin 2β (see Section 2.10) and sin 2α (see Section 2.11), the
experimental observables that are presently used to constrain (ρ, η) depend on hadronic matrix
elements, which have to be evaluated at a much smaller energy than the weak interaction scale.
Since the discovery of asymptotic freedom, Quantum Chromodynamics (QCD) is well established
as the quantum field theory of strong interaction. It has been tested to high precision in the
perturbative regime, where the coupling constant αS is small and allows one to build a systematic
expansion. Unfortunately, no general solution of QCD is known, and not even a well-controlled
approximation is available (at least in an analytical form) that would be valid for an arbitrary
αS.

While it is far beyond the scope of this introduction to review the wealth of approaches to
non-perturbative QCD, it is useful to recall a few general techniques to evaluate the matrix
elements that are relevant for quark flavor physics. The theoretical methods can be classified,
somewhat arbitrarily, into four categories: constituent quark models, QCD sum rules, lattice
simulations, and effective theories of QCD.

• Constituent quark models comprise, to a first approximation, methods that assume a fixed
number of particles and treat them in the framework of quantum mechanics. Multi-
body wave functions, which satisfy bound state potential equations, are constructed, and
external operators that describe flavor transitions are represented in terms of constituent
quarks and then sandwiched between these wave functions.

• QCD sum rules rely on quark-hadron duality to identify a correlation function written in
terms of quarks and gluons with its representation as a sum over hadronic bound states.
The desired matrix element is then isolated from the rest of the sum and its contribution
is controlled in various ways.

• Lattice simulations implement quantum field theory on an Euclidean space-time lattice.
The path integrals that represent correlation functions are then numerically evaluated with
Monte Carlo methods.

• Effective theories of QCD exploit additional symmetries of full QCD in specific kinematic
or parametric regimes. Matrix elements are then related to others that are simpler to
compute or to measure, up to corrections that are suppressed by the typical symmetry
breaking scale.

2 Inputs to the standard CKM fit

This section provides a compendium of the measurements and SM predictions entering the
overall constrained CKM fit, denoted standard CKM fit in the following. The corresponding
numerical values used and the treatment of their uncertainties within Rfit are summarized in
Table 1. In cases where different independent measurements for an input quantity are available,
we multiply the corresponding (Rfit) likelihoods. Experimental and theoretical correlations, if
present and known, are taken into account if not stated otherwise.
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2.1 |Vud|

The matrix element |Vud| has been extracted by means of three different methods: superallowed
nuclear β-decays, neutron β-decay and pion β-decay.

The most precise experimental determination of |Vud| comes from lifetime measurements
of superallowed nuclear β-decays with pure Fermi-transitions (0+ → 0+). The ft-value is the
product of the integral over the electron energy spectrum f and the electron lifetime τ : ft =
f · τ · ln 2. Its theoretical prediction can be written as

ft · (1 + δR) · (1 − δC) =
K

2G2
F |Vud|2(1 + ∆V

R)
, (58)

where GF is the Fermi constant (see Table 1), δR and ∆V
R are the nucleus-dependent and

nucleus-independent parts of the radiative corrections, respectively, δC is the charge-symmetry
breaking corrections, and K = 2π3 ln 2/m5

e. The charge-symmetry breaking corrections, as well
as part of the nucleus-dependent radiative corrections, depend on the nuclear structure of the
nucleus under consideration. Using the results for nine different superallowed nuclear β decays,
the average is |Vud| = 0.9740 ± 0.0001exp [17]. This result is however dominated by theoretical
uncertainties, namely σ(|Vud|)[∆V

R ] = 0.0004, σ(|Vud|)[δC ] = 0.0003 and σ(|Vud|)[δR] = 0.0001.
Adding these in quadrature results in σ(|Vud|) = 0.0005, whereas adding them linearly (as in
the Rfit approach) results in σ(|Vud|) = 0.0008.

A possible enhancement, ∆|Vud| = +0.0005, is predicted by a quark-meson coupling model
due to a change of charge symmetry violation for quarks inside bound nucleons compared to
unbound nucleons [18]. The theoretical error has been enlarged by the PDG [12] by adding
linearly the amount of the possible correction to the quoted error of σ(|Vud|) = 0.0005, resulting
in |Vud| = 0.9740 ± 0.0010. Since this correction may be partially contained in the charge-
symmetry breaking corrections, and since the effect can be significantly smaller depending on the
model used, we do not enlarge the error and use in the fit: |Vud| = 0.9740±0.0001exp±0.0008theo.

Nuclear structure effects do not play a role in neutron β decays. However, to extract |Vud|,
one needs to measure the neutron lifetime and the ratio of the axial-vector coupling constant to
the vector coupling constant gA/gV

|Vud|2 =
K ln 2

G2
F (1 + ∆V

R)(1 + 3(gA/gV )2)f(1 + δR)τn
. (59)

In contrast to nuclear β decays, these measurements are not yet dominated by theoretical uncer-
tainties. The weighted mean for the neutron lifetime measurements is τn = (885.7 ± 0.7) s [17],
where the available results are statistically consistent. Recently, the PERKEO-II experiment has
measured gA/gV = −1.2739 ± 0.0019 [19]. Using the world average for the neutron lifetime this
translates into |Vud| = 0.9717±0.0013gA/gV ,τn

±0.0004theo . The experimental error on this result
is a factor of two smaller than any preceding measurement with high neutron polarization [12].
When considering all data on gA/gV with high neutron polarization, the measurements are not
consistent. A rescaling by a factor of 1.6 is therefore applied following the PDG recipe, which
results in gA/gV = −1.2690 ± 0.0022, with |Vud| = 0.9745 ± 0.0016stat ± 0.0004theo [17]. Since
the PERKEO-II result was obtained using a very high neutron polarization and since O(2%)
corrections used to extract the final result from data are much smaller than in previous experi-
ments, we only use this result in the fit.

The pion β decay π+ → π0e+νe is an attractive candidate to extract |Vud| from the branching
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ratio B(π+ → π0e+νe) and the pion lifetime, since it is mediated by a pure vector transition
and does not suffer from nuclear structure effects. However, due to the small branching ra-
tio, B(π+ → π0e+νe) = (1.025 ± 0.034) × 10−8 [12], the statistical precision is not competitive
with the other methods: |Vud| = 0.967 ± 0.016B ± 0.0005theo . The preliminary result from
the PIBETA experiment [20], B(π+ → π0e+νe) = (1.044 ± 0.007stat ± 0.009sys) × 10−8, yields
|Vud| = 0.9765 ± 0.0055B ± 0.0005theo , which still has a statistical error that is a factor of four
times larger than the result from neutron decay experiments. It will not be competitive even
when the final expected experimental uncertainty of σ(|Vud|) = 0.002 is reached.

We build a combined likelihood for the |Vud| determinations from superallowed β decays,
from neutron β decays and from the pion β decay, taking into account the correlation due to
the uncertainty on ∆V

R. We obtain the CL > 5% interval 0.9730 < |Vud| < 0.9750.

2.2 |Vus|

The analyses of kaon and hyperon semileptonic decays provide the best determination of |Vus|.
However, due to theoretical uncertainties from the breakdown of SU(3) flavor symmetry, the
hyperon decay data are less reliable [21,22]. Although, as pointed out in Ref. [23], linear SU(3)
breaking corrections can be avoided, we do not use results from hyperon decays since the un-
certainties on the vector form factor f1 in these decays have not been fully evaluated yet. As
a consequence, we only use the value obtained from the vector transitions K+ → π0ℓ+νℓ and
K0

L → π−ℓ+νℓ. The rates for these decays depend on two form factors, f+(t) and f0(t), where
t = (pK − pπ)2 is the four-momentum transfer-squared between the kaon and the pion. Owing
to the small electron mass, only f+(t) plays a role in Ke3 decays whose functional dependence
can be extracted from data. The form factor value at zero recoil, f+(0), is calculated within
the framework of chiral perturbation theory and is found to be fK0π−

+ (0) = 0.961 ± 0.008 [24].
The error estimate for this value has been questioned in Ref. [25]. We note that a relativistic
constituent quark model, successful in the description of electroweak properties of light mesons,
gives the consistent result fK0π−

+ (0) = 0.963 ± 0.004 [26].

A precise calculation of fK0π−
+ (0) is a difficult task. Order p6 contributions in chiral per-

turbation theory have been calculated only recently [27,28]. The O(p6) calculation contains
a “local” and a “loop” contribution leading to a strong cancellation, with the result depend-
ing on the renormalization scale. Ref. [29] quotes fK0π−

+ (0)|p6 = −0.001 ± 0.010 leading to

fK0π−
+ (0) = 0.981 ± 0.010 while emphasizing, however, that further work is needed to clarify

whether the uncertainty quoted is realistic. A value of fK0π−
+ (0) = 0.981± 0.010 would increase

the deviation from unitarity in the first family. It is worthwhile to mention in this context that
a recent quenched Lattice-QCD calculation obtains fK0π−

+ (0) = 0.960 ± 0.005stat ± 0.007sys [30]
in agreement with the Leutwyler-Roos value [24].

Channel-independent and channel-dependent radiative corrections [31–33] as well as charge-
symmetry (K+/K0

L) and charge-independence (π−/π0) breaking corrections [24] are applied
to compare the branching fraction results from both channels [12]: fK0π−

+ (0)|Vus| = 0.2134 ±
0.0015exp ± 0.0001rad (K+ → π0e+νe) and fK0π−

+ (0)|Vus| = 0.2101 ± 0.0013exp ± 0.0001rad

(K0
L → π−e+νe). Their weighted average is fK0π−

+ (0)|Vus| = 0.2114 ± 0.0016, where the error
has been rescaled by a factor of 1.6 to account for the inconsistency between neutral and charged
kaon decay data.

Using fK0π−
+ (0)|Vus| = 0.2114 ± 0.0016 and the Leutwyler-Roos value fK0π−

+ (0) = 0.961 ±
0.008 [24], one obtains |Vus| = 0.2200 ± 0.0017exp ± 0.0018theo . Recently, the BNL-E865 collab-
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oration measured B(K+
e3) = (5.13 ± 0.02stat ± 0.09sys ± 0.04norm)% [34], which exhibits a 2.2σ

deviation from the world average B(K+
e3) = (4.87 ± 0.06)% [12]. The BNL-E865 result trans-

lates into |Vus| = 0.2285 ± 0.0023exp ± 0.0019theo [33] when using fK0π−
+ (0) = 0.961 ± 0.008.

If this result is confirmed this would imply that the previous B(K0
L,e3) results [12] are in-

correct, since it is not likely that such a discrepancy can be explained by isospin breaking
effects [33]. The KLOE collaboration had presented preliminary results on K0

e3 and K0
Lµ3

decays [35] in agreement with the PDG values for K+
e3 decays15. We use a weighted aver-

age of the BNL-E865 result and the former |Vus| average, rescale the experimental uncer-
tainty and obtain |Vus| = 0.2228 ± 0.0039exp ± 0.0018theo by using the Leutwyler-Roos value

fK0π−
+ (0) = 0.961 ± 0.008 [24]. As mentioned previously there is intense theoretical activity

concerning an improved determination of this form factor value.

There are good prospects to clarify the experimental situation in the near future. The KLOE,
KTeV and NA48 experiments have the potential to determine Kl3 decays with different exper-
imental techniques. Another promising method to measure |Vus| from moments of the strange
spectral functions in τ decays has been proposed in Ref. [38] and might be realized at the B
factories where more than 108 τ pairs have currently been recorded.

2.3 |Vcd| and |Vcs|

Both the |Vcd| and |Vcs| matrix elements can be determined from di-muon production in deep
inelastic scattering (DIS) of neutrinos and anti-neutrinos on nucleons. In an analysis performed
by the CDHS collaboration [39], |Vcd| and |Vcs| are extracted by combining the data from three
experiments, CDHS [39], CCFR [40] and CHARM II [41], giving |Vcd|2×Bc = (4.63±0.34)×10−3 ,
where Bc = 0.0919 ± 0.0094 [42–44] is the weighted average of semileptonic branching ratios of
charmed hadrons produced in neutrino-nucleon DIS. This results in |Vcd| = 0.224 ± 0.014 [45].
The average DIS result from CDHS, CCFR and CHARM II is κ|Vcs|2Bc = (4.53± 0.37)× 10−2,
where κ = 0.453 ± 0.106+0.028

−0.096 is the relative contribution from strange quarks in the sea with
respect to u and d quarks, leading to |Vcs| = 1.04 ± 0.16 [12].

Similarly to |Vus| coming from Ke3 decays, |Vcs| can be extracted from De3 decays. However
the theoretical uncertainty in the form factor calculation f+(0) = 0.7±0.1 [46] limits its precision
to |Vcs| = 1.04 ± 0.16 [45] (in coincidental agreement with |Vcs| from DIS).

Assuming unitarity and using as additional input the constraints on |Vud|, |Vus|, |Vub|, |Vcd|
and |Vcb|, |Vcs| can also be extracted from the following quantities:

• RW
c = Γ(W+ → cq̄)/Γ(W+ → hadrons) =

∑

i=d,s,b |Vci|2/(
∑

i=d,s,b; j=u,c |Vji|2). For the

three-generation CKM matrix RW
c is expected to be 1/2. The measurements [47–49] are

found to be consistent with this expectation.

• Γ(W → XcX) = RW
c · B(W → hadrons) · Γtot ∝

∑

i=d,s,b |Vci|2 [49].

• Γ(W+ → hadrons)/Γ(W+ → leptons) =
∑

i=d,s,b; j=u,c |Vji|2 × (1 + αS(mW )/π + . . .) [12],
for which the experimental result is

∑

i=d,s,b; j=u,c |Vji|2 = (2.039± 0.025) · (B(W → ℓνℓ)±
15In the meantime, the KLOE K0

S,e3 result has been updated with nearly final systematic error [36]. The
result for |Vus| is now in reasonable agreement with the BNL-E865 result for K+

e3 and hence differs from the
former determinations using K0

e3 decays. The understanding of final state radiation of photons plays a crucial
role in these analyses and may become a key issue when comparing the results of the various experiments. Very
recently, the KTeV collaboration has presented a result for semileptonic KL branching fractions which gives

fK0π−

+ (0)|Vus| = 0.2165 ± 0.0012 [37] in agreement with the BNL-E865 result. However, this result has not yet
been included in our average.
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0.001(αS)) [50].

For the three generation CKM matrix all these quantities have theoretical predictions that are
independent of the actual values of the CKM elements involved, so that they cannot be used
in a CKM fit. On the other hand, these measurements test the unitarity of a three-generation
CKM matrix requiring, for example,

∑

i=d,s,b; j=u,c |Vji|2 = 2.

There are prospects that |Vcs|, |Vcd| and |Vcs|/|Vcd| will be determined at the CLEO-c ex-
periment with unprecedented precision in semileptonic D-meson decays to a pseudoscalar me-
son D → Pℓ+ν [51]. For a 3 fb−1 data sample, the relative errors on Γ(D0 → K−ℓ+ν) and
Γ(D0 → π−ℓ+ν) are expected to be σ(Γ)/Γ = 1.2% and σ(Γ)/Γ = 1.5%, respectively. The
extraction of |Vcs| and |Vcd| from these decays will require a substantial improvement of the the-
oretical precision in the form factor calculation, which may be achieved in the forthcoming years
by Lattice QCD. A relative uncertainty on the form factor of 3%, for example, would then trans-
late into the errors σ(|Vcs|)/|Vcs| = 1.6% and σ(|Vcd|)/|Vcd| = 1.7%. The ratio |Vcs|/|Vcd| will be
determined at CLEO-c following two different approaches that are expected to be less dependent
on theoretical uncertainties. In the first approach, one compares semileptonic decays with the
same initial state but with different final states as Γ(D0 → K−ℓ+ν) and Γ(D0 → π−ℓ+ν). The
ratio of branching fractions depends on the product of |Vcs/Vcd|2 and a form factor ratio that
differs from unity only due to SU(3) breaking corrections. In the second approach, one compares
reactions with different initial states but the same final state, for instance D+

s → K0
Sℓ

+ν and
D+ → K0

Sℓ
+ν.

2.4 |Vcb|

In the Wolfenstein parameterization, |Vcb| determines the parameter A which plays an important
role for the constraints on ρ, η from |Vub|, |εK | and ∆md. Its precision also has a significant
impact on the SM prediction for the rare decays K → πνν. It is most accurately obtained from
exclusive B → D(∗)ℓνℓ and inclusive semileptonic b decays to charm.

Exclusive Decays

In the exclusive technique, the differential spectrum dΓ/dw for the decay B → D(∗)ℓνℓ is mea-
sured, where w is the scalar product of the velocity four-vectors of the B and the D(∗) mesons.
This allows one to extract the product FD∗(1)|Vcb|, where FD∗(w = 1) is the B-to-D(∗) form
factor at zero-recoil. In the heavy quark limit, the form factor is given by the Isgur-Wise
function [52], which is equal to 1 at w = 1, but which receives corrections due to the finite b
and c quark masses that can be calculated in the framework of Heavy Quark Effective The-
ory (HQET) [52,53]. At present, the most precise determination using the exclusive technique
comes from the decay B → D∗ℓνℓ. Due to the presence of a soft pion in the D∗ decay, its re-
construction is less affected by combinatorial background than for a D-meson decay. Moreover,
the phase space function for B → Dℓνℓ drops more rapidly when approaching w = 1, leading
to a larger statistical error. Finally, the calculation of the form factor at zero-recoil is believed
to have smaller theoretical uncertainties in the case of a B-to-D∗ transition, since linear 1/mQ

corrections in the heavy quark mass mQ vanish, a property known as Luke’s theorem [54]. It
has been pointed out that the form factor for B-to-D transitions may be calculable with good
theoretical precision despite the presence of 1/mQ corrections [55].

Previous theoretical determinations of FD∗(1) were based either on QCD sum rules (see, e.g.,
Ref. [56]) or on HQET, where long-distance contributions had been estimated with the use of
non-relativistic quark models [57,58]. Both methods obtained values for FD∗(1) around 0.9 with
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quoted uncertainties of the order of 4%, which are however difficult to control. Recently, impor-
tant progress has been achieved through the calculation of FD∗(1) using Lattice QCD in conjunc-
tion with HQET [59,60]. Their result, FD∗(1) = 0.913+0.030

−0.035 [61], is used in our fit. It is expected
that the uncertainty can be reduced in the forthcoming years. Averaging eight different measure-
ments, the Heavy Flavor Averaging Group (HFAG) obtains FD∗(1)|Vcb| = (36.7±0.8)×10−3 [62]
and ρ2 = 1.44 ± 0.14, where ρ is the slope of the form factor as a function of w. The linear
correlation coefficient between the two parameters is 0.91. The goodness of the average (χ2 = 30
for 14 degrees-of-freedom, that is CL = 0.08) indicates an inconsistency among the various mea-
surements, which is mainly driven by the somewhat large result obtained by CLEO.

It has been argued that the uncertainties in the Lattice QCD calculation of FD∗(1) [61] can
be considered as mainly statistical ones [9]. Following this reasoning and using FD∗(1)|Vcb| =
(36.7 ± 0.8) × 10−3 [62], we obtain |Vcb| = (40.2+2.1

−1.8) × 10−3, which is used in the fit.

Inclusive Decays

In the inclusive approach, the semileptonic width Γ(B → Xℓνℓ) is determined experimentally
from the semileptonic branching fraction B(B → Xℓνℓ) = (10.90 ± 0.23)% [62] and the B-
meson lifetime, where the admixture of neutral (τB0 = (1.534 ± 0.013) ps−1 [62]) and charged
(τB+ = (1.653 ± 0.014) ps−1 [62]) B mesons is understood. Relying on the concept of quark-
hadron duality, the theoretical prediction for the semileptonic width is obtained by means of a
Operator Product Expansion called Heavy Quark Expansion (HQE [63]), which invokes pertur-
bative corrections and non-perturbative hadronic matrix elements that dominate the theoretical
uncertainty. The theoretical expression for the semileptonic rate reads

Γ(b→ c) =
G2

F|Vcb|2m5
b

192π3
f

(

m2
c

m2
b

)

×
[

1 +A

(

αS

π

)

+B

(

α2
S

π2
β0

)

+ C

(

Λ2
QCD

m2
b

)

+ O
(

α2
S,
Λ3

QCD

m3
b

,
αS

m2
b

)]

, (60)

where mb is the b-quark mass, f corrects for the finite charm quark mass mc, and the coefficients
A, B and C are functions of hadronic matrix elements and depend on mb and mc. Perturbative
QCD corrections are known up to order α2

Sβ0. Non-perturbative corrections are suppressed by
powers of ΛQCD/mb. At order (ΛQCD/mb)

2, the hadronic matrix elements can be expressed
by the HQET parameters λ1 and λ2, the expectation values of the heavy-quark kinetic en-
ergy and the chromomagnetic interaction, respectively. Additional parameters occur at order
(ΛQCD/mb)

3. Alternatively, in the kinetic mass scheme [64], these matrix elements are given by
the parameters −µ2

π = λ1 and µ2
G/3 = λ2, up to higher-order corrections. The parameter λ2

can be obtained from the observed hyperfine splitting in the B-meson spectrum. The semilep-
tonic width can be written in terms of the B-meson mass mB instead of mb by introducing the
non-perturbative parameter Λ, that is the energy of the light-degrees-of-freedom.

Besides the total semileptonic width, HQE can be used to predict sufficiently inclusive dif-
ferential distributions. Since different regions of the phase space have different sensitivity to
the quark masses and the non-perturbative parameters, spectral moments calculated from mea-
sured differential distributions can be used to constrain these parameters. However moments at
too high order cannot be reliably predicted since quark-hadron duality starts to break down.
In recent years, the parameters Λ and λ1 have been constrained experimentally by measure-
ments of leptonic energy and hadronic mass moments. In addition, the measured photon energy
distribution in B → Xsγ allows one to extract Λ [65]. So far, the constraints on these param-
eters from CLEO, DELPHI and BABAR provide consistent results, which may be interpreted
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as a test of the validity of the HQE up to order O(1/m3
Q). However no global fit taking into

account all various measurements has been performed yet16. An overview of several |Vcb| de-
terminations using input from measured moments can be found, e.g., in Ref. [67] from which
we obtain |Vcb| = (42.0 ± 0.6stat ± 0.8theo) × 10−3. Here, the first error arises from the experi-
mental uncertainties on the branching fraction, the B-meson lifetime and the fit error from the
determination of Λ and λ1, and the second error contains the theoretical uncertainty due to
higher-order (O(1/m3

Q)) and αS corrections17.

Average

In the fit, we combine the likelihoods of |Vcb| from inclusive and exclusive measurements where
we assume that they are uncorrelated.

2.5 |Vub|

The third column element |Vub|, with additional input from |Vus| and |Vcb|, describes a circle in
the (ρ, η) plane. It can be extracted either from inclusive B → Xuℓ

−νℓ decays, or from exclusive
decays such as B → πℓνℓ, B → ρℓνℓ, B → ωℓνℓ and B → ηℓνℓ.

Exclusive Decays

In contrast to heavy-to-heavy transitions like B → D(∗), there is no heavy quark symmetry
argument that allows one to constrain the form factor normalization in the heavy-to-light de-
cays B → π, ρ, ... . As a consequence, exclusive determinations – besides being experimentally
challenging – suffer from large theoretical uncertainties in the form factor calculations. From a
theoretical point of view, one expects that B → πℓνℓ will ultimately be the most promising mode
for an extraction of |Vub| in exclusive decays, since only one form factor function is present in
pseudoscalar-to-pseudoscalar transitions (while for instance three different form factor functions
have to be calculated for B → ρℓνℓ decays). On the other hand, the softer lepton spectrum in
B → πℓνℓ with respect to B → ρℓνℓ, where the lepton momentum benefits from the polarization
of the ρ, leads to an enhanced b→ c background contamination in the former decay.

The BABAR collaboration has published a measurement of the branching fraction B(B →
ρℓνℓ) = (3.29 ± 0.42stat ± 0.47sys ± 0.60theo) × 10−4 [71]. Using several form factor models
they extract |Vub| = (3.64 ± 0.22stat ± 0.25sys

+0.39
−0.56theo

) × 10−3. The CLEO collaboration has
recently presented a combined analysis of the decays B → πℓνℓ, B → ρℓνℓ, B → ωℓνℓ and
B → ηℓνℓ [72]. Owing to a largely hermetic detector, CLEO also measured the rates in three
different bins of q2, the lepton-neutrino four-momentum-squared. CLEO finds the combined
value |Vub| = (3.17 ± 0.17stat

+0.16
−0.17sys

+0.53
−0.39theo

) × 10−3 for B → πℓνℓ and B → ρℓνℓ. Even the

single CLEO number for B → ρℓνℓ is hard to compare with the BABAR result [71] since dif-
ferent form factor calculations have been used in both experiments, and results from different
q2 regions have been taken into account. A combination of the BABAR and CLEO numbers is
also difficult because the applied theoretical uncertainty range by itself varies. These problems
in mind, we have averaged both results by symmetrizing each of the results with respect to

16Such a global analysis is now available in Ref. [66], which has been published after completion of this document.
17Very recently, the BABAR collaboration has been presented precisely measured electron energy and hadronic

mass moments [68,69]. The value obtained |Vcb| = (41.4 ± 0.4stat ± 0.4HQE ± 0.6theo)× 10−3 from a fit [70] in the
kinetic mass scheme [64] to these moments currently provides the most precise single |Vcb| determination. This
input however has not yet been taken into account in our global fit.
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the quoted theoretical uncertainties and assuming that they are fully correlated between both
experiments. With this method, we obtain |Vub| = (3.35 ± 0.20exp ± 0.50theo) × 10−3.

Inclusive Decays

Starting from the inclusive semileptonic width Γ(B → Xuℓ
−νℓ), |Vub| can be predicted within the

HQE framework with a theoretical uncertainty of approximately 5%. However, there is a large
background from b→ c transitions that is about 50 times larger than the b→ u signal. To sup-
press this background, experimental cuts in the three-dimensional phase space have to be applied
which introduce additional theoretical uncertainties. In a first kind of analyses, B → Xuℓ

−νℓ

decays are separated from b→ c background by accepting leptons with center-of-mass momenta
typically larger than 2.2–2.3GeV, a region which kinematically excludes B → Xcℓ

−νℓ decays.
However this requirement retains only 10–15% of the semileptonic branching fraction. In this
endpoint-region, the spectrum is dominated by the so-called shape function, a non-perturbative
object that reflects the Fermi motion of the b quark inside the B meson. Without knowledge
of the shape function, the extrapolation of the measured partial branching fraction to the full
semileptonic branching fraction is highly model-dependent, a drawback from which the pioneer-
ing |Vub| determinations by the ARGUS and CLEO collaborations suffered [73–75] (see also
Refs. [76–79]). The problem can be circumvented to some extent by measuring the shape func-
tion in inclusive B → Xsγ decays, so far only published by the CLEO collaboration [65]. Recent
lepton endpoint measurements have been presented by CLEO, BABAR and Belle [80–82], where
all analyses are using the B → Xsγ measurement from CLEO [65]. There is a discussion in
the literature concerning uncertainties from subleading shape functions [83–86]). From this, one
deduces that an additional theoretical uncertainty on |Vub| of the order of a few percent may be
present. One should also note that there could be sizable effects from the violation of quark-
hadron duality in this small region of the phase space, which introduces theoretical uncertainties
that are difficult to quantify [87].

The b→ c background in inclusive decays can also be suppressed by cutting on the hadronic
invariant mass mX . Accepting only events with mX below the D meson mass retains about
70–80% of the B → Xuℓ

−νℓ events. Due to detector resolution effects, the cut has to be low-
ered, which again increases the theoretical uncertainties from the shape function. The kinematic
region sensitive to the shape function can be avoided by cutting in addition on q2, which in turn
increases the statistical uncertainty. A complication in the high-q2 region is the possible sig-
nificant contribution from annihilation diagrams which cannot be computed at present [88]. A
possible way to quantify such annihilation contributions would be to determine the branching
fraction for charged and neutral B mesons separately. Various analyses reconstructing mX have
been published in the past [89–92], some of which apply additional cuts on q2 [91,92].

A different approach has been followed by ALEPH [93] and OPAL [94] who extract |Vub| from
measurements of the full semileptonic branching fraction by suppressing the dominant b → c
background by means of a neural network.

For an up-to-date review of |Vub| determinations see, e.g., Ref. [62]. Following the HFAG
recipe, we have only averaged the results from experiments running on the Υ (4S) and obtain
|Vub| = (4.45± 0.09stat,sys ± 0.56theo)× 10−3. Similarly as in Ref. [95], we enlarge the theoretical
uncertainty due to possible additional uncertainties from subleading shape function effects, an-
nihilation contributions in the high-q2 region and quark-hadron duality violations, resulting in
|Vub| = (4.45 ± 0.09stat,sys ± 0.68theo) × 10−3.



36 Part III – The Global CKM Fit

Average

In the CKM fit, we use |Vub| from inclusive and exclusive determinations. Usually, one would
combine them by multiplying their corresponding likelihoods. However their agreement is
marginal so that the two likelihoods only overlap if the theoretical uncertainties are driven
to their extreme. Given the fact that several theoretical issues are not settled yet and since
|Vub| is one of the key ingredients of the CKM fit, we adopt a more conservative treatment: the
inclusive and exclusive |Vub| central values are averaged and as theoretical error is assigned the
larger one of both determinations. This gives |Vub| = (3.90 ± 0.08exp ± 0.68theo) × 10−3.

2.6 |εK|

The neutral kaon system provides constraints on the Unitarity Triangle through K0K0 mix-
ing, indirect18 and direct CP violation, and the rare decays K+ → π+νν and (yet unknown)
K0

L → π0νν. Only indirect CP violation is used in the standard CKM fit since the corresponding
matrix element can be obtained by Lattice QCD with accountable systematic uncertainties. The
SM prediction for neutral kaon mixing suffers from badly controlled long-distance contributions
to the mixing amplitudes (see, however, Ref. [96] where ∆mK is found to be short-distance
dominated). Moreover, complicated non-perturbative physics with large hadronic uncertainties
prevents us from using the measurement of direct CP violation. Rare decays are much cleaner
and will give precise constraints as soon as they are measured with a reasonable accuracy. We
refer to Part IV for a dedicated study of direct CP violation and rare kaon decays.

The most precise measurement of the CP -violation parameter εK comes from the ratios of
amplitudes, η+− and η00, of K0

L to K0
S decaying to pairs of charged and neutral pions, respec-

tively,

εK =
2

3
η+− +

1

3
η00 . (61)

We use the average |εK | = (2.282 ± 0.017) × 10−3, obtained from the PDG values for η+− and
η00 [12] assuming no phase difference between these amplitude ratios, and taking into account
the correlation induced by the measurements of ε′/ε [97]. 19 The phase of εK is not considered
here as it does not depend on the CKM matrix elements. Other observables related to |εK |,
like the charge asymmetries δL in semileptonic K0

L decays, |η+−γ |, or decay-plane asymmetries
in K0

L → π+π−e+e− decays are not considered in this average, since their precision is not
competitive.

Within the SM, CP violation is induced by ∆S = 2 transitions, mediated by box diagrams.
They can be related to the CKM matrix elements by means of the local hadronic matrix element

〈K0|(s̄γµ(1 − γ5)d)2|K0〉 =
8

3
m2

Kf
2
KBK . (62)

The neutral kaon decay constant, fK = (159.8 ± 1.5)MeV [12], is extracted from the leptonic
decay rate Γ(K+ → µ+νµ), assuming negligible isospin violation. The most reliable prediction
of the “bag” parameter BK , which parameterizes the deviation with respect to the vacuum
insertion approximation BK = 1, is obtained from Lattice QCD. At present, calculations are

18The term “indirect” comprises CP violation in mixing and CP violation in the interference between decay with
and without mixing. In the kaon sector, these types of CP violation are given by ReεK and ImεK , respectively,
which are of similar size.

19Very recently, the KTeV collaboration has presented a new precise result on |η+−| = (2.228±0.010)×10−3 [98]
to be compared to the value of |η+−| = (2.286 ± 0.017) [12] translating in a 2.9 σ difference. This new value has
not been taken into account yet as an input to our fit.
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performed assuming SU(3) symmetry and within the quenched approximation, i.e., neglecting
sea-quark contributions in closed loops, which leads to a substantial reduction in computing time.
The world average is BK = 0.86 ± 0.06 ± 0.14 [99], where the first error combines statistical
and accountable systematic uncertainties and the second is an estimate of the bias from the
quenched approximation and SU(3) breaking. Note that analytical approaches based on the
large-Nc expansion of QCD find a significantly smaller value for BK in the chiral limit [100].
Large chiral corrections could play an important rôle. At present, BK is the first source of
theoretical uncertainty in the SM prediction of εK , while the coupling |Vts| ∼ |Vcb| is the second
one.

Neglecting the real part of the non-diagonal element of the neutral kaon mixing matrix M12,
one obtains [101]20

|εK | =
G2

Fm
2
WmKf

2
K

12
√

2π2∆mK

BK

(

ηccS(xc, xc)Im[(VcsV
∗
cd)

2] + ηttS(xt, xt)Im[(VtsV
∗
td)

2]

+ 2ηctS(xc, xt)Im[VcsV
∗
cdVtsV

∗
td]

)

, (63)

where ∆mK = (3.490 ± 0.006) × 10−12 MeV [12], and where S(xi, xj) are the Inami-Lim func-
tions [102]

S(x) ≡ S(xi, xj)i=j = x

(

1

4
+

9

4(1 − x)
− 3

2(1 − x)2

)

− 3

2

(

x

1 − x

)3

ln(x) ,

S(xi, xj)i6=j = xixj

[

(

1

4
+

3

2(1 − xi)
− 3

4(1 − xi)2

)

1

xi − xj
ln(xi)

+ (xi ↔ xj) −
3

4

1

(1 − xi)(1 − xj)

]

, (64)

with xi = m2
i /m

2
W (i = c, t). We use the MS masses21 mt(mt) = (167.5 ± 4.0 ± 0.6)GeV and

mc(mc) = (1.2 ± 0.2)GeV, where a conservative error is assigned to the running charm quark
mass. The parameters ηij in Eq. (63) are next-to-leading order QCD corrections to the Inami-
Lim functions. We use the values ηct = 0.47 ± 0.04 and ηtt = 0.5765 ± 0.0065 [107,108], while
for ηcc, the parameter with the largest uncertainty, we use the parameterization [107]

ηcc ≃ (1.46 ± δcc)

[

1 − 1.2

(

mc(mc)

1.25GeV
− 1

)]

[1 + 52 (αS(mZ) − 0.118)] , (66)

with an uncertainty from higher-order corrections parameterized by the δcc term

δcc = 0.22

[

1 − 1.8

(

mc(mc)

1.25GeV
− 1

)]

[1 + 80 (αS(mZ) − 0.118)] . (67)

20Note the non-trivial CKM dependence in Eq. (63), which only reduces to a hyperbola at lowest orders in λ,
and for values of ρ and η close to the origin.

21We derive the value of mt(mt) from the newest measurement of the pole mass mt = (178.0 ± 2.7 ± 3.3) GeV
by the CDF and D0 collaborations [103], where the first error given is statistical and the second systematic. We
apply the pole-to-MS matching at three loops [104–106] with five light quark flavors, where we neglect the mass
of the light quark flavors with respect to the t-quark mass. This leads to the perturbative series

mt(mt)

mt
= 1 − 4

3

(

αS

π

)

− 9.12530
(

αS

π

)2

− 80.4045
(

αS

π

)3

, (65)

where αS ≡ α
(6)
S

(mt) = 0.1068 ± 0.0018 (see Table 1) is the MS strong coupling constant for six active quark
flavors at the scale of the pole mass. With this we find mt(mt) = (167.5 ± 4.0 ± 0.6) GeV, where the first error is
experimental and the second is due to the truncation of the perturbative series and the uncertainty on αS .
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In this way, Eq. (66) agrees with the complete NLO calculation within a few percent. With
mc(mc) given above and αS(mZ) = 0.118± 0.003, and treating the errors as theoretical system-
atics, we find for ηcc the range 1.0 – 2.6 at 95% CL.

2.7 ∆md

The B0B0 oscillation frequency is determined by the mass difference ∆md between the two B0

mass eigenstates, BH and BL. It is defined as a positive number and has been measured by
many experiments to an average accuracy of almost 1% (see Table 1). In analogy to |εK |, B0B0

oscillation in the SM is driven by effective flavor-changing neutral current (FCNC) processes
through ∆B = 2 box diagrams. However, in contrast to |εK | where the large hierarchy in the
Inami-Lim functions is partly compensated by the CKM matrix elements, the ∆B = 2 box
diagrams are dominated by top quark exchange between the virtual W± boson lines. This
simplifies the theoretical prediction of ∆md which is given by22

∆md =
G2

F

6π2
ηBmBd

f2
Bd
Bdm

2
WS(xt) |VtdV

∗
tb|2 , (68)

where ηB = 0.551 ± 0.007 (for a review, see Ref. [101]) is a perturbative QCD correction to
the Inami-Lim function S(xt) from perturbative QCD. The matrix element fBd

√
Bd is taken

from Lattice QCD. Much progress has been achieved in this domain recently, where partially
unquenched calculations are now available. Nevertheless, there is an ongoing discussion in the
Lattice community whether the extrapolation for the light d quark mass to the chiral-limit is
well-understood (see the discussion of ∆ms below for further details). Here, we use the value
and errors derived in Ref. [109] (cf. Table 1).

For leptonic B decays and the semileptonic CP asymmetry ASL discussed in Part VII, the de-
cay constant fBd

and the bag parameter Bd are needed separately. The values and uncertainties
used (cf. Table 1) are also taken from Ref. [109].

2.8 ∆ms

In the SM, the mass difference ∆ms between the heavy and the light B0
s mesons has only a weak

relative dependence on the Wolfenstein parameters (ρ, η). Nevertheless, a measurement of ∆ms

is useful in the CKM fit since it indirectly leads to an improvement of the constraint from the
∆md measurement on |VtdV

∗
tb|2. The SM prediction

∆ms =
G2

F

6π2
ηBmBsf

2
Bs
Bsm

2
WS(xt) |VtsV

∗
tb|2 , (69)

can be rewritten as

∆ms =
G2

F

6π2
ηBmBsξ

2f2
Bd
Bdm

2
WS(xt) |VtsV

∗
tb|2 , (70)

where the parameter ξ = fBs

√
Bs/fBd

√
Bd quantifies SU(3)-breaking corrections to the matrix

elements, which can be calculated more accurately in Lattice QCD than the matrix elements
themselves. Hence a measurement of ∆ms improves the knowledge of fBd

√
Bd. In our previous

22The CKM factor |VtdV ∗
tb|2 occurring in Eq. (68) approximately describes a circle around (1, 0) in the (ρ, η)

plane, to which a distortion appears at order O(λ10):

|VtdV ∗
tb|2 = λ6A2

[

(1 − ρ)2 + η2
]

+ λ10A4(2ρ − 1)
[

(1 − ρ)2 + η2
]

+ O(λ12) .
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analysis [6] we used the value ξ = 1.16 ± 0.05. Recently, the uncertainty on ξ from Lattice
QCD has been revisited: Lattice calculations using Wilson fermions have to work with light
quark masses of O(100MeV), so that calculations for B0 mesons need to be extrapolated to the
“chiral limit” (this is not necessary for the B0

s due to the heavy strange quark). This process is
controversial because of the potential presence of a curvature in the chiral extrapolation curve
(see e.g. Refs. [110–115]). The recent development using “staggered” fermions allows one to
perform Lattice QCD calculations with significantly smaller light quark masses. So far, these
studies do not show a significant enhancement of ξ [116] but one should keep in mind that the
interpretation of results obtained with the use of staggered fermions is still under discussions (cf.
e.g. Ref. [109]). Based on a phenomenological analysis, it has been shown in Ref. [115] that in
the chiral limit, the double-ratio (fBs/fBd

)/(fK/fπ) does not differ much from unity resulting in
ξ = 1.21± 0.04± 0.05, where the second error is due to the chiral extrapolation23. Interestingly,
based on a quark model, the Lattice value of ξ ≈ 1.16 was considered too low [117], even before
the discussion about the chiral extrapolation had started.

Limits on ∆ms from the search for B0
sB

0
s oscillation have been obtained by several experi-

ments [118–122]. A convenient approach to average various results on ∆ms is the Amplitude
Method [123] (see also the exhaustive study in Ref. [124]), which consists of introducing an ad
hoc amplitude coefficient, A, placed in front of the cosine modulation term (see Appendix A.5.2
for further details). The advantage of this indirect probe for oscillation stems from the fact that
the dependence on A is linear and hence the measurement of A is Gaussian, so that merging
different experimental measurements is straightforward. One can then define the experimental
sensitivity for given ∆ms by 1.645 × σA(∆ms) (found to be 18.7 ps−1 [62]), and a 95% CL
lower limit for ∆ms, given by the sum of the sensitivity and the central value of the measured
amplitude. It is found to be 14.4 ps−1 [62].

The question on how to deduce the confidence level from the available experimental in-
formation is crucial to the CKM analysis and has been scrutinized on many occasions [123–
125,8,6,9]. Traditionally, B0

sB
0
s oscillation results have been implemented into fits using χ2

|1−A| =

((1 − A)/σA)2 with CL(χ2
|1−A|) = Erfc(|1 − A|/σA/

√
2)) [123]. However this procedure does

not properly interpret the information of the amplitude spectrum. For instance, two measured
amplitudes A1 and A2, where A1 > 1 and A2 < 1 but A1 − 1 = 1 − A2, result in the same
confidence level in this approach although it would be natural to assign a larger likelihood for
an oscillation to A1 than to A2. In Ref. [6], an alternative procedure, which exploits the infor-
mation from the sign of 1 − A by omitting the modulus in the above definition of χ2

|1−A|, has

been proposed: χ2
1−A = 2 ·

[

Erfc−1
(

1
2 Erfc

(

1−A√
2σA

))]2
. As pointed out in Ref. [9], this procedure

is an approximation and can lead to a bias in presence of a true measurement. The information
from the fit to the proper time distributions of mixed and unmixed B0

sB
0
s decays is obtained

from the ratio of the likelihood at given frequency ∆ms, L(∆ms), to the likelihood at infinity,
L(∆ms = ∞) [123,125,8], for which the logarithm reads

2∆ lnL∞(∆ms) =
(1 −A)2

σ2
A

− A2

σ2
A
. (71)

In Appendix A we propose a frequentist method to deduce a confidence level from this informa-
tion. This method is the one used in our CKM fit.

23Note that the latter error is strongly correlated with the one on fBd

√
Bd, because both have the same source.

We neglect this correlation, which may result in an underestimation of the impact of the bound on ∆ms.
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2.9 |Vts|

Besides ∆ms, the inclusive branching fraction of the radiative decay B → Xsγ determines the
product |VtsV

∗
tb|. Using the measurements from CLEO, ALEPH, BABAR and Belle, Ref. [126]

quotes |VtsV
∗
tb| = 0.047± 0.008. Since the precision of this constraint is not competitive it is not

used in our fit.

The ratio |Vtd/Vts| can be determined from the ratio of the exclusive rates for the decays B →
ργ to B → K∗γ, which eliminates the form factor dependencies up to SU(3) breaking. Based on
the recent 3.5σ evidence for the decay B → ργ found by Belle [127], a phenomenological study
has been performed in Ref. [128]. The constraint on |Vtd/Vts| derived from the measurement is
found to be in agreement with the expectation, but is not (yet) accurate enough to represent a
competitive input in the global CKM fit.

2.10 sin 2β

In b→ cc̄s quark-level decays, the time-dependent CP -violation parameter S measured from the
interference between decays with and without mixing is equal to sin 2β to a very good approxi-
mation. The world average uses measurements from the decays B0 → J/ψK0

S , J/ψK0
L, ψ(2S)K0

S ,
χc1K

0
S , ηcK

0
S and J/ψK∗0 (K∗0 → K0

Sπ
0) and gives sin 2β[cc̄] = 0.739 ± 0.048 [62]. It is domi-

nated by the measurements from BABAR [129] and Belle [130]. In b → cc̄d quark-level decays,
such as B0 → J/ψπ0 or B0 → D(∗)D(∗), unknown contributions from (not CKM-suppressed)
penguin-type diagrams carrying a different weak phase than the tree-level diagram compromises
the clean extraction of sin 2β. As a consequence, they are not taken into account in the sin 2β
average.

Within the SM, decays mediated by the loop transitions b → sq̄q (q = u, d, s), such as
B0 → φK0 or B0 → K+K−K0

S , but also the recently measured B0 → f0K
0
S , as well as

B0 → η′K0
S and B0 → π0K0

S , can be used to extract sin 2β in a relatively clean way (see
Refs. [131–135] and Refs. [136–140,62] for the experimental results). Due to the large vir-
tual mass scales occurring in the penguin loops, additional diagrams with heavy particles in the
loops and new CP -violating phases may contribute. Such a measurement of the weak phase from
mixing-induced CP violation and the comparison with the SM expectation is therefore a sensitive
probe for physics beyond the SM. Assuming penguin dominance and neglecting CKM-suppressed
amplitudes, these decays carry approximately the same weak phase as the decay B0 → J/ψK0

S .
As a consequence, their mixing-induced CP -violation parameters are expected to be −ηf ×sin 2β
to a reasonable accuracy in the SM, where ηf is the CP eigenvalue of the final state. Recent mea-
surements from BABAR and Belle give conflicting results for the mixing-induced CP parameter
of φK0: with the Belle result, SφK0

S
= −0.96 ± 0.50+0.09

−0.11 [137], indicating a 3.3σ deviation from

the SM, while BABAR finds (using both φK0
S and φK0

L) −ηφKSφK = 0.47±0.34+0.08
−0.06 [136], which

is in agreement with sin 2β[cc̄]. Moreover, the world averages −SK+K−K0
S

= 0.54± 0.18+0.17
−0 and

Sη′K0
S

= 0.27 ± 0.21 [62] (BABAR and Belle agree for these) do not show a significant departure
from the charmonium reference, though both tend to support the observation sin 2βeff, sqq̄ <
sin 2β[cc̄]. Finally, the recent BABAR measurement −Sf0K0

S
= 1.62+0.51

−0.56 ± 0.10 [139] is in decent
agreement with sin 2β[cc̄].

A more detailed numerical discussion of the various sin 2β results is given in Section III.3.4.
At present, we do not include the results from penguin-dominated decays in the sin 2β average.
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2.11 sin 2α

The measurement of the time-dependent CP -violating asymmetries in the charmless decay B0 →
ρ+ρ− allows us to derive a significant constraint on the angle sin 2α using the Gronau–London
isospin analysis [141] (extended here to include electroweak penguins), which invokes B → ρρ
decays of all charges. While the full isospin analysis requires the measurement of (at least one
of) the time-dependent CP parameters24 in the color-suppressed decay B0 → ρ0ρ0, the available
upper limit on its branching fraction can be used to constrain |α−αeff |. Albeit analytical bounds
have been derived for this case [142–144], the numerical analysis performed in CKMfitter leads
to equivalent results (see the detailed discussions of the isospin analysis in Sections VI.1.2.1 and
VI.5).

For the isospin-related decays we use the branching fractions B(B0 → ρ+ρ−) = (30±4±5)×
10−6 [145] (see also the first observation and polarization measurement of this mode in Ref. [146]),
B(B+ → ρ+ρ0) = (26.4+6.1

−6.4)×10−6 [62,147,148], and the upper limit at 90% CL B(B0 → ρ0ρ0) <
2.1×10−6 [147] (in the CKM fit we use the result B(B0 → ρ0ρ0) = (0.6+0.8

−0.6±0.1)×10−6, which
leads to this limit). The ρ mesons in the decays B0 → ρ+ρ− and B+ → ρ+ρ0 are found
to be longitudinally polarized with the longitudinal fractions (fL ≡ ΓL/Γ): f+−

L = 0.99 ±
0.03+0.04

−0.03 [145] and f+0
L = 0.962+0.049

−0.065 [147,148], respectively. As a consequence, the B → ρρ
system is actually like the B → ππ system. Assuming (conservatively) the relative polarization
of the ρ0 mesons in B0 → ρ0ρ0 to be fully longitudinal, and using the CP asymmetries S+−

ρρ,L =

−0.19 ± 0.33 ± 0.11 and C+−
ρρ,L = −0.23 ± 0.24 ± 0.14 measured by BABAR [145,149] for the

longitudinal fraction of the B0 → ρ+ρ− event sample, together with the branching fraction and
polarization measurements for the other charges, we obtain constraints on sin 2α as described
in Section VI.5.

Note that the present analysis neglects non-resonant contributions and possible other π+π−

resonances under the ρ0, as well as effects from the radial excitations ρ(1450) and ρ(1700) that
were found to be significant contributors to the pion form factor in e+e− annihilation [150] and
τ decays [151]. Also neglected are isospin-violating contributions due to the finite width of the
ρ [152], as well as electromagnetic and strong sources of isospin violation (see the discussion in
Section VI.5).

3 Results of the Global Fit

The standard CKM fit includes those observables for which the Standard Model predictions
(and hence the CKM constraints) can be considered to be quantitatively under control. We
only take into account measurements that lead to significant and competitive constraints on the
CKM parameters. The standard observables are:

|Vus| , |Vud| , |Vub| , |Vcb| , |εK | , ∆md , ∆ms , sin 2β[cc̄] , sin 2α[ρρ] . (72)

The theoretical uncertainties related to these observables are discussed in Section III.2.

Among the observables that are not (yet) considered are the following.

• Measurements of the remaining CKM elements as well as the constraints from the rare
kaon decay K+ → π+νν and from B → ργ are not (yet) precise enough to improve the
knowledge of the CKM matrix (cf. Section III.2.9).

24Note that in contrast to B0 → π0π0 both, C00
ρρ,L and S00

ρρ,L, are experimentally accessible in B0 → ρ0ρ0.
Their measurement overconstrains the isospin analysis and can be used to remove some of the ambiguities on α
(see Section VI.5).
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Errors
Parameter Value ± Error(s) Reference

GS TH

|Vud| (neutrons) 0.9717± 0.0013± 0.0004 (see text) ⋆ ⋆
|Vud| (nuclei) 0.9740± 0.0001± 0.0008 (see text) ⋆ ⋆
|Vud| (pions) 0.9765± 0.0055± 0.0005 [20] ⋆ ⋆
|Vus| 0.2228± 0.0039± 0.0018 see text ⋆ ⋆
|Vub| (average) (3.90 ± 0.08 ± 0.68)× 10−3 see text, [62] ⋆ ⋆
|Vcb| (incl.) (42.0 ± 0.6 ± 0.8) × 10−3 see text ⋆ ⋆
|Vcb| (excl.) 40.2+2.1

−1.8 × 10−3 [62,61] ⋆ -

|εK | (2.282± 0.017)× 10−3 [97] ⋆ -
∆md (0.502± 0.006) ps−1 [62] ⋆ -
∆ms Amplitude spectrum [62] ⋆ -
sin 2β[cc̄] 0.739± 0.048 [62] ⋆ -
S+−

ρρ,L −0.19 ± 0.35 see text ⋆ -
C+−

ρρ,L −0.23 ± 0.28 see text ⋆ -
Bρρ,L all charges see text see text ⋆ -

mc(mc) (1.2 ± 0.2)GeV [12] - ⋆
mt(mt) (167.5± 4.0 ± 0.6)GeV [12] ⋆ -
mK+ (493.677± 0.016)MeV [12] - -
∆mK (3.490 ± 0.006)× 10−12 MeV [12] - -
mBd

(5.2794 ± 0.0005)GeV [12] - -
mBs

(5.3696 ± 0.0024)GeV [12] - -
mW (80.423 ± 0.039)GeV [12] - -
GF 1.16639× 10−5 GeV−2 [12] - -
fK (159.8 ± 1.5)MeV [12] - -

BK 0.86 ± 0.06 ± 0.14 [99] ⋆ ⋆
αS(m2

Z) 0.1172± 0.0020 [12] - ⋆
ηct 0.47 ± 0.04 [107] - ⋆
ηtt 0.5765± 0.0065 [107,108] - -
ηB(MS) 0.551± 0.007 [101] - ⋆
fBd

√
Bd (228 ± 30 ± 10)MeV [109] ⋆ ⋆

fBd
(200 ± 28 ± 9)MeV [109] ⋆ ⋆

Bd 1.3 ± 0.12 [109] ⋆ ⋆
ξ 1.21 ± 0.04 ± 0.05 [109] ⋆ ⋆
B → ρρ amplitude params. all floating see text - ⋆

Table 1: Inputs to the standard CKM fit. If not stated otherwise: for two errors given, the
first is statistical and accountable systematic and the second stands for systematic theoretical
uncertainties. The fourth and fifth columns indicate the treatment of the input parameters
within Rfit: measurements or parameters that have statistical errors (we include here experi-
mental systematics) are marked in the “GS” column by an asterisk; measurements or parame-
ters that have systematic theoretical errors, treated as ranges in Rfit, are marked in the “TH”
column by an asterisk. Upper part: experimental determinations of the CKM matrix elements.
Middle upper part: CP -violation and mixing observables. Middle lower part: parameters used in
SM predictions that are obtained from experiment. Lower part: parameters of the SM predictions
obtained from theory.



Part III – The Global CKM Fit 43

• The theoretical prediction of direct CPV in kaon decays (ε′/ε) is not yet settled (cf.
Section III.2).

• Charmless B decays other than B → ρρ also lead to various interesting constraints on
the angles of the Unitarity Triangle and provide sensitivity to contributions from physics
beyond the SM. Detailed discussions are given in Part VI. In principle, amplitude analyses
using SU(2) symmetry are theoretically safe (the isospin-breaking contributions can be
controlled) so that they will be used in the standard CKM fit once they lead to significant
results. SU(3)-based analyses are in general more constraining, with however the limitation
that theoretical uncertainties are more difficult to control.

• Various constraints on the angle γ can be obtained from the comparison of CKM-favored
and CKM-suppressed b → c decays (cf. Part V). The accumulated statistic are, however,
not yet sufficient to perform fully data-driven analyses and to eliminate theoretical input
with uncertain errors.

We use the observables (72) to perform constrained fits to the CKM parameters and related
quantities. We place ourselves in the framework of the Rfit scheme (cf. Part II) and hence define
the theoretical likelihoods of Eq. (30) to be one within the allowed ranges and zero outside. In
other words, we use κ = 0 and ζ = 1 for the Hat function Lsyst(x0) defined in Eq. (56). As
a consequence, no hierarchy is introduced for any permitted set of theoretical parameters, i.e.,
the χ2 that is minimized in the fit receives no contribution from theoretical systematics. How-
ever the theoretical parameters cannot trespass their allowed ranges. When relevant, statistical
and theoretical uncertainties are combined beforehand, following the procedure outlined in Sec-
tion II.6.1. Floating theoretical parameters are labelled by an asterisk in the “TH” column of
Table 1. For parameters with insignificant theoretical uncertainties, the errors are propagated
through the theoretical predictions, and added in quadrature to the experimental error of the
corresponding measurements25.

3.1 Probing the Standard Model

We have demonstrated in Part II that the metrological phase is intrinsically unable to detect
a failure of the SM to describe the data. We therefore begin the CKM analysis with an inter-
pretation of the test statistics χ2

min;ymod
, which is a probe of the goodness-of-fit test for the SM

hypothesis. We perform the toy Monte Carlo simulation described in Section II.3. The standard
CKM fit returns after convergence

χ2
min;ymod

= 0.6 , (73)

for the full data set (including sin 2β[cc̄] and sin 2α[ρρ], where the latter has little impact only). We
generate the probability density distribution F(χ2) of χ2

min;ymod
by fluctuating the measurements

and yQCD parameters according to their non-theoretical errors around the theoretical values
obtained with the use of the parameter set yopt

mod for which χ2
min;ymod

is obtained. The resulting
toy distribution is shown by the histogram in Fig. 5. Integrating the distribution according to
Eq. (51) leads to the significance level (SL) represented by the smooth curve in Fig. 5. We find
a p-value of

P(χ2
min;ymod

|SM) ≤ SL(χ2
min;ymod

) = 71% , (74)

for the validity of the SM. One notices that compared to previous fits [6], the “unitarity problem”
in the first row, that is the incompatibility between |Vud| and 1−|Vus|2, becomes insignificant with

25This procedure neglects the correlations occurring when such parameters are used in more than one theoretical
prediction.
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Figure 5: Simulated F(χ2) distribution and corresponding SL curve for the standard CKM fit.
The arrow indicates the corresponding minimal χ2

min;ymod
found in the analysis.

the likelihoods we use for these two quantities (see the discussion in Section 2.1 and subsequent
paragraphs). Their average has χ2

min;|Vud|,|Vus| = 0.16.

The large p-value of the electroweak sector of the SM when confronted with all CKM-related
data strongly supports the KM mechanism [2] as the dominant source of CP violation at the
electroweak scale. It is the necessary condition that permits us to move to the CKM metrology.

3.2 Metrology of the CKM Phase

It has become customary to present the constraints on the CP -violating phase in the (ρ, η)
(unitarity) plane of the Wolfenstein parameterization. In the case of such a two-dimensional
graphical display, the a parameter space (see Section II.2.1) is defined by the coordinates a =
{x, y} (e.g., a = {ρ, η}) and the µ space by the other CKM parameters λ and A, as well as the
yQCD parameters. The results of the standard CKM fit are shown in the enlarged (ρ, η) plane in
Fig. 6, not including (upper plot) and including (lower plot) in the fit the world average of sin 2β
and sin 2α[ρρ] (see Table 1). The outer contour of the combined fit corresponds to the 5% CL,
and the inner contour gives the region where CL ∼ 1 and hence theoretical systematics dominate
(an adjustment of the µ parameters can maintain maximal agreement i.e., the χ2

min;ymod
value

is reproduced therein). Also shown are the ≥ 5% CL regions of the individual constraints. For
sin 2β both the ≥ 32% and ≥ 5% CL regions are drawn. A zoom into the region favored by the
combined fit is given in Fig. 7.

3.3 Numerical Constraints on CKM Parameters and Related Observables

Using the standard CKM fit inputs (72), we derive one-dimensional numerical constraints for
the Wolfenstein parameters, the CKM matrix elements, branching ratios of rare K and B meson
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Figure 6: Confidence levels in the enlarged (ρ, η) plane for the global CKM fit. The shaded
areas indicate the regions of ≥ 5% CLs. For sin 2β the ≥ 32% and ≥ 5% CL constraints are
shown. The upper (lower) plot excludes (includes) the constraints from sin 2β and sin 2α in the
combined fit. The hatched area in the center of the combined fit result indicates the region where
theoretical errors dominate. The lower plot corresponds to the standard CKM fit.
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Figure 7: Confidence levels in the (ρ, η) plane for the global CKM fit. The shaded areas indicate
the regions of ≥ 5% CLs. For sin 2β the ≥ 32% and ≥ 5% CL constraints are shown. The upper
(lower) plot excludes (includes) the constraints from sin 2β and sin 2α in the combined fit. The
hatched area in the center of the combined fit result indicates the region where theoretical errors
dominate. The lower plot corresponds to the standard CKM fit.

decays26 as well as a selection of theoretical parameters. In the case of such one-dimensional
displays, the a parameter is defined by the x coordinate, and the µ space by all the other
parameters. The Wolfenstein λ has a larger error compared to the fit presented in Ref. [6] since
we enlarged the uncertainty on |Vus| as discussed in Section 2. Numerical and graphical results
are obtained for CKM fits including sin 2β[cc̄] and sin 2α[ρρ]. The results are quoted in Tables 2
and 3 and some representative variables are plotted in Fig. 8 for fits with and without sin 2β[cc̄]

and sin 2α[ρρ]. The statistical precision of the present result for sin 2α[ρρ] is not yet sufficient to
give a significant improvement of the standard CKM fit (see the outlook into the future given
in Section VI.5).

The predictions of the rare W -annihilation decays B+ → ℓ+ν can be compared to the
present (yet unpublished) upper limits B(B+ → τ+ν) < 4.1 × 10−4 [153] and B(B+ → µ+ν) <

26In the SM the branching ratio for the helicity-suppressed decay B+ → ℓ+ν is given by

B(B+ → ℓ+ν) =
G2

FmBd
m2

ℓ

8π

(

1 − m2
ℓ

m2
Bd

)

f2
Bd

|Vub|2τB+ .
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Figure 8: Confidence levels for the Wolfenstein parameters and UT surface and angles obtained
from the standard CKM fit (shaded areas). The dotted curves give the results without using
sin 2β and sin 2α[ρρ] in the fit, while the dashed line excludes only sin 2α[ρρ].

6.8 × 10−6 [154]. While the µ+ν limit is still an order of magnitude larger than the expected
value, the experiments approach the sensitivity required for a discovery of B+ → τ+ν. It may
become one of the key analyses in the coming years.

3.4 Is there a sin 2β Problem in Penguin-Dominated Decays?

As pointed out in Section III.2, penguin-dominated decays like φK0, η′K0
S and CP -even-domi-

nated K+K−K0
S as well as π0K0

S (b → sq̄q transitions) show on average lower experimental
sin 2β values than b → cc̄s transitions. An exception to this is the recent BABAR measurement
using the decay f0K

0
S .

The interpretation of the non-charmonium decays in terms of sin 2β has to be done with
care, since contributions from CKM-suppressed penguins and trees may lead to deviations from
the leading weak decay phase of up to | sin 2βsq̄q − sin 2βcc̄s| ∼ 0.2 within the SM [135,133,134].
When averaging all penguin as well as charmonia measurements we obtain a p-value of 1.7%
(2.4σ). If CKM-suppressed penguins and trees can be neglected in b → sq̄q transitions this
might be a hint of an anomaly. When taking into account the modifications of the CL due to
the presence of the non-physical boundaries (cf. Section II.1.1) the overall p-value decreases to
1.1% (2.6σ).

The individual measurements27 compared to the constraint from the standard CKM fit, not

27Note that the C coefficients, which vanish if the penguin dominance and the SM assumptions are correct,
are left free to vary in the time-dependent fits performed by the experiments. All of them are found to be in
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Central value ± error at given CL
Quantity CL = 0.32 CL = 0.05 CL = 0.003

λ 0.2265+0.0025
−0.0023

+0.0040
−0.0041

+0.0045
−0.0046

A 0.801+0.029
−0.020

+0.066
−0.041

+0.084
−0.054

ρ 0.189+0.088
−0.070

+0.182
−0.114

+0.221
−0.156

η 0.358+0.046
−0.042

+0.086
−0.085

+0.118
−0.118

J [10−5] 3.10+0.43
−0.37

+0.82
−0.74

+1.08
−0.96

sin 2α −0.14+0.37
−0.41

+0.57
−0.71

+0.74
−0.82

sin 2α (meas. not in fit) −0.29+0.56
−0.46

+0.77
−0.65

+0.93
−0.70

sin 2β 0.739+0.048
−0.048

+0.096
−0.095

+0.124
−0.137

sin 2β (meas. not in fit) 0.817+0.037
−0.222

+0.053
−0.279

+0.067
−0.334

α (deg) 94+12
−10

+24
−16

+32
−22

α (deg) (meas. not in fit) 98+15
−16

+26
−22

+31
−28

β (deg) 23.8+2.1
−2.0

+4.5
−3.8

+6.0
−5.3

β (deg) (meas. not in fit) 27.4+1.9
−9.2

+2.8
−11.1

+3.7
−13.0

γ ≃ δ (deg) 62+10
−12

+17
−24

+23
−30

sin θ12 0.2266+0.0025
−0.0023

+0.0040
−0.0041

+0.0045
−0.0046

sin θ13 [10−3] 3.87+0.35
−0.30

+0.35
−0.60

+0.35
−0.76

sin θ23 [10−3] 41.13+1.37
−0.58

+2.43
−1.16

+3.08
−1.73

Ru 0.405+0.035
−0.032

+0.077
−0.062

+0.093
−0.083

Rt 0.889+0.073
−0.095

+0.118
−0.196

+0.161
−0.243

∆md (ps−1) (meas. not in fit) 0.54+0.26
−0.21

+0.62
−0.31

+0.94
−0.34

∆ms (ps−1) 17.8+6.7
−1.6

+15.2
−2.7

+22.1
−3.7

∆ms (ps−1) (meas. not in fit) 16.5+10.5
−3.4

+17.7
−5.7

+23.9
−7.2

εK [10−3] (meas. not in fit) 2.5+1.6
−1.1

+2.4
−1.4

+3.1
−1.6

fBd

√
Bd (MeV) (theor. value not in fit) 215+28

−21
+79
−31

+79
−39

BK (theor. value not in fit) 0.86+0.26
−0.30

+0.57
−0.39

+0.90
−0.45

mt(mt) (GeV/c2) (meas. not in fit) 165+48
−47

+124
−64

+194
−77

Table 2: Fit results and errors (deviations from central values at confidence levels that corre-
spond to one-, two- and three standard deviations, respectively) using the standard input observ-
ables (72) (i.e., including the world average on sin 2β[cc̄]). For results marked by “meas. not in
fit”, the measurement of the corresponding observable has not been included in the fit. The input
parameters used for this fit are quoted in Table 1.
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Central value ± error at given CL
Quantity CL = 0.32 CL = 0.05 CL = 0.003

B(K0
L → π0νν) [10−11] 2.89+0.84

−0.69
+1.71
−1.24

+2.41
−1.52

B(K+ → π+νν) [10−11] 6.7+2.8
−2.7

+3.7
−3.2

+4.6
−3.6

B(B+ → τ+νµ) [10−5] 11.9+4.5
−5.7

+10.4
−8.2

+17.9
−10.1

B(B+ → µ+νµ) [10−7] 4.7+2.3
−1.7

+4.6
−2.7

+7.6
−3.5

|Vud| 0.97400+0.00054
−0.00058

+0.00094
−0.00095

+0.00106
−0.00106

|Vus| 0.2265+0.0025
−0.0023

+0.0040
−0.0041

+0.0045
−0.0046

|Vub| [10−3] 3.87+0.35
−0.30

+0.73
−0.60

+0.73
−0.76

|Vub| [10−3] (meas. not in fit) 3.87+0.34
−0.31

+0.81
−0.61

+1.27
−0.88

|Vcd| 0.2264+0.0025
−0.0023

+0.0040
−0.0041

+0.0045
−0.0046

|Vcs| 0.97317+0.00053
−0.00059

+0.00094
−0.00097

+0.00106
−0.00112

|Vcb| [10−3] 41.13+1.36
−0.58

+2.43
−1.16

+3.08
−1.73

|Vcb| [10−3] (meas. not in fit) 41.2+5.1
−5.7

+7.9
−5.8

+9.9
−5.8

|Vtd| [10−3] 8.26+0.72
−0.86

+1.23
−1.79

+1.64
−2.25

|Vts| [10−3] 40.47+1.39
−0.62

+2.42
−1.21

+3.17
−1.78

|Vtb| 0.999146+0.000024
−0.000058

+0.000047
−0.000104

+0.000070
−0.000133

|VudV
∗
ub| [10−3] 3.77+0.34

−0.30
+0.71
−0.59

+0.71
−0.75

arg [VudV
∗
ub] (deg) 62+10

−12
+16
−24

+22
−31

|VcdV
∗
cb| [10−3] 9.31+0.31

−0.15
+0.62
−0.34

+0.80
−0.49

arg [VcdV
∗
cb] (deg) −179.9653+0.0047

−0.0042
+0.0091
−0.0084

+0.0122
−0.0107

|VtdV
∗
tb| [10−3] 8.24+0.73

−0.85
+1.24
−1.78

+1.64
−2.24

arg [VtdV
∗
tb] (deg) −23.8+2.0

−2.1
+3.8
−4.5

+5.3
−6.0

|Vtd/Vts| 0.204+0.018
−0.022

+0.029
−0.046

+0.039
−0.058

Reλc −0.2204+0.0022
−0.0023

+0.0038
−0.0037

+0.0043
−0.0041

Imλc [10−4] −1.41+0.18
−0.18

+0.34
−0.36

+0.44
−0.48

Reλt [10−4] −3.04+0.32
−0.31

+0.67
−0.60

+0.86
−0.80

Imλt [10−4] 1.41+0.19
−0.17

+0.37
−0.34

+0.48
−0.44

Table 3: Fit results and errors (deviations from central values at confidence levels that corre-
spond to one-, two- and three standard deviations, respectively) using the standard input observ-
ables (72) (i.e., including the world average on sin 2β[cc̄]). The variables in the last four lines
are defined by λi ≡ VidV

∗
is. For results marked by “meas. not in fit”, the measurement related

to the corresponding observable has not been included in the fit. The input parameters used for
this fit are quoted in Table 1.
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Figure 9: Confidence levels for the various sin 2β[eff] measurements that are believed to be dom-
inated by a single CKM phase, their averages and the result from the standard CKM fit.
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including sin 2β, are shown in Fig. 9. The average of the SφK measurement from BABAR and
Belle has a p-value of 4.9%, so that more data are needed to conclude. If we remove Belle’s
SφK0

S
from the all-mode average, we obtain for the compatibility with the charmonium results a

p-value of 29%, which is 1.1σ. Hence without confirmation of Belle’s SφK0
S

measurement there is
no statistical justification to claim evidence for New Physics on the basis of the present data. We
stress that a clear sign of New Physics in these penguin decays would be a pattern of sin 2βeff, sqq̄

values that are significantly different from sin 2β[cc̄] and significantly different from each other28.
It might be that Belle’s SφK0

S
measurement represents a statistical fluctuation and that very

large New Physics effects are not to be expected, which of course does not imply that more
precise data will not be able to give evidence for non-standard contributions if they exist. We
revisit the φK0 mode in a more general New Physics framework in Section VII.3.

3.5 Resolving the Two-fold Ambiguity in 2β

In spite of the agreement with the standard CKM fit of one out of the four solutions for β
from the precise sin 2β measurement using charmonium decays, it is still possible that, be-
cause of contributions from New Physics, the correct value of β is one of the three other
solutions. The measurement of the sign of cos 2β would reduce the solution space to an in-
distinguishable two-fold ambiguity29. The BABAR collaboration has performed a measurement
of cos 2β in a time-dependent transversity analysis of the pseudoscalar to vector-vector decay
B0 → J/ψK∗0(→ K0

Sπ
0), where cos 2β enters as a factor in the interference between CP -even

and CP -odd amplitudes [138]. In principle, this analysis comes along with an ambiguity on the
sign of cos 2β due to an incomplete determination of the strong phases occurring in the three
transversity amplitudes. BABAR resolves this ambiguity by inserting the known variation [157] of
the rapidly moving P -wave phase relative to the slowly moving S-wave phase with the invariant
mass of the Kπ system in the vicinity of the K∗0(892) resonance.

When fixing the sin 2β value to the world average, BABAR finds

cos 2β = 2.72+0.50
−0.79 ± 0.27 , (75)

where the effect introduced by the variation of sin 2β within its small errors is negligible. BABAR

quotes the probability that the true cos 2β is positive30 to be 89%, where the value is obtained
with the use of Monte Carlo methods. This is much less than the 3.8σ exclusion of the mirror
solutions π/2 − β and 3π/2 − β, obtained from a probabilistic treatment of the result (75),
using the analytical method described in Section II.2.2.3, and assuming that the log-likelihood
function belonging to (75) has parabolic tails. Since the Monte Carlo evaluation is reliable,
we conclude that a Gaussian interpretation of the errors given in (75) is flawed. Due to the
lack of a more accurate experimental CL function for cos 2β (precisely the one obtained from
Monte Carlo simulation), we do not include the present measurement in the standard CKM fit,
although we will assume cos 2β > 0 in part of our New Physics analysis (see Part VII). Proposals
for alternative determinations of sign(cos 2β) can be found in Refs. [158–163].

reasonable agreement with zero [62].
28Unless some specific symmetry or dynamical mechanism relates the New Physics to SM amplitude ratios in

different channels [155].
29The invariance β → π + β remains. It cannot be lifted without theoretical input on a strong phase [156].
30This solution corresponds to reasonably small strong phases between transversity amplitudes, as expected in

the factorization approximation [158].
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4 Conclusions

The robustness of the Unitarity Triangle fit has been greatly improved since the precision mea-
surement of sin 2β became available. It outperforms by far all other contributions in the com-
bined experimental and theoretical precision. A new constraint on sin 2α from the isospin
analysis of B → ρρ decays has become available, the theoretical uncertainties of which – though
not yet entirely evaluated or known – seem to be under control. Its inclusion into the standard
CKM fit already leads to a modest improvement on the knowledge of α and γ. We derive a
large number of quantitative results on the CKM parameters for various parameterizations and
related quantities, theoretical parameters and physical observables from the standard CKM fit
(see Tables 2 and 3).

The goodness-of-fit of the global CKM fit is found to be 71%. We find that penguin-
dominated measurements of (to good approximation) sin 2β are in agreement with the reference
value from B0 decays into charmonium states. It might turn out that the large negative S value
found by Belle in B0 → φK0

S represents a statistical fluctuation. A measurement of cos 2β in
B0 → J/ψK∗0(→ π0K0

S) decays indicates that the β solution from the sin 2β measurement that
is favored by the standard CKM fit corresponds to the one that occurs in B0B0 mixing.
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Part IV

Constraints from Kaon Physics

This part presents the CKM constraints from direct CP violation and other CP -related observ-
ables in kaon decays that do not belong to the standard CKM fit. We refer to Sections III.2.2
and III.2.6 for a discussion of the constraints from Ke3 decays, giving |Vus|, and from indirect
CP violation, respectively.

Section IV.1 discusses current experimental and theoretical status of constraints related
to the CP -violating parameter ε′/ε. Conventions and input values from Ref. [164] are used.
Sections IV.2 and IV.3 discuss the status of measurements of the rare kaon decays K+ → π+νν
and K0

L → π0νν, together with a study of future perspectives. For a recent detailed review of
these rare kaon decays we refer to Ref. [165].

1 Direct CP Violation in the Neutral Kaon System: ε′/ε

A non-zero value for the CP -violation parameter ε′, defined as

η+− = ε+ ε′ , η00 = ε− 2ε′ , (76)

where ε ≡ εK , establishes direct CP violation in the neutral kaon system. The corresponding
experimental observable is Re(ε′/ε). The first evidence of direct CP violation in neutral kaons
decays was found by the NA31 collaboration [166]. Statistically significant observations were
obtained by the next-generation of experiments, NA48 [168] and KTeV [169]. Table 4 summa-
rizes the available measurements that yield an average of Re(ε′/ε) = (16.7 ± 1.6) × 10−4, with
χ2 = 6.3 for 3 degrees of freedom, that is a p-value of 10%.

The SM prediction of Re(ε′/ε) has large uncertainties because it relies on the precise knowl-
edge of penguin-like hadronic matrix elements. Detailed calculations at NLO [170,171] show that

two hadronic parameters B
(1/2)
6 (gluonic penguins) and B

(3/2)
8 (electroweak penguins) dominate,

where the superscripts denote the dominant ∆I = 1/2 and ∆I = 3/2 contributions, respectively,
and refer to the isospin change in the K → ππ transition. It is convenient to express the SM
prediction as a function of the hadronic parameters with the use of the approximate formula [164]

Re(ε′/ε) = Im(VtdV
∗
ts) [18.7R6 (1 −ΩIB) − 6.9R8 − 1.8]

Λ
(4)

MS

340MeV
, (77)

where ΩIB = 0.06 ± 0.08 corrects for isospin-breaking [172], Λ
(4)

MS
= (340 ± 30)MeV is the

characteristic QCD scale for 4 active quark flavors in the MS scheme, and where R6 and R8 are

Experiment Value [10−4] Status

NA31 [166] 23.0 ± 6.5 final
E731 [167] 7.4 ± 5.9 final
NA48 [168] 14.7 ± 2.2 final
KTeV [169] 20.7 ± 2.8 1/2 data sample

Average 16.7 ± 1.6 CL = 10%

Table 4: Experimental results for Re(ε′/ε).
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Figure 10: Allowed values for the hadronic parameters R6 and R8, using the experimental average
of Re(ε′/ε) and the result on Im(VtdV

∗
ts) from the standard CKM fit as input. The symbols with

error bars give the theoretical predictions taken from Refs. [164,172–175].

defined by

R6 = B
(1/2)
6

[

121MeV

ms(mc)

]2

, R8 = B
(3/2)
8

[

121MeV

ms(mc)

]2

, (78)

with the running s-quark mass ms(mc) = (115 ± 20)MeV. In the strict large-Nc limit, the

hadronic parameters satisfy B6 = B8 = 1. The quoted values and errors for ΩIB, Λ
(4)

MS
, and

ms(mc) are taken from Ref. [164]. In the Wolfenstein parameterization one has Im(VtdV
∗
ts) =

A2λ5η+O(λ7). Even though the experimental value of Re(ε′/ε) is known to 10% accuracy, reli-
able constraints on η cannot be obtained (not even on its sign) due to the present uncertainties
assigned to the hadronic parameters R6 and R8. Various dynamical effects come into play, and
while it is possible to estimate some of them thanks to appropriate theoretical methods, it is
very difficult to take into account all possible contributions within a single approach.

Some consensus has been achieved on the value and error of R8 obtained by lattice QCD.
The most precise lattice calculation [175] has an accuracy of ∼ 10%. Taking into account other
lattice results [176,177], the conservative average R8 = 1.00 ± 0.20 is quoted in Ref. [164], and
the value R6 = 1.23 ± 0.16 is derived from the correlation between the experimental result for
ε′/ε and R8. The computation of R6 on the lattice is more difficult due to the mixing with lower
dimensional operators. An attempt can be found in Ref. [177]; however this study does not take
into account flavor-symmetry breaking effects that come from quenching artefacts, as stressed
in Ref. [178]. As for R8, the authors of Ref. [173] argue that again significant contributions that
vanish in the quenched approximation could spoil the lattice estimate. Several analyses using
analytical non-perturbative techniques are also available. An approach based on dispersion re-
lations to evaluate final state interaction finds R6 = 1.05 ± 0.06 and R8 = 0.84 ± 0.05 [172]. A
chiral perturbation theory calculation gives R6 = 2.2 ± 0.4 and R8 = 1.1 ± 0.3 [174]. Another
recent calculation, taking into account O(nf/Nc) corrections to the large-Nc limit of QCD, finds
R6 = 2.1 ± 1.1 and R8 = 2.20 ± 0.40 [173]. Noticeable disagreement in both values and errors
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among the different approaches is observed.

It is therefore instructive to study the constraints put upon these parameters by the exper-
imental data. Figure 10 shows the allowed region for R6 versus R8, obtained from the exper-
imental average for Re(ε′/ε) together with the standard CKM fit result for Im(VtdV

∗
ts). The

symbols with error bars indicate the theoretical calculations. One concludes that the various
theoretical predictions provide estimates for ε′/ε that are in agreement with the experimental
data, but the present size of the uncertainties and also the disagreement between the various
predictions for R6 prevents us from using ε′/ε as a constraint in the standard CKM fit. In
the future, model-independent constraints on R6 could be extracted from the measurement of
CP -violation in kaon decays to three pions [179].

As an exercise we follow the strategy of Ref. [164] and use the average lattice QCD value for
R8, together with the experimental average of Re(ε′/ε) and the standard CKM fit, to constrain
R6. We find the 95% CL range

0.75 < R6 < 1.80 .

2 Rare Decays of Charged Kaons: K+ → π+νν

The BNL-E787 experiment has observed two events of the rare decay K+ → π+νν, resulting
in the branching fraction B(K+ → π+νν) = (1.57+1.75

−0.82) × 10−10 [15], which due to the small
expected background rate (0.15 ± 0.03 events) effectively excludes the null hypothesis. One
additional event has been observed near the upper kinematic limit by the successor experiment
BNL-E949 [16]. They quote the combined branching fraction B(K+ → π+νν) = (1.47+1.30

−0.89) ×
10−10. The left hand plot in Fig. 11 gives the CLs for the experimental result (CL obtained from
Ref. [16]) and the SM prediction (see paragraphs below), with input from the standard CKM
fit.

In the SM, the branching fraction is given by [180]

B(K+ → π+νν) = rK+
3α2

2π2

B(K+ → π0e+ν)

|Vus|2sin4θW

∑

i=e,µ,τ

∣

∣

∣ηXX0(xt)VtdV
∗
ts +X

(i)
NLVcdV

∗
cs

∣

∣

∣

2
. (79)

Here, rK+ = 0.901 corrects for isospin breaking [181], X0(xt) (with xt = m2
t /m

2
W ) is the Inami-

Lim function

X0(x) =
x

8

(

x+ 2

x− 1
+

3x− 6

(x− 1)2
lnx

)

, (80)

corrected by a phenomenological QCD factor ηX = 0.994, which is due to the top quark con-

tribution [102] to order αs, and the functions X
(ℓ)
NL, ℓ = e, µ, τ , contain the contributions from

Z0 penguin and box diagrams with charm quarks in the loops, and have been calculated at the
next-to-leading log approximation [180].

To illustrate the CKM constraint, we express Eq. (79) in the Wolfenstein parameters

B(K+ → π+νν) = κ+A
4X2(xt)

1

σ

[

(ση)2 + (ρ0 − ρ)2
]

, (81)

with

X(x) = ηXX0(x) , σ = 1 + λ2 + O(λ4) , ρ0 = 1 +
P0

A2X(xt)
. (82)



56 Part IV – Constraints from Kaon Physics

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80

E787 + E949
CKM fit

Branching fraction   [ 10–11 ]

C
L

K+ → π+νν

CK M
f i t t e r

Winter 2004

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.01 0.02 0.03 0.04

E787 + E949
CKM fit

| Vtd
 |

C
L

K+ → π+νν

CK M
f i t t e r

Winter 2004

Figure 11: Confidence level of B(K+ → π+νν) (left) and |Vtd| (right). The solid lines give to the
constraints from the combined E787 and E949 measurements, and the hatched areas represent
the SM predictions obtained from the standard CKM fit.

Equation (79) provides an almost elliptic constraint in the (ρ, η) with the center close to the
(ρ = 1, η = 0) apex of the Unitarity Triangle. It allows us to extract the CKM matrix element
|Vtd| from the branching fraction measurement. The constant κ+ is defined in Ref. [180]. It

contains a λ8 dependence so that B(K+ → π+νν) is a function of
(

Aλ2
)4

, which is constrained
by |Vcb| and experimentally determined from inclusive and exclusive b → cℓν transitions.
Finally, the parameter P0 quantifies the charm quark contribution and is given by

P0 =
1

λ4

[

2

3
Xe

NL +
1

3
Xτ

NL

]

. (83)

Theoretical uncertainties on P0 arise from the charm quark mass, the renormalization scale
dependence and ΛQCD.

The left hand plot in Fig. 12 shows the constraints in the (ρ, η) plane obtained from the
comparison of the experimental result with the SM prediction. Within the large experimental
errors, the constraint is found to be compatible with the allowed region obtained from the
standard CKM fit.

We concentrate in the following on the study of the constraint on |Vtd| to evaluate the
potential of future B(K+ → π+νν) measurements. Relative uncertainties on the branching
fraction scale approximately as 4σ(|Vcb|)/|Vcb| and 2σ (X0) /X0, and the relative error on |Vtd|2
scales equivalently. Moreover, the charm quark contribution (83) induces an uncertainty on
the center of the elliptical constraint, which translates into an uncertainty on |Vtd|. The right
hand plot in Fig. 11 gives the present constraints on |Vtd| for the combined E787 and E949
measurements, and the standard CKM fit, respectively. We extrapolate into the future by
assuming that the branching fraction is equal to the central value obtained in the present CKM
fit. Other inputs used in this study are |Vus| (to fix the Wolfenstein parameter λ), and |Vub|
together with |Vcb| to intersect the elliptical constraint in a restricted area of the (ρ, η) plane,
and to hence reduce the effect of the uncertainty on the center of the ellipse. Table 5 gives a
breakdown of the uncertainties contributing to the error of |Vtd| for three scenarios:

(I) using the present knowledge of the relevant input parameters and neglecting the statistical
error on the B(K+ → π+νν) measurement;
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Figure 12: Constraint in the (ρ, η) plane from the combined E787 and E949 measurements of
B(K+ → π+νν) (left), and from a hypothetical B(K0

L → π0νν) measurement with 10% relative
error (right). Dark, medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively.

(II) assuming a measurement with a statistical precision of 10% and an improvement of the
relevant uncertainties to a 1% error on |Vcb|, a 2GeV error on the top quark mass, and a
50MeV error on the charm quark mass;

(III) assuming a measurement with a statistical precision of 10%, and neglecting all theoretical
uncertainties in the prediction of B(K+ → π+νν).

We conclude from this exercise that, once an accurate branching fraction measurement becomes
available, the quantitative knowledge of the input parameters to the SM prediction must be
significantly improved so that it does not dominate the uncertainty on the |Vtd| constraint31. For
the input values used in the Scenario (I), the charm term is the dominant source of uncertainty,
mostly due to the charm quark mass and the renormalization scale dependence. Since the top
quark mass is expected to be measured with increasing accuracy at current and future hadron
machines, and the error used for the charm quark mass is rather conservative, an improved
precision on |Vcb| will become mandatory (see Section 2.4).

3 Rare Decays of Neutral Kaons: K0
L

→ π0νν

In the SM, the golden decay K0
L → π0νν proceeds almost entirely through a direct CP -violating

amplitude dominated by the top quark contribution. The theoretical prediction of the branching
fraction is given by [180]

B(K0
L → π0νν) = κL

(

Im[VtdV
∗
ts]

λ5

)2

X2(xt)

31One could, of course, argue that instead of |Vtd| the parameter of interest is |VtdV ∗
ts|2. However we note that

the SM prediction for B(K+ → π+νν) and hence the extraction of |Vtd| is not dominated by the uncertainty on
|Vcb|. Also, the interest in this mode is twofold: firstly the improvement of the knowledge of the CKM phase, and
secondly the search for physics beyond the SM. In both cases |Vtd| appears to be the appropriate parameter.
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Scenario ≥ 5% CL range on |Vtd| [×10−3] Half width

(I) 6.1 - 10.5 2.2
σ(mc) only 6.8 - 9.9 1.6
σ(mt) only 7.7 - 8.9 0.6
σ(|Vcb|) only 7.9 - 8.7 0.4

(II) 7.0 - 9.7 1.3

(III) 7.2 - 9.4 1.1

standard CKM fit 6.5 - 9.5 1.5

Table 5: Constraints on |Vtd| from B(K+ → π+νν) for the three scenarios described in the text.
The last line gives the result from the present standard CKM fit (Table 3).

Scenario ≥ 5% CL range on |η| Half width

(I) 0.313 - 0.399 0.043
σ(mt) only 0.333 - 0.379 0.023
σ(|Vcb|) only 0.327 - 0.385 0.028

(II) 0.336 - 0.376 0.020

(III) 0.317 - 0.395 0.039

standard CKM fit 0.273 - 0.444 0.086

Table 6: Constraints on |η| from B(K0
L → π0νν), for the three scenarios described in the text.

The last line gives the result from the present standard CKM fit (Table 3).

= κLA
4η2X2(xt) + O(λ4) , (84)

where κL = κ+(rKL
τKL

)/(rK+τK+) = (2.12 ± 0.03) × 10−10 [165], and where rKL
= 0.944

accounts for isospin breaking [181]. The constant κ+ is defined in Ref. [180]. It contains a
λ8 term so that the branching fraction is again proportional to |Vcb|4. The constraint in the
(ρ, η) plane obtained from a future measurement of B(K0

L → π0νν) (here with 10% relative
uncertainty) corresponds to two horizontal lines as illustrated on the right hand plot of Fig. 12.
The relative error on |η| scales with 2σ (|Vcb|) /|Vcb| and σ (X) /X.

We study the CL on |η| obtained from a B(K0
L → π0νν) measurement, for the same three

scenarios introduced in the previous section. We assume that the branching fraction is equal
to the central value from the present CKM fit. Table 6 gives a breakdown of the uncertainties
contributing to the error of |η| for the three scenarios defined in the previous section. The
dominant source of uncertainty on |η| in Scenario (I) is introduced by |Vcb|. Since the sensitivity
to theoretical uncertainties is reduced, the constraint on |η| will remain statistically limited for
realistic expectations on near-future measurements of the K0

L → π0νν branching fraction (with
∼ 30–60 signal events).
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4 Conclusions

Despite the success of the experimental effort that lead to a precise measurement of Re(ε′/ε),
the present situation does not allow us to use it as a reliable constraint in the CKM fit without a
substantial improvement on the theoretical side. As for the rare kaon decays, a handful of events
are expected to be observed by BNL-E949 [16], while the CKM project at FNAL [182], starting
around 2005, expects to collect about 100 events within a few years of data taking. Since these
measurements have very small backgrounds, a ∼ 10% statistical error on the B(K+ → π+νν)
is expected. The prospects for a measurement of the decay K0

L → π0νν are more uncertain due
to the enormous experimental challenge. Long-term projects [183] are designed to collect high
statistics, but even intermediate-statistics branching fraction measurements [184] may reveal
potentially large deviations from the SM, and are hence of considerable interest.
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Part V

Constraints on 2β + γ and γ from Tree Decays

1 CP -Violating Asymmetries in B0 → D(∗)±π∓ Decays

Even though they are not CP eigenstates, partially and fully reconstructed B0 → D(∗)±π∓

decays are sensitive to the UT angle γ because of the interference between the CKM-favored
amplitude of the decay B0 → D(∗)−π+ with the doubly CKM-suppressed amplitude of B0 →
D(∗)+π−.32 The relative weak phase between these two amplitudes is −γ and, when combined
with the B0B0 mixing phase, the total phase difference is −(2β + γ) to all orders in λ:

−(2β + γ) = arg

[

−VtdV
∗
tb

V ∗
tdVtb

V ∗
cdVub

VudV
∗
cb

]

. (85)

The interpretation of the CP -violation observables in terms of the UT angles requires external
input on the ratio

r(∗) ≡
∣

∣

∣

∣

∣

q

p

A(B0 → D(∗)−π+)

A(B0 → D(∗)−π+)

∣

∣

∣

∣

∣

, (86)

which can be obtained experimentally from the corresponding flavor-tagged branching fractions,
or from similar modes that are easier to measure. These can be ratios of branching fractions of
the charged B+ → D(∗)+π0 to the neutral CKM-favored decay, or ratios involving self-tagging

decays with strangeness like B0 → D
(∗)+
s π−. Corrections for SU(3) breaking in the latter case

generate a significant theoretical uncertainty, which is generally hard to quantify. Naively, one
can estimate r(∗) ∼ |V ∗

cdVub/VudV
∗
cb| ≃ 0.02. At present, the most precise semi-experimental

determination of r(∗) can be obtained from the SU(3)-corrected ratio

r(∗) =
|Vus|
|Vud|

√

√

√

√

B(B0 → D
(∗)+
s π−)

B(B0 → D(∗)−π+)

fD(∗)

f
D

(∗)
s

. (87)

Inserting the corresponding branching fractions and decay constants leads to [185]

r∗ = 0.017+0.005
−0.007 , r = 0.014 ± 0.004 . (88)

In Ref. [185] a theoretical uncertainty of 30% of the central value is attributed in addition to
the experimental errors to each of the quantities. It accounts for SU(3)-breaking corrections
and the neglect of W -exchange contributions to the B0 → D(∗)+π− decay amplitude. However
Eq. (87) already corrects for the main (factorizable) symmetry breaking; on the other hand, the
exchange diagram is the only possible contribution to the D±

s K
∓ mode: thus one has roughly

|exchange/emission|2 ∼ B(B0 → D−
s K

+)/B(B0 → D−π+) ∼ 1% [186]. As a consequence,
taking into account the residual non factorizable SU(3) breaking and the order of magnitude of
the exchange contribution, we estimate the total theoretical uncertainty to be of the order of
15% for both r and r∗, keeping in mind that a more refined estimate of this error source will be
needed when the statistics increase.

BABAR [185,187] and Belle [188] use two sets of observables

S(∗)± = 2r(∗) sin(2β + γ ± δ(∗)) , (89)
32This is similar to the situation in B0 → ρ±π∓ decays (see Section VI.4), even if the two amplitudes there are

of the same CKM order, which considerably increases their potential CP asymmetries.
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BABAR [187,185] Belle [188]

partially reconstructed fully reconstructed fully reconstructed
Average

a∗ −0.063± 0.024 ± 0.014 −0.068± 0.038± 0.020 0.063± 0.041 ± 0.016± 0.013 −0.038± 0.021

c∗ −0.004± 0.037 ± 0.020 0.031 ± 0.070± 0.033 0.030± 0.041 ± 0.016± 0.030 0.012± 0.030

a - −0.022± 0.038± 0.020 −0.058± 0.038 ± 0.013 −0.041± 0.029

c - 0.025 ± 0.068± 0.033 −0.036± 0.038 ± 0.013± 0.036 −0.015± 0.044

Table 7: Experimental results from time-dependent CP-asymmetry analyses of partially and fully
reconstructed B0 → D∗±π∓ decays, respectively. The averages are taken from the HFAG [62].

where S(∗)± is the coefficient of the sine term in the time evolution of the B0(B0) → D(∗)±π∓

system, and

a(∗) ≡ 1

2

(

S(∗)+ + S(∗)−
)

= 2r(∗) sin(2β + γ) cos(δ(∗)) , (90)

c(∗) ≡ 1

2

(

S(∗)+ − S(∗)−
)

= 2r(∗) cos(2β + γ) sin(δ(∗)) , (91)

so that S(∗)+ = a(∗) +c(∗) and S(∗)− = a(∗)−c(∗). These definitions are valid in the limit of small
r(∗) only so that terms of order r(∗)≥2 can be neglected and the cosine coefficient in the time
evolution is one (C(∗) = (1 − r2)/(1 + r2) → 1). The relative strong phase δ(∗) is unknown and
has to be determined simultaneously with 2β+γ from the experimental observables. Due to the
disparate strength of the two interfering amplitudes, the CP asymmetry is expected to be small,
so that the possible occurrence of CP violation on the tag side becomes an important obstacle.
Tag side CPV is absent for semileptonic B decays (mostly lepton tags). The parameter a(∗)

is independent of tag side CPV. The experimental results are given in Table 7. The averages
quoted are taken from the HFAG [62].

For each mode the combinations sin(2β + γ ± δf ) are extracted (δDπ = δ and δD∗π = δ∗).
Simple trigonometry shows that, as far as the CP angle is concerned, this is equivalent to the
determination of the quantity | sin(2β + γ)| up to a two-fold discrete ambiguity. Should the two
strong phases δ and δ∗ be different, the discrete ambiguity could in principle be resolved, leaving
a single solution for | sin(2β + γ)| (and thus four solutions for the angle 2β + γ itself in [0, π]).

Figure 13 shows the confidence level obtained in the (ρ, η) plane. Also shown is the allowed
region from the standard CKM fit. Good agreement is observed, although the statistical signif-
icance of the measurement is still weak. Note that we have used a Gaussian Prob(χ2, 1) here to
evaluate the CL. As seen below, this tends to overestimates the CL (and hence to weaken the
constraint). The left hand plot in Fig. 14 shows the confidence level for | sin(2β + γ)| obtained
from the various measurements. A single peak is observed, although δ and δ∗ are very close
to each other (see below), because limited statistics merges the position of the two solutions.
We perform a toy Monte Carlo simulation in order to evaluate the goodness of the Gaussian
Prob(χ2, 1) approximation for the confidence level. Significant deviations are observed. Also
shown are the prediction from the standard CKM fit as well as the result obtained when using
the BABAR results only, which benefit from a small |c∗| fluctuation in the measurement with
partially reconstructed B decays. The right hand plot shows the constraint obtained on the UT
angle γ when also using the world average of sin 2β[cc̄]. For simplicity, we use the Prob(χ2, 1)
approximation for this as well as for the upcoming plots. Also shown is the constraint from
the standard CKM fit. One can use the latter prediction of | sin(2β + γ)| together with the
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Figure 13: Constraint in the enlarged (ρ, η) plane from the average measurement of time-
dependent CP -violating asymmetries in B0 → D∗±π∓ decays. The shaded areas indicate
CL > 5% (light), CL > 32% (medium) and CL > 90% (dark) regions. Also shown is the
CL > 5% region of the standard CKM fit.
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Figure 14: Left: confidence level obtained for | sin(2β + γ)|. The shaded area gives the average
from BABAR and Belle obtained by means of a toy Monte Carlo simulation (see Section II.2.2.3).
As a comparison, we show by the solid line the approximate result from the Prob(χ2, 1) interpre-
tation. Also shown is the result from BABAR only, which leads to a stronger exclusion of small
| sin(2β+γ)| values due to the somewhat propitiously small value of c∗ in partially reconstructed
B0 → D∗±π∓ decays [187]. Also shown is the prediction from the standard CKM fit. Right: con-
fidence level obtained for the UT angle γ when using BABAR and Belle’s results on | sin(2β+ γ)|
(and | cos(2β + γ)|) combined with the world average of sin 2β[cc̄]. Also shown is the prediction
from the standard CKM fit.
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Figure 15: Confidence levels obtained for the strong phases δ(∗) occurring between the CKM-
favored and CKM-suppressed branches of B0 → D∗±π∓ decays. The standard CKM fit has been
used to constrain the weak CKM phases.

B0 → D(∗)±π∓ measurements to constrain the strong phases δ(∗) as shown in Fig. 15.

In summary we conclude that in spite of the considerable experimental effort to achieve this
first direct constraint on 2β + γ, the present statistical accuracy is insufficient to improve the
knowledge of the apex in the unitarity plane. The errors of the present world averages given in
Table 7 have to be reduced by a factor of about five (approximately 5 ab−1 accumulated lumi-
nosity) to be competitive with the standard CKM fit on | sin(2β + γ)| (assuming the above 15%
uncertainty on r(∗)). Such large statistics samples, which are necessary due to the smallness of
the CP -violating asymmetries, are likely to increase the importance of the experimental system-
atic uncertainties. Similar modes like B0 → D(∗)±ρ∓ must be included in future to improve the
reach of this analysis.

2 Dalitz Plot Analysis of B+ → D(∗)0K+ Decays

The golden method to measure the angle γ at the B factories has been proposed by Gronau,
London and Wyler (GLW) [189,190] (see also Refs. [191,192]) and extended by Atwood, Dunietz
and Soni (ADS) [193]. The GLW method consists of reconstructing the D0 (D0) occurring in
charged B+ → D0K+ (B+ → D0K+) decays as a CP eigenstate (e.g., K0

Sπ
0 or K0

Sπ
+π−) so

that the CKM-favored (b → c) and CKM-suppressed (b → u) transition amplitudes interfere.
The relative phase between these amplitudes is γ + δ, where δ is a CP -conserving strong phase
and γ the weak UT angle. The measurement of the corresponding branching fractions and
CP -violating asymmetries allows one to simultaneously extract γ and the strong phase from a
triangular isospin analysis, up to discrete ambiguities, even if the strong phase vanishes, but with
virtually no theoretical uncertainties. The feasibility of this or related analyses crucially depends
on the size of the color- and CKM-suppressed b→ u transition (expected to be roughly rB ∼ 1/8,
if color-suppression holds). Recently, the BABAR collaboration has determined an upper limit
for the amplitude ratio rB = |A(B+ → D0K+)/A(B+ → D0K+)| of 0.22 at 90% CL [194],
which dampens the hope for a performing γ analysis using the GLW or ADS techniques at the
first generation B factories.

Along the line of Ref. [195], the Belle collaboration overcomes these difficulties by performing
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a Dalitz plot analysis of B+ → D0K+ (and B+ → D∗0(→ D0π0)K+) decays followed by a
three-body D0 decay to K0

Sπ
+π− [196]33. The weak phase γ and the strong phase δ as well as

the magnitude of the suppressed-to-favored amplitude ratio rB are extracted from a fit to the
interference pattern between D0 and D0 in the Dalitz plot. A large number of intermediate
resonances has to be considered to properly model the full K0

Sπ
+π− Dalitz plot, where high-

statistics samples of charm decays can be used to fit the model parameters [198]. Belle determines
a probability density function (PDF) for φ3 = γ by means of a Bayesian analysis with uniform
priors for γ, δ and rB . Single-sided integration of this PDF, and choosing the solution that is
consistent with the standard CKM fit, results in

γ = 81◦ ± 19◦ ± 13◦ ± 11◦ , (92)

where the first error is statistical, the second systematic and the third is due to the amplitude
model. The constraint on the second solution, which is not consistent with the standard CKM fit,
is obtained by the transformation γ → γ+π (the full analysis actually leads to the determination
of tan γ). We have extracted and integrated the PDF from Ref. [196] and find the confidence
levels shown as a function of γ and (ρ, η) in Figs. 16 and 17. Since systematic and model-
dependent errors are not included in the PDF, we add them in quadrature to the statistical error.
With these rather strong assumptions, agreement with the standard CKM fit is observed. Belle
determines the magnitude of the suppressed-to-favored amplitude ratio to be rB = 0.28+0.09

−0.11,
which is slightly larger than the expectation and than the 90% CL bound set by BABAR, though
the results are well compatible within errors (23%). Since large values of rB lead to an increased
sensitivity to γ, the error given in (92) may increase if the true rB is significantly smaller. More
data are needed to clarify this.

Since the result is still preliminary, we do not introduce it in the standard CKM fit. It is
however used in our analysis of New Physics presented in Part VII.

33After the completion of this work, an update of the Belle analysis has been submitted [197]. By means of
a frequentist analysis, Belle finds the combined result γ = [77+17

−19(stat) ± 13(syst) ± 11(model)]◦, which slightly
differs from the previous value. This modification in the result does however not alter the conclusion drawn from
the study of New Physics in the present work.
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Figure 16: Confidence level of the UT angle γ from the Dalitz plot analysis of B+ → D(∗)0K+

decays [195,196]. Shown are the experimental PDF (solid line - statistical only), found by Belle,
and the corresponding CL from single-sided integration (shaded area - including systematics,
while the dashed line gives the CL obtained when ignoring systematic uncertainties). Also given
is the constraint from the standard CKM fit.

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

α

βγ

Standard CKM Fit

ρ

η

shaded areas have CL > 0.05, 0.32, 0.90

D(*)0K+C K M
f i t t e r

Winter 2004

CL=0.05 (statistical only)

Figure 17: Confidence level in the enlarged (ρ, η) plane from the Dalitz plot analysis of B+ →
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Part VI

Charmless B Decays

Unlike B0 → J/ψK0
S or other charmonium decays, for which amplitudes with weak phases

that are different from the dominant tree phase are doubly CKM-suppressed, multiple weak
phases must be considered in the analyses of charmless B decays. This complication makes the
extraction of the CKM couplings from the experimental observables considerably more difficult,
and at the same time richer.

The first section of this part is devoted to the extraction of α from the analysis of B → ππ
decays, using four different scenarios with increasing theoretical input. Section 3 describes the
constraints obtained from the analysis of B → Kπ modes only. We also study the impact from
electroweak penguin amplitudes. The extraction of α from the pseudoscalar-vector final states,
ρπ and SU(2) or SU(3)-related modes, is presented in Section 4. Finally, we discuss the isospin
analysis of B → ρρ decays in Section 5, which is similar to the ππ system. In most cases we
attempt to evaluate the constraints obtained with higher luminosity samples.

Throughout this part, we will assume that CP violation in mixing is absent, i.e., |q/p| = 1,
as suggested by the Standard Model (|ΓBH

−ΓBL
| ≪ ΓB0) and confirmed by experiment (ASL =

−0.007 ± 0.013, see Section VII.2).

Remark on Radiative Corrections

We point out that the charmless analyses, published by the BABAR and Belle collaborations up
to approximately Summer 2003, utilized Monte Carlo simulation without treatment of radiative
corrections in the decays. The simulation is used by the experiments to compute selection effi-
ciencies and to predict probability density distributions of signal events for the use in maximum-
likelihood fits. A study based on Ref. [199] suggests that the branching fractions of B0 → π+π−

and B0 → K+π− may be underestimated by up to 10% [200]. Since the effects strongly depend
on the final state and the analysis strategy used, we do not attempt to correct the branching
fraction results here. However one should be aware that this systematic may lead to increased
branching fractions for modes that decay to light charged particles.

1 Analysis of B → ππ and SU(3)-Related Decays

1.1 Basic Formulae and Definitions

1.1.1 Transition Amplitudes

The general form of the B0 → π+π− decay amplitude, accounting for the tree and penguin
diagrams that correspond to the three up-type quark flavors (u, c, t) occurring in the W loop
(see Fig. 18), reads

A+− ≡ A(B0 → π+π−) = VudV
∗
ubMu + VcdV

∗
cbMc + VtdV

∗
tbMt , (93)

and similarly for the CP -conjugated amplitude. One can benefit from the unitarity relation (12)
to eliminate one of the three amplitudes, resulting in the three conventions U, C, T, namely

A+− =











VcdV
∗
cb(Mc −Mu) + VtdV

∗
tb(Mt −Mu) (U)

VudV
∗
ub(Mu −Mc) + VtdV

∗
tb(Mt −Mc) (C)

VudV
∗
ub(Mu −Mt) + VcdV

∗
cb(Mc −Mt) (T)

(94)
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Figure 18: Example of tree (left) and penguin (right) diagrams for the decay B0 → π+π−.

for which the u (U), c (C) and t (T) amplitude coefficients have been substituted respectively.
In the following, we adopt convention C so that A+− reads

A+− = VudV
∗
ubT

+− + VtdV
∗
tbP

+− , (95)

where T+− and P+− are defined by

T+− ≡Mu −Mc and P+− ≡Mt −Mc . (96)

The particular choice of which amplitude to remove in the definition of a total transition ampli-
tude is arbitrary34 and does not have observable physical implications. However the convention
does modify the contents of the phenomenological amplitudes T+− and P+−. We will often
refer to T+− and P+− amplitudes as “tree” and “penguin”, respectively, although it is implic-
itly understood that both of them receive various contributions of distinct topologies, which are
mixed under hadronic rescattering.

1.1.2 CP -Violating Asymmetries

The time-dependent CP -violating asymmetry of the B0B0 system is given by

aCP (t) ≡ Γ(B
0
(t) → π+π−) − Γ(B0(t) → π+π−)

Γ(B
0
(t) → π+π−) + Γ(B0(t) → π+π−)

= S+−
ππ sin(∆mdt) − C+−

ππ cos(∆mdt) , (97)

where ∆md is the B0B0 oscillation frequency and t is either the decay time of the B0 or the B0

or, at B factories running at the Υ (4S) mass, the time difference between the CP and the tag
side decays. The coefficients of the sine and cosine terms are given by

S+−
ππ =

2Imλππ

1 + |λππ|2
and C+−

ππ =
1 − |λππ|2
1 + |λππ|2

, (98)

where the CP parameter λππ is given by (we recall that it is assumed |q/p| = 1)

λππ =
q

p

A+−

A+− , (99)

34Note that Mu,c,t amplitudes are intrinsically divergent and only differences between them lead to finite results
(see, e.g., Ref. [201]).



68 Part VI – Charmless B Decays

�Vud

W+

d

b

d

d

u

u
V ∗

ub

Figure 19: Color-suppressed tree diagram for the decay B0 → π0π0.

where the phase arg[q/p] = 2 arg[VtdV
∗
tb] ≈ −2β (in our phase convention) arises due to B0B0

mixing. We have used in the above equations that π+π− is a CP eigenstate with eigenvalue +1.

In the absence of penguin contributions (P = 0), Eq. (99) reduces to λππ = e2iα (using the
triangle definition (20)) and hence

S+−
ππ [P+− = 0] = sin 2α and C+−

ππ [P+− = 0] = 0 . (100)

In general, the phase of λππ is modified by the interference between the penguin and the tree
amplitudes. In addition, the parameter C+−

ππ will be non-zero if

δ+− ≡ arg[P+−T+−∗] 6= 0 , (101)

hence measuring the occurrence of direct CP violation. Defining an effective angle αeff that
incorporates the phase shift

λππ ≡ |λππ|e2iαeff , (102)

and, using |λππ| =
√

1 −C+−
ππ /

√

1 + C+−
ππ , one finds

S+−
ππ = D sin 2αeff , (103)

where D ≡
√

1 −C+−
ππ

2
. Twice the effective angle αeff corresponds to the relative phase between

the amplitudes e−2iβA+− and A+−. It is useful for the following to define the penguin-induced
phase difference

∆α ≡ 1

2
(2α− 2αeff ) , (∆α ∈ [0, π]) . (104)

We note that the sign of the direct CP asymmetry is related to the α→ π+α and δ+− → π+δ+−

ambiguity through the relation

sign(C+−
ππ ) = sign(sinα) × sign(sin δ) . (105)

1.1.3 Isospin Related Decays

Owing to isospin invariance of strong interaction, the amplitudes of the various B → ππ decays
are related to each other. Gronau and London have shown [141] that the measurements of rates
and CP -violating asymmetries of the charged and two neutral ππ final states together with the
exploitation of their isospin relations provides sufficient information to extract the angle α as
well as the various T and P amplitudes. Unfortunately, as far as α is concerned, the general
solution is plagued by an eightfold ambiguity within [0, π] [202].
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Figure 20: The isospin relations (107) in the complex plane neglecting electroweak penguins.

Note that the relative B0B0 mixing phase is included in the B triangle (Ãij ≡ e−2iβA
ij
).

Using convention C, one can write

√
2A+0 ≡

√
2A(B+ → π+π0) = VudV

∗
ubT

+0 + VtdV
∗
tbP

EW ,√
2A00 ≡

√
2A(B0 → π0π0) = VudV

∗
ubT

00
C + VtdV

∗
tbP

00 , (106)

and similarly for the CP -conjugated modes. The C subscript stands for the color-suppressed
amplitude (see Fig. 19 for the color-suppressed tree diagram in the decay B0 → π0π0), and
the EW superscript stands for the electroweak penguin amplitude contributing to π+π0. Note
that the latter notation only refers to the ∆I = 3/2 electroweak penguin contribution, since the
∆I = 1/2 part is absorbed in the strong penguins. Indeed, gluonic quark anti-quark production
has ∆I = 0 so that QCD penguins can only mediate ∆I = 1/2 transitions of the b quark. As
a consequence, the ∆I = 3/2 decay B+ → π+π0 has no strong penguin contribution. Applying
the isospin relations [141]

A+0 =
1√
2
A+− +A00 ,

A+0 =
1√
2
A+− +A00 , (107)

with A
+0

= A−0, one can rearrange the amplitudes (106)

√
2A+0 = VudV

∗
ub

(

T+− + T 00
C

)

+ VtdV
∗
tbP

EW ,
√

2A00 = VudV
∗
ubT

00
C − VtdV

∗
tb

(

P+− − PEW
)

. (108)

The isospin relations between the three ππ amplitudes in the complex plane are drawn in Fig. 20
for the simplified case where electroweak penguins are neglected. They represent two distinct
triangles for the two CP -conjugated amplitudes. Taking into account the phase shift due to
B0B0 mixing, the relative angle between Ã+0 and A+0 adds up to 2α, as it is shown in the
figure.

Equations (107) can be considered as exact to a very good approximation. Isospin-breaking
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corrections like, e.g., π0–η, η′ mixing [203] are expected to be below a few percent. We refer
to Section VI.5.4 for a numerical discussion of isospin-breaking effects in the B → ρρ case.
Nevertheless, extracting α relying on this unique theoretical assumption appears to be difficult
at present, given the number of ambiguities and the experimental uncertainties. In the following,
we therefore explore several scenarios which, though still relying on Eqs. (107), involve additional
experimental and theoretical inputs.

1.2 Theoretical Frameworks

To extract α from the experimental measurements of the CP -violating asymmetries, we use four
different scenarios, with rising theoretical assumptions [204]:

(I) using as input S+−
ππ and C+−

ππ as well the branching fractions B → ππ (all charges) and
strong isospin symmetry SU(2) [141];

(II) using (I) and the branching fraction B0 → K+π− together with SU(3) flavor symmetry,
and neglecting OZI-suppressed penguin annihilation topologies [202];

(III) using (II) and a phenomenological estimate of |P+−| by means of the decay rate of
B+ → K0π+, and neglecting doubly CKM-suppressed penguin and annihilation contribu-
tions [206,202,205];

(IV) using S+−
ππ and C+−

ππ and the prediction of the complex penguin-to-tree ratio P+−/T+− in
the framework of QCD Factorization [207,208].

1.2.1 Isospin Analysis, Isospin Bounds and Electroweak Penguins

It was shown in Ref. [141] that using the CP -averaged branching fractions

B+−
ππ ∝ τB0

2

(

|A+−|2 + |A+−|2
)

,

B+0
ππ ∝ τB+

2

(

|A+0|2 + |A−0|2
)

, (109)

B00
ππ ∝ τB0

2

(

|A00|2 + |A00|2
)

,

where τB0 and τB+ are the neutral and charged B lifetimes (cf. Section III.2.4), and the CP -
violating asymmetries

C+−
ππ =

| A+− |2 − | A+− |2
| A+− |2 + | A+− |2 ,

S+−
ππ =

2 Im(A+−∗A+−)

| A+− |2 + | A+− |2 , (110)

C00
ππ =

| A00 |2 − | A00 |2
| A00 |2 + | A00 |2 ,

one can extract the angle α, up to discrete ambiguities, provided electroweak penguin contribu-
tions are negligible (PEW = 0). The geometrical description of the isospin analysis presented
in the preceding section can be conveniently complemented by the explicit solution in terms of
α [209]

tanα =
sin(2αeff )c̄+ cos(2αeff )s̄+ s

cos(2αeff )c̄− sin(2αeff )s̄+ c
, (111)
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where all quantities on the right hand side can be expressed in term of the observables as follows:

sin(2αeff ) =
S+−

ππ

D
,

cos(2αeff ) = ±
√

1 − sin2(2αeff ) ,

c =

√

τB+

τB0

τB0

τB+
B+0

ππ + B+−
ππ (1 + C+−

ππ )/2 − B00
ππ(1 + C00

ππ)
√

2B+−
ππ B+0

ππ (1 + C+−
ππ )

, (112)

s = ±
√

1 − c2 ,

c =

√

τB+

τB0

τB0

τB+
B+0

ππ + B+−
ππ (1 − C+−

ππ )/2 − B00
ππ(1 − C00

ππ)
√

2B+−
ππ B+0

ππ (1 − C+−
ππ )

,

s = ±
√

1 − c2 .

The eightfold ambiguity for α in the range [0, π] is made explicit by the three arbitrary signs35.
The quantity S00

ππ could also be considered, and would help lifting these ambiguities, but its mea-
surement, which could make use of π0 Dalitz decays for instance, requires very large statistics,
which is not available at present.

35 We may consider an alternative amplitude representation, which makes the occurrence of the discrete ambi-
guities more explicit [209]:

A+− = µa , A+− = µa e+2iαeff , A+0 = µ ei(∆−α) , A+0 = µ ei(∆+α) ,

A00 = µ ei(∆−α)

(

1 − a√
2

e+i(α−∆)

)

, A00 = µ ei(∆+α)

(

1 − a√
2

e−i(α+∆−2αeff )

)

,

which satisfy the triangular SU(2) relations (107), and where µ, a and a are three unknown real (and positive)
parameters which drive the strength of the branching fractions, while ∆ is a phase. The phase convention chosen
here is such that A+− is real positive, and the A amplitudes include the B0B0 mixing phase arg[q/p]. With this
choice, the phase ∆ is not to be viewed as arising purely from strong interaction since it absorbs the weak phase
a priori present in A+−: there is no reason to expect it to be confined to small values. In terms of the above
parameterization, the observables take the form

1

τB0

B+−
ππ = µ2 1

2
(a2 + a2) ,

1

τB+

B+0
ππ = µ2 ,

1

τB0

B00
ππ = µ2 1

2

(

2 +
1

2
(a2 + a2) −

√
2(ac + ac)

)

,

C+−
ππ =

a2 − a2

a2 + a2
,

S+−
ππ =

2aa

a2 + a2
sin(2αeff ) ,

C00
ππ =

1
2
(a2 − a2) −

√
2(ac − ac)

2 + 1
2
(a2 + a2) −

√
2(ac + ac)

,

S00
ππ =

2 sin(2α) + aa sin(2αeff ) − a
√

2 sin(α + ∆) − a
√

2 sin(α − ∆ + 2αeff )

2 + 1
2
(a2 + a2) −

√
2(ac + ac)

.
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SU(2) Bounds

The direct CP asymmetry C00
ππ has not yet been measured so that the extraction of α itself is not

possible and one has to derive upper limits on ∆α instead. It was first pointed out by Grossman
and Quinn [142] that a small value for the branching fraction to π0π0 would mean that the
penguin contribution cannot be too large. We stress that the numerical analysis performed with
CKMfitter guarantees the optimal use of the available and relevant experimental information,
once the isospin relations are implemented at the amplitude level. It is nevertheless instructive
to derive analytical bounds on ∆α. As shown by Grossman–Quinn [142], and later rediscussed
by one of us [202] and Gronau–London–Sinha–Sinha (GLSS) [144], one obtains the inequality

cos 2∆α ≥ 1

D

(

1 − 2
τB+

τB0

B00
ππ

B+0
ππ

)

+
τB+

τB0

1

D

(

B+−
ππ − 2

τB0

τB+
B+0

ππ + 2B00
ππ

)2

4B+−
ππ B+0

ππ
, (113)

or, equivalently,

cos 2∆α ≥ 1

D

(

1 − 4
B00

ππ

B+−
ππ

)

+
τB+

τB0

1

D

(

B+−
ππ − 2

τB0

τB+
B+0

ππ − 2B00
ππ

)2

4B+−
ππ B+0

ππ
. (114)

The first term on the right hand side of Eqs. (113) and (114) corresponds to the limit considered
in Ref. [202], while the original Grossman–Quinn bound is obtained when setting D = 1 in the
first term on the right hand side of Eq. (113).

The above bound has interesting consequences on the discrete ambiguity problem. In the
limit where B00

ππ goes to zero, the GLSS bound (113) merges the eight mirror solutions for α (in
the range [0, π]) in two distinct intervals, each of which containing one quadruplet of them.

Following the same line it is possible to derive lower and upper bounds on the branching
fraction into two neutral pions [144]

B00
GLSS− ≤ B00

ππ ≤ B00
GLSS+ , (115)

with

B00
GLSS± =

τB0

τB+

B+0
ππ +

1

2
B+−

ππ ±
√

τB0

τB+

B+0
ππB+−

ππ (1 +D) ,

where the limits are weakest for D = 1, that is vanishing direct CP violation. Equation (113)
can be rewritten [209]

sin2 ∆α ≤ τB+

τB0

1

D

(

B00
ππ − B00

GLSS−
) (

B00
GLSS+ −B00

ππ

)

2B+−
ππ B+0

ππ
, (116)

The eight mirror solutions (for α in [0, π]) are summarized in the table below. Solutions 5 through 8 are just
π/2 minus solutions 1 through 4. The eight mirror solutions are strictly equivalent if no input is added, like S00

ππ

for example (S00
ρρ,L is experimentally accessible in the decay B0 → ρ0ρ0, see Section VI.5).

Solution α ∆ αeff

1 α ∆ αeff

2 ∆ α αeff

3 −α + 2αeff −∆ + 2αeff αeff

4 −∆ + 2αeff −α + 2αeff αeff

5 π
2
− α π

2
− ∆ π

2
− αeff

6 π
2
− ∆ π

2
− α π

2
− αeff

7 π
2

+ α − 2αeff
π
2

+ ∆ − 2αeff
π
2
− αeff

8 π
2

+ ∆ − 2αeff
π
2

+ α − 2αeff
π
2
− αeff
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which does not provide new information but makes explicit that α = αeff if B00
ππ reaches either

B00
GLSS− or B00

GLSS+ . This is the case in the formal limit B00
ππ → 0, which is close to being realized

in B → ρρ (see Section VI.5). However for B → ππ the lower bound B00
GLSS− in Eq. (115) is not

so small and as soon as B00
ππ deviates from it, αeff can be rather different from α, as described

further below.

If we assume that α is known, e.g., from the standard CKM fit, we obtain the bound on
B00

ππ [209]
B00

α:− ≤ B00
ππ ≤ B00

α:+ , (117)

with

B00
α:± =

τB0

τB+

B+0
ππ +

1

2
B+−

ππ ±
√

τB0

τB+

B+0
ππB+−

ππ

(

1 + D̃α

)

, (118)

and where

D̃α =

√

(1 − sin2 2α)(D2 − S+−
ππ

2
) + S+−

ππ sin 2α .

Since D̃α ≤ D, this bound is tighter than Eq. (115). With known α, the CP asymmetry C00
ππ is

not a free parameter anymore: it can be determined using Eq. (118)

C00
ππ

±
=

1

B00
ππ(1 + D̃α)

[

− C+−
ππ

(

τB0

τB+
B+0

ππ − D̃α

2
B+−

ππ −B00
ππ

)

±
√

(B00
ππ − B00

α:−)(B00
α:+ − B00

ππ)(D2 − D̃2
α)

]

. (119)

There are two solutions of C00
ππ for a given B00

ππ. An application of Eq. (119) is shown in Fig. 30.

Electroweak Penguins

As pointed out by Buras and Fleischer [210] and Neubert and Rosner [211], the electroweak
penguin amplitude PEW in B+ → π+π0 can be related to the tree amplitude in a model-
independent way using Fierz transformations of the relevant current-current operators in the
effective Hamiltonian Heff for B → ππ decays

Heff =
GF√

2

[

∑

q=u,c

VqbV
∗
qd(c1O

q
1 + c2O

q
2) −

10
∑

i=3

VtbV
∗
tdciOi

]

+ h. c. . (120)

Here Oq
1 and Oq

2 are tree operators of the Lorentz structure (V −A)× (V −A), O3−6 are short-
distance gluonic penguin operators, and O7−10 are electroweak penguin operators. The Lorentz
structure of O7 and O8 is (V − A) × (V + A) while O9 and O10 are (V − A) × (V − A). In
the limit of isospin symmetry, the ∆I = 3/2 part of the latter operators is Fierz-related to the
operators O1 and O2. Since c7,8 are small compared to c9,10, they can be neglected so that one
obtains

PEW

T+0
≃ −3

2

(

c9 + c10
c1 + c2

)

= +(1.35 ± 0.12) × 10−2 . (121)

The theoretical error on the numerical evaluation of this ratio has been estimated from the resid-
ual scale and scheme dependence of the Wilson coefficients [101]. It also accounts for the neglect
of the contributions from O7 and O8 [143]. One notices that there is no strong phase difference
between PEW and T+0 so that electroweak penguins do not generate a charge asymmetry in
B+ → π+π0 if this picture holds: this prediction is in agreement with the present experimen-
tal average of the corresponding asymmetry (see Table 8). Although in the SM electroweak
penguins in two-pion modes appear to be small, their inclusion into the full isospin analysis is
straightforward and will become necessary once high-statistics data samples are available.
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Figure 21: Left: penguin diagram for the decay B0 → K+π−. Right: OZI-suppressed penguin
annihilation diagram for the decay B0 → π+π−.

1.2.2 SU(3) Flavor Symmetry

We extend the use of flavor symmetries to SU(3), considering the amplitude of the decay B0 →
K+π− in convention C

A+−
Kπ ≡ A(B0 → K+π−) = VusV

∗
ubT

+−
Kπ + VtsV

∗
tbP

+−
Kπ . (122)

With the assumption of SU(3) flavor symmetry and neglecting OZI-suppressed penguin annihi-
lation diagrams (see right hand diagram in Fig. 21), which contribute to B0 → π+π− but not
to B0 → K+π−, the penguin amplitudes in B0 → π+π− and B0 → K+π− are equal

P+− = P+−
Kπ . (123)

As in the isospin symmetry case, one can derive the following bound [202], which benefits from
the CKM enhancement of the penguin contribution to the B0 → K+π− decay

cos 2∆α ≥ 1

D

(

1 − 2λ2B+−
Kπ

B+−
ππ

)

, (124)

where λ is the Wolfenstein parameter.

Another possibility [212,213], that would eventually give stronger constraints, would be to
identify T+− and T+−

Kπ in addition to P+− and P+−
Kπ . At first sight such an approximation is

similar in spirit to the neglect of OZI-suppressed penguins, because it is violated by exchange
diagrams only, that are expected to be power-suppressed36. However as shown in Ref. [202], an
estimate of P+− leads to the determination of the shift ∆α, while an estimate of T+− determines
the angle α itself. Hence, as far as α is concerned, the error on the estimate of P+− is a second
order effect, while the error on the estimate of T+− is of leading order. We therefore expect the
hadronic uncertainties in the relation T+− = T+−

Kπ to be potentially more dangerous than in the
relation P+− = P+−

Kπ . As a consequence, the ratio T+−
Kπ /T

+− is kept unconstrained in our fit.

SU(3) flavor symmetry is only approximately realized in nature and one may expect violations
of the order of 30% at the amplitude level. For example, within factorization the relative size
of SU(3) symmetry breaking is expected to be (fK − fπ)/fK , where fK and fπ are the pion
and kaon decay constants, respectively. Notwithstanding, the bound (124) can be considered
conservative with respect to SU(3) breaking, since a correction would lead to a stronger bound.
For example, assuming factorization the ratio of branching fractions B+−

Kπ/B+−
ππ would be lowered

36The term “power-suppression” refers to the quantity ΛQCD/mb ≪ 1.
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by (fπ/fK)2 ≃ 0.67. Since the penguin annihilation contributions, which spoil the relationship
between the B → π+π− and B → K+π− penguin amplitudes, are power and OZI-suppressed,
they are expected to be small with respect to the dominant SU(3) breaking. We will therefore
study the constraints derived from Eq. (123) as if they were a consequence of strict SU(3)
symmetry, although it is understood that an additional dynamical assumption is made.

1.2.3 Estimating |P +−| from B+ → K0π+

In addition to the theoretical assumptions of Scenario (II), the magnitude |P+−| can be estimated
from the branching fraction of the penguin-dominated modeB+ → K0π+. Neglecting the doubly
CKM-suppressed difference between u and c penguins, as well as the doubly CKM-suppressed
tree annihilation contribution, the B+ → K0π+ transition amplitude reads

A0+
Kπ ≡ A(B+ → K0π+) = V ∗

tbVtsP
0+
Kπ . (125)

Now, if one takes the SU(3) limit and neglects the penguin annihilation and color-suppressed
electroweak penguin contributions, one has [206,202,205]

|P+−| =
fπ

fK

1

R
|P 0+

Kπ| . (126)

The first factor on the right hand side corrects for factorizable SU(3) breaking, while the second
factor, R = 0.95 ± 0.23, is a theoretical estimate, within the QCD Factorization approach, of
the residual effects that break the relation between B → π+π− and B+ → K0π+ penguin am-
plitudes37 [208]. Our evaluation also includes the uncertainty due to the neglect of the VusV

∗
ub

contribution to B+ → K0π+. As in Scenario (II), the strong phase δ+− remains unconstrained
in Scenario (III). The size of the tree amplitude |T+−| is conveniently deduced from the mea-
surement of B+−

ππ , taking advantage of the above estimate of |P+−|: the analytical constraint in
the (ρ, η) plane cannot be expressed in terms of the angle α alone, but rather as a degree-four
polynomial equation [202], or as a relation between α and γ. Other methods to estimate the
tree amplitude are found in the literature:

• one can use the spectrum of the decay B0 → π+ℓ−ν̄ near q2 = 0 (that is the squared effec-
tive mass of the recoiling ℓν system) with theoretical estimates for the form factor [205],
to infer an estimate for the quantity |V ∗

ub| × |Tu|, where Tu is the semileptonic amplitude
at q2 = 0. The method is not used here as it provides Tu, which is not simply related to
the full |T+−|, except in the näıve factorization approximation.

• according to Eqs. (108) and (109), the branching fraction of the tree-dominated decay
B+ → π+π0 is given by (neglecting electroweak penguins)

2B+0
ππ = |VudV

∗
ub|2

[

|T+−|2 + |T 00
C |2 + 2Re

(

T+−T 00
C

∗)]
. (127)

Using theoretical assumptions on the ratio |T 00
C /T+−| one may infer the size of |T+−| from

the measured branching fraction [205].

37The numerical value of R and its uncertainty are obtained from Eq. (126) by estimating |P+−| and |P 0+
Kπ |

from the full QCD FA calculation, as described in Section VI.1.2.4.
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1.2.4 Beyond näıve Factorization

Considerable theoretical progress to calculate the tree and penguin amplitudes in B → hh′ with
the use of QCD has been achieved in the recent years. If such calculations reliably predicted the
penguin and tree contributions and their relative strong phase difference, they could be used to
translate a measurement of S+−

ππ and C+−
ππ into a constraint on the CKM couplings.

The QCD Factorization Approach (QCD FA) [207,208,135] is based on the concept of color
transparency [214]. In the heavy quark limit (mb ≫ ΛQCD), the decay amplitudes are calculated
by virtue of a new factorization theorem. To leading power in ΛQCD/mb and in lowest order
in perturbation theory, the result of näıve factorization is reproduced. It is found that power-
dominant non-factorizable corrections are calculable as perturbative corrections in αS since the
interaction of soft gluons with the small color-dipole of the high-energetic (W -emitted) quark-
anti-quark pair is suppressed. Non-factorizable power-suppressed contributions are neglected
within this framework. However, due to a chiral enhancement and although they are formally
power-suppressed38, hard-scattering spectator interactions and annihilation diagrams cannot be
neglected. Since they give rise to infrared endpoint singularities when computed perturbatively,
they can only be estimated in a model-dependent way. In Ref. [208] these contributions are
parameterized by two complex quantities, XH and XA, that are logarithmically large but always
appear with a relatively small factor proportional to αS.

The QCD FA has been implemented in CKMfitter and is used in two different configurations.
The first configuration defines a leading order (LO) calculation by neglecting the non-factorizable
power-suppressed terms, i.e., the annihilation contribution and the divergent part of the hard
spectator diagrams (XH = 0). This configuration is not fully consistent because the power
corrections that are convergent, once factorized, are kept: LO QCD FA is very close to the
usual näıve factorization model (see, e.g., Ref. [215]), and only differs from the latter by small
convergent radiative corrections. In the second configuration, the full QCD FA calculations are
used and the quantities XH and XA are parameterized as [208]

XH,A =
(

1 + ρH,Ae
iφH,A

)

ln
mB

Λh
, (128)

where Λh = 0.5GeV, φH,A are free phases (−180◦ < φH,A < 180◦) and ρH,A are parameters
varying within [0, 1].

In addition to XH and XA, other theoretical parameters used in the calculation such as quark
masses, decay constants, form factors and Gegenbauer moments, are varied within the ranges
given in Ref. [135]. Therefore, all scenarios defined in Ref. [135] are automatically contained in
our results.

Another approach, denoted pQCD [216], differs from QCD FA mainly in the power counting
in terms of ΛQCD/mb. The pQCD approach has not been implemented in CKMfitter yet and is
therefore not considered in the following discussion.

There is an ongoing debate among the experts concerning the reliability of these calcula-
tions. The main concerns are the computation of the chirally enhanced penguins, the endpoint
singularities in hard spectator interactions and the control of non-factorizable annihilation con-
tributions (see, e.g., Refs. [217,218]). As we will see, LO QCD FA is very predictive but fails
to describe the experimental data. On the other hand, full QCD FA with parameterized power

38The power-suppression in annihilation diagrams and hard spectator contribution occurs by the ratio rπ
χ =

2m2
π/(mb(mu + md)), which is numerically of order one.
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Figure 22: W exchange diagram responsible for the decay B0 → K+K−.

corrections is quite successful within large theoretical uncertainties, but it can no longer be
viewed as a systematic expansion of QCD.

1.3 Experimental Input

The experimental values for the time-dependent CP asymmetries measured by BABAR [219]
and Belle [220] are collected in Table 8. We have reversed the sign of Belle’s Aππ = −C+−

ππ

to account for the different convention adopted. Also quoted are the statistical correlation
coefficients between S+−

ππ and C+−
ππ as reported by the experiments. Significant mixing-induced

CP violation has been observed by Belle. Averaging BABAR and Belle, the no-CP -violation
hypothesis (S+−

ππ = 0, C+−
ππ = 0) is ruled out with a p-value of 1.2 × 10−9, and deviations of

4.7σ and 3.7σ from the S+−
ππ = 0 and C+−

ππ = 0 hypotheses are observed, respectively39. We
note that C+−

ππ 6= 0 is incompatible with the näıve factorization approximation, which predicts
no final state interaction phases. Since the time-dependent CP parameters measured by Belle
are outside of the physical domain, we apply the procedure outlined in Section II.2.2.3 to obtain
the corresponding CLs within C+−

ππ
2
+ S+−

ππ
2 ≤ 1. The results are given in Fig. 25 together with

the theoretical predictions (discussed below).

Also given in Table 8 is the time-dependent CP asymmetry in the B0 → K0
Sπ

0 decay
measured by BABAR, and a compilation of the branching fractions and charge asymmetries (direct
CP violation) of all the B → hh′ modes (hh′ = π,K). Most of the rare two-body pseudoscalar-
pseudoscalar decay modes have been discovered. The unobservedKK modes are either mediated
via power-suppressed W exchange/annihilation diagrams (B0 → K+K−, B+ → K+K0, see
Fig. 22) or penguin diagrams (B0 → K0K0, B+ → K+K0) and hence are expected to be small.
The ratio of B+−

Kπ/B+−
ππ ∼ 4 is a strong indication of the presence of penguin diagrams. In effect,

according to Eqs. (95) and (122), if there were no penguin, it would be of the order of λ2.
Charge asymmetries are all consistent with zero so far, except for ACP (K+π−) which differs
from zero by 3.4σ. The averages quoted in Table 8 are taken from the Heavy Flavor Averaging
Group [62].

1.4 Numerical Analysis of B → ππ Decays

We ran CKMfitter corresponding to the analysis scenarios (I) through (IV), using the inputs
from Table 840. If not stated otherwise, all plots are produced using the BABAR and Belle
averages for S+−

ππ and C+−
ππ , as well as the world averages for all other observables.

39These exclusion probabilities are estimates only, assuming Gaussian error propagation of the averages.
40Other recent analyses can be found in Refs. [232,233,218].
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s Parameter BABAR Belle CLEO Average

C+−
ππ −0.19 ± 0.19 ± 0.05 [219] −0.58 ± 0.15 ± 0.07 [220] - −0.46 ± 0.13

S+−
ππ −0.40 ± 0.22 ± 0.03 [219] −1.00 ± 0.21 ± 0.07 [220] - −0.73 ± 0.16

Correlation coeff. −0.02 [219] −0.29 [220] - −0.17

C00
KSπ 0.40+0.27

−0.28 ± 0.10 [221] - - 0.40+0.27
−0.28 ± 0.10

S00
KSπ 0.48+0.38

−0.47 ± 0.11 [221] - - 0.48+0.38
−0.47 ± 0.11

ACP (π+π0) −0.03+0.18
−0.17 ± 0.02 [222] −0.14 ± 0.24+0.05

−0.04 [223] - −0.07 ± 0.14

ACP (K+π−) −0.107 ± 0.041 ± 0.013 [224] −0.088 ± 0.035 ± 0.018 [224] −0.04 ± 0.16 ± 0.02 [225] −0.095 ± 0.028

ACP (K+π0) −0.09 ± 0.09 ± 0.01 [222] +0.23 ± 0.11 [223] −0.29 ± 0.23 ± 0.02 [225] 0.00 ± 0.07

ACP (K0π+) −0.05 ± 0.08 ± 0.01 [226] +0.07+0.09 +0.01
−0.08−0.03 [223] +0.18 ± 0.24 ± 0.02 [225] +0.02 ± 0.06

B(B0 → π+π−) 4.7 ± 0.6 ± 0.2 [227] 4.4 ± 0.6 ± 0.3 [228] 4.5+1.4+0.5
−1.2−0.4 [229] 4.55 ± 0.44

B(B+ → π+π0) 5.5+1.0
−0.9±0.6 [222] 5.0 ± 1.2 ± 0.5 [228] 4.6+1.8+0.6

−1.6−0.7 [229] 5.18+0.77
−0.76

B(B0 → π0π0) 2.1 ± 0.6 ± 0.3 [230] 1.7 ± 0.6 ± 0.2 [228] < 4.4 [229] 1.90 ± 0.47

B(B0 → K+π−) 17.9 ± 0.9 ± 0.7 [227] 18.5 ± 1.0 ± 0.7 [228] 18.0+2.3 +1.2
−2.1−0.9 [229] 18.16 ± 0.79

B(B+ → K+π0) 12.8+1.2
−1.1 ± 1.0 [222] 12.0 ± 1.3+1.3

−0.9 [228] 12.9+2.4 +1.2
−2.2−1.1 [229] 12.6+1.1

−1.0

B(B+ → K0π+) 22.3 ± 1.7 ± 1.1 [226] 22.0 ± 1.9 ± 1.1 [228] 18.8+3.7 +2.1
−3.3−1.8 [229] 21.8 ± 1.4

B(B0 → K0π0) 11.4 ± 1.7 ± 0.8 [226] 11.7 ± 2.3+1.2
−1.3 [228] 12.8+4.0 +1.7

−3.3−1.4 [229] 11.7 ± 1.4

B(B0 → K+K−) < 0.6 [227] < 0.7 [228] < 0.8 [229]

B(B+ → K+K
0
) < 2.5 [226] < 3.3 [228] < 3.3 [229]

B(B0 → K0K
0
) < 1.8 [226] < 1.5 [228] < 3.3 [229]

Table 8: Compilation of experimental results on the B → hh′ branching fractions (in units of 10−6) and CP -violating asymmetries. Limits
are quoted at 90% CL. For the averages we use the results from the HFAG [62]. C00

KSπ and S00
KSπ are defined similarly to Eqs. (110)

while the direct CP asymmetries ACP are defined with an opposite sign: ACP = (|A|2 − |A|2)/(|A|2 + |A|2). Note that missing radiative
corrections in the Monte Carlo simulations used by the experiments may lead to underestimated branching fractions for modes with light
charged particles in the final state (see remark in the introduction to Part VI). The CDF collaboration has presented the preliminary result
ACP (K+π−) = 0.02 ± 0.15 ± 0.02 [224,231], which is however not yet included in the HFAG average.
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Figure 23: Confidence levels for α for Scenarios (I) through (IV) (cf. Section VI.1.2) of the
B → ππ data. The dark shaded function on the upper left hand plot shows the constraint from
SU(2) when the experimental uncertainty on S+−

ππ is set to zero. It hence displays the uncertainty
on |α − αeff | due to the penguin contribution. Also shown on each plot is the result from the
standard CKM fit.

1.4.1 Constraints on α and (ρ, η)

The constraints on α and in the (ρ, η) plane obtained for the various scenarios are plotted in
Figs. 23 and 24 and discussed below41.

• At present, we achieve essentially no useful constraint from the SU(2) analysis (Scenario (I),
upper left hand plots). We find the limit −54◦ < ∆α < 52◦ for CL > 10%, largely
dominated by the uncertainty on the contribution from gluonic penguins (see the dark
shaded function in the upper left hand plot of Fig. 23). The asymmetry in the limit is due
to the contribution from electroweak penguins.

• Using in addition SU(3) (Scenario (II)) one begins to rule out regions in the (ρ, η) plane
(upper right hand plots). The wide unconstrained arcs correspond to the still unfruitful

41The presence of non-zero electroweak penguins leads to a small modification in the isospin analysis which
breaks the relation CL(ρ, η) = CL(α(ρ, η)). As a consequence, the CL versus α is uniform if both ρ and η are free
varying variables. As a remedy to this we also use |Vub/Vcb| (see Section III.2.5) in the α scans, which introduces
a slight effect on the angle itself.
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Figure 24: Confidence levels in the (ρ, η) plane for Scenarios (I) through (IV) of the B → ππ
data. Dark, medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. Also
shown on each plot is the result from the standard CKM fit. Significant constraints are obtained
once the penguin-to-tree ratio is determined with the use of phenomenological or theoretical input
(Scenarios (III) and (IV)). Consistency with the SM is found, in spite of the sensitivity of the
data to b→ d transitions that could in principle receive sizable New Physics contributions.
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bound −29◦ < ∆α < 28◦ for CL > 10%. These constraints cannot compete with the size
of the allowed (ρ, η) region obtained from the standard CKM fit.

• Interesting information is obtained for Scenario (III) (lower left hand plots). The overall
uncertainty is dominated by the errors on (S+−

ππ , C
+−
ππ ) on the one hand, and on the cor-

rection factor R (cf. Eq. (126)) on the other hand. For larger statistics the latter will limit
the accuracy of the constraint, unless theoretical progress, together with combined fits of
many SU(3)-related modes, is able to estimate R more precisely.

• The constraint is significantly improved when using QCD FA to predict the various ampli-
tudes42. The preferred region is found in agreement with the standard CKM fit, despite
the potential sensitivity of the observables to the suppressed b → d FCNC transitions.
The main theoretical uncertainty is due to the phenomenological parameters XA and XH

[234]. In particular, the sign of η cannot be constrained because the sign of δ+− is not
well predicted by the calculation (see Fig. 26).

1.4.2 Constraints in the (S+−
ππ

, C+−
ππ

) Plane

The predictions obtained for S+−
ππ and C+−

ππ for Scenarios (I) through (IV) are shown in Fig. 25.
Input requirements to these predictions are the values of ρ and η, as predicted by the standard
CKM fit, the errors of which are properly propagated in the calculations (see Part III). In accor-
dance with the above findings, the present experimental inputs used in the isospin analysis (I)
are not sufficient to constrain S+−

ππ and C+−
ππ . Also, little information is obtained from the SU(3)

analysis (II) and Scenario (III), while the QCD FA (IV) remains the most predictive framework.

To a good approximation, the SU(2) solution in the (S+−
ππ , C

+−
ππ ) plane represents a circle of

which the center is located at (sin 2α, 0) and of which the radius is given by the penguin-to-tree
ratio r+− ≡ (Rt/Ru) × |P+−/T+−|. The relative strong phase δ+− determines the position on
the circle. Consequently, the large uncertainty on S+−

ππ reflects both the relatively weak sin 2α
constraint of the standard CKM fit and the insufficient knowledge of r+−. On the other hand,
the accuracy of the C+−

ππ prediction is determined by r+− and, in case of Scenario (IV), by δ+−.
Values of C+−

ππ that are far from zero, as suggested by the Belle measurement, are in marginal
agreement with the QCD FA since it requires both a large relative strong phase δ+− and a large
r+−. If such a large non-zero value for C+−

ππ is confirmed, it would be a strong hint for significant
rescattering effects, independently of potential New Physics contributions.

1.4.3 Constraints on Amplitude Ratios

One can take another point of view and constrain the unknown penguin-to-tree ratio r+− and
its phase δ+− using the standard CKM fit as input. As in the prediction of S+−

ππ and C+−
ππ in the

previous paragraph, this assumes that the experimental measurements are in agreement with
the constraints obtained on ρ and η in the standard CKM fit, i.e., no New Physics comes into
play. The results are shown in the left hand plot of Fig. 26. The shaded regions give the CLs
obtained from a fit using Scenario (I) (SU(2)). Significant penguin contributions and strong
phases are required to accommodate the fit with the data. Scenario (II) leads to an exclusion of
large values for r+−, while Scenario (III) increases the lower bound. We find that the preferred
values for r+− are in agreement with the allowed regions obtained for Scenario (IV) (QCD FA).
The right hand plot of Fig. 26 shows the Scenario (I) constraints separately for BABAR, Belle

42The full QCD FA calculation (1.2.4) is used here. See Section VI.2 for a discussion of the leading order (LO)
approach.
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Figure 25: Predictions for S+−
ππ and C+−

ππ for Scenarios (I) through (IV). Drawn are CL = 0.05
contours. The input values for ρ and η are taken from the standard CKM fit assuming the SM
to hold. The dot with error bars gives the QCD FA prediction obtained from the global fit to
all B → ππ, Kπ observables (excluding S+−

ππ or C+−
ππ from the fit when determining C+−

ππ and
S+−

ππ , respectively) presented in Section II.2.3. For comparison, the CL contours corresponding
to 1σ and 2σ for the experimental results from BABAR, Belle and their averages are overlaid.
Note that we have applied the statistical method described in Section II.2.2.3 to account for the
presence of the physical boundaries when computing the CLs.

and their average. Large non-zero r+− and δ+− are required by Belle’s numbers.

To test color-suppression, the same procedure is applied to constrain the color-suppressed-
to-color-allowed ratio T 00

C /T+−. The resulting CLs are given in Fig. 27. For the magnitude
we obtain the lower limit |T 00

C /T+−| > 0.41 for CL > 5% and a central value of 0.9, which
significantly exceeds the näıve 0.2 expectation from factorization. Note that a central value
of order one, if confirmed, would challenge the 1/Nc → 0 limit of QCD independently of the
validity of perturbative factorization.

1.5 Prospects for the Isospin Analysis

The preceding sections have shown that, at present, relevant information on α requires input
from flavor symmetry other than SU(2) and/or theoretical assumptions, the accuracy of which
is hard to determine. However the ultimate goal of the experimental effort should be a model-
independent determination of α. This prejudice given, we shall attempt an outlook into the
future to assess the performance of a full isospin analysis, where C00

ππ is determined in a time-
integrated measurement by the experiments.



Part VI – Charmless B Decays 83

-150

-100

-50

0

50

100

150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

SU(2) + SU(3)

SU(2) + SU(3) + K0π+

SU(2)
QCD FA

QCD FA (LO)

Contoured zones have CL > 0.05

(Rt
 / Ru)

 |P+– / T+–|

ar
g(

P
+

– 
/ T

+
– ) 

   
  (

de
g)

C K M
f i t t e r

Winter 2004

-150

-100

-50

0

50

100

150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

BABAR

Belle

Average

Contoured zones have CL > 0.05

(Rt
 / Ru)

 |P+– / T+–|

ar
g(

P
+

– 
/ T

+
– ) 

   
  (

de
g)

C K M
f i t t e r

Winter 2004

Figure 26: Constraints on the penguin-to-tree ratio r+− and the relative strong phase δ+− in
B → ππ decays, obtained when using as additional input the CKM parameters ρ and η from the
standard CKM fit. The gradually shaded regions give the CLs for fits of Scenario (I) (SU(2)):
dark, medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. Also shown are
the 5% CL contours obtained for Scenario (II) and (III). The elliptical areas are the prediction
from QCD Factorization (Scenario (IV)): full calculation (light shaded) and leading order (dark
shaded). On the right hand plot, constraints using Scenario (I) are given individually for BABAR,
Belle and their averages.

Figure 28 (left) shows the CL of the angle α for the following set of observables (branching
fractions are given in units of 10−6):

B+−
ππ = 4.55 ± 0.17 ± 0.09 , S+−

ππ = −0.73 ± 0.07 ± 0.02 ,

B+0
ππ = 5.18 ± 0.28 ± 0.16 , C+−

ππ = −0.46 ± 0.06 ± 0.03 ,

B00
ππ = 1.90 ± 0.20 ± 0.09 , C00

ππ = −0.37 ± 0.24 ± 0.03 ,

where we have kept the central values of the present experimental results. For the parameter
C00

ππ we choose one out of the two solutions preferred by the data when inserting α from the
standard CKM fit. The statistical errors are extrapolated to an integrated luminosity of 1 ab−1.
For the systematic uncertainties we assume an optimistic development: the branching ratios
are dominated by uncertainties due to the reconstruction of neutrals (2.5% per π0), while the
CP parameters are dominated by the unknown CP violation on the tag side. One observes
the characteristic eightfold ambiguity within [0, π], where the position of the peaks depends in
particular on B00

ππ (see comments below). Although the allowed region for α largely exceeds
the one obtained by the standard CKM fit, significant α domains are excluded and the peaking
structure provides metrological information when combined with other α measurements. We
also note that due to the significant penguin pollution in the ππ system, contributions from
New Physics may be present in the data.

As outlined in Section VI.1.2.1, the central value of B00
ππ drives the position of the discrete

ambiguities for α. The location of the eight mirror solutions as a function of B00
ππ are shown on the

right hand plot of Fig. 28. The curves refer to the present central values of branching fractions
and CP -violating asymmetries. The horizontal lines indicate the bound (117) as well as the two
values used for the isospin analyses represented in the left hand plot (apart from the nominal
setup given above, a second set is used with B00

ππ = 1.2 × 10−6 and the corresponding value
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Figure 27: Constraints from Scenario (I) (SU(2)) on magnitude and phase of the color-
suppressed-to-color-allowed ratio T 00

C /T+− in B → ππ decays. The CKM parameters ρ and
η are taken from the standard CKM fit. The gradually shaded regions indicate the CLs: dark,
medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively.

C00
ππ = 0.13, and with all other parameters kept unchanged). The quality of the metrological

constraint on α depends on how much the different solutions overlap. The worst case occurs
when several mirror solutions gather around the true value of α within a distance of about σ(α).
As a consequence we note that large values of B00

ππ can lead to a better metrology.

In a third extrapolation we study the best-case scenario, where B00
ππ is chosen to be equal to

one of the GLSS bounds (115). While the upper bound is excluded by experiment, the lower
bound, B00

GLSS− = 0.66×10−6 , may still be reached. We choose B00
ππ = (0.66±0.12±0.03)×10−6 ,

as well as S+−
ππ = −0.25±0.07±0.02 and C00

ππ = 0.75±0.39±0.03, to achieve consistency between
the observable set, SU(2), and the standard CKM fit. The modified S+−

ππ value (with respect
to the previous extrapolations) ensures that B00

GLSS− = B00
α:−, which is required for overlapping

ambiguities43. The chosen set of observables is only marginally consistent with the present
measurements. The resulting CL for α is given by the up-diagonal hatched function in the left
hand plot of Fig. 28. The 1σ precision on α for this scenario is found to be 14◦. This study
provides an illustration of how precise the measurement of α could turn out to be in the coming
years. However, one should keep in mind that if B00

ππ is not equal to, but only close to B00
GLSS− ,

the metrology is spoilt [209].

Figure 29 shows the CLs in the (α,C00
ππ) plane at integrated luminosities of 1 ab−1 (left)

and 10 ab−1 (right), where we have used the same parameter configuration as in the above
discussion, with the exception of C00

ππ which is not used. It is assumed in the extrapolation
that the systematic uncertainties do not decrease any further beyond 1 ab−1. As for B00

ππ, one
observes that (for given B00

ππ and C+−
ππ ) the ambiguity pattern for α depends strongly on C00

ππ.
An extraction of α with an accuracy of a few degrees should be within the reach of a next
generation B factory.

The parameter plane (B00
ππ, C

00
ππ) is convenient to immediately display the consistency between

43One notices in the up-diagonal hatched function of the left hand plot in Fig. 28 that the ambiguities do not
exactly overlap. This is because electroweak penguins are neglected in the bounds (115), (117), while they are
taken into account in the numerical analysis used to produce the plots.
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Figure 28: Left: confidence level as a function of α for the full isospin analysis (including C00
ππ)

at an integrated luminosity of 1 ab−1, and using the central values and errors given in the text
(shaded area). Also shown is the CL for B00

ππ = 1.2×10−6 (down-diagonal hatched area) for which
the ambiguities move together (see right hand plot), and for B00

ππ = 0.66 × 10−6 (up-diagonal
hatched area), which corresponds to B00

GLSS− , i.e., the ambiguities overlap in two quadruplets.
The branching ratio values given on the figure are in units of ×10−6. Right: location of the eight
mirror solutions as a function of B00

ππ. The curves refer to the present central values of branching
fractions and CP -violating asymmetries. The horizontal lines indicate the bound (117), computed
at the input value of α, as well as the two branching fractions used for the isospin analyses of
the left hand plot. Electroweak penguins are neglected.

the measurements in the ππ system and the standard CKM fit, because it avoids the problem
of multiple solutions. The left hand plot of Fig. 30 represents the expectation for an integrated
luminosity of 1 ab−1, using the standard CKM fit as input. Very large luminosities will be
needed in order to significantly uncover a potential disagreement with the SM. The right hand
plot of Fig. 30 is obtained assuming in addition that ρ and η be exactly known and fixed to
their present central values (cf. Table 2).

1.6 Predicting the B0
s

→ K+K− Branching Fraction and CP -Violating Asym-
metries

It has been pointed out by Pirjol [236] and Fleischer [213] that one can use SU(3) symmetry44

to relate the amplitudes in B0
s → K+K− and B0 → π+π− decays. The B0

s → K+K− amplitude
is given by

A(B0
s → K+K−) = VusV

∗
ubT

s
KK + VtsV

∗
tbP

s
KK , (129)

and using SU(3) symmetry, one can identify

T s
KK = T+− ,

P s
KK = P+− , (130)

which leads to the relation [236,213]

44More precisely, only the U-spin subgroup of SU(3) (s ↔ d exchange) is needed. However the accuracy of this
approximate symmetry is not expected to be significantly better than full SU(3). For example, the decay constants
fπ+ and fK+ have the same value in either U-spin or SU(3) limit, although experimentally fK+/fπ+ ≃ 1.22 [12].
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Figure 29: Confidence level in the (α,C00
ππ) plane at integrated luminosities of 1 ab−1 (left) and

10 ab−1 (right), respectively. The observable set and errors used are given in the text.
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Figure 30: Confidence level in the (B00
ππ, C

00
ππ) plane at an integrated luminosity of 1 ab−1. The

left hand plot uses the standard CKM fit as input including the present uncertainties on α, while
the right hand plot assumes perfect knowledge of α. Superimposed on the left hand plot is the
analytical function C00

ππ(B00
ππ) (119), where electroweak penguins are neglected which explains the

difference with the CL function. The vertical line represents the bound (117).

Cs
KK Bs

KK

τB0
s

+
C+−

ππ B+−
ππ

τB0

= 0 , (131)

where Cs
KK = C(B0

s → K+K−) and Bs
KK denote the direct CP -violation asymmetry and

branching fraction of B0
s → K+K−, respectively. The ratio of the B0

s to the B0 lifetimes is
0.951 ± 0.038 [62]. Constraining T+− and P+− with the B → ππ branching fractions and the
S+−

ππ and C+−
ππ measurements, and including the standard CKM fit to predict the CKM elements,

one obtains the hyperbolic shape in the (Bs
KK ,−Cs

KK) plane shown in Fig. 31. We find the
CL > 5% ranges (see also Ref. [232])

Bs
KK = (5 − 91) × 10−6 ,

Cs
KK = 0.02 − 0.32 .
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Figure 31: Confidence level in the (Bs
KK ,−Cs

KK) plane obtained from B → ππ data and the
standard CKM fit, assuming SU(3) symmetry. Also shown is the preliminary result on the ratio
B(B0

s → K+K−)/B(B0 → K+π−) from CDF [224,231] and the branching fraction (corrected
by the lifetime ratio τB0

s
/τB0) and direct CP asymmetry in B → K+π−. The bands indicate 1σ

error ranges.

These predictions can be compared with the branching fraction and CP asymmetry found for
B0 → K+π− (see Table 8): assuming SU(3) and neglecting all (tree and penguin) exchange
topologies they are expected to be equal. Agreement is observed as illustrated in Fig. 31. Also
shown in the figure is the preliminary result from the CDF collaboration [224,231] on the ratio
B(B0

s → K+K−)/B(B0 → K+π−) = 2.71±0.73±0.35±0.08, where the first error is statistical,
the second due to the ratio of B0 and B0

s production in b jets, and the third is systematic. The
error bands shown are at 1σ. Following the same procedure, we also predict the mixing-induced
CP asymmetry in B0

s → K+K− decays to be, for CL > 5%,

Ss
KK = 0.12 − 0.27 . (132)

2 Tests of QCD Factorization in B → ππ, Kπ decays

In this Section, we present several fits of the Kπ and ππ data to the calculation of hadronic
matrix elements within the QCD Factorization approach [207,208,135].

2.1 QCD Factorization at Leading Order

All results using QCD FA presented in the previous Section were obtained with the full calcu-
lation [208] as defined in Section VI.1.2.4. Given the poor knowledge of the parameters XA and
XH , one may examine whether a leading order calculation (see Section VI.1.2.4 for the exact
definition) is sufficient to describe the data. Figure 26 shows the QCD FA predictions for r+−

and δ+− using both approaches. The uncertainty in the full QCD FA calculation is dominated
by the unknown parameters XA and XH . The leading order calculation predicts a small positive
phase δ+− and a moderate ratio r+−.
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Figure 32: Confidence levels in the (ρ, η) plane for the QCD FA at leading order using S+−
ππ

and C+−
ππ from BABAR (upper left), Belle (upper right) and their averages (bottom). Left: dark,

medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. Right: the maximum
CL is set to 10−3: dark, medium and light shaded areas have CL > 90 × 10−5, 32 × 10−5 and
5 × 10−5. Also shown on each plot is the result from the standard CKM fit.
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Figure 33: Confidence level in the (ρ, η) plane for Scenario (IV): using branching fractions and
CP -violating asymmetries of B → ππ decays (upper left hand plot), B → Kπ decays (upper right
hand plot) and all together (lower plot). Dark, medium and light shaded areas have CL > 0.90,
0.32 and 0.05, respectively. Also shown is the constraint from the standard CKM fit.
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Figure 34: Distributions of χ2
min from toy Monte Carlo experiments and corresponding signifi-

cance level curves for full QCD FA fits to combined B → ππ and B → Kπ results (solid line).
BABAR and Belle averages are used for S+−

ππ and C+−
ππ . The dashed lines give the results for

unbound parameters ρA and ρH (see text for details).

The constraints in the (ρ, η) plane using the LO prediction are shown in Fig. 32 for S+−
ππ

and C+−
ππ from BABAR and Belle separately as well as their averages. In all three cases, the

preferred region is located in the negative η half-plane since δ+− is predicted positive and C+−
ππ

is found to be negative by both experiments. Whereas the BABAR results are compatible with
the standard CKM fit, the agreement with Belle is at the 10−4 level. The average of BABAR and
Belle exhibits a compatibility with the standard CKM fit at the 5 × 10−5 level.

2.2 The Full ππ and Kπ Fit

We perform a global fit of the QCD FA to all branching fractions (ππ and Kπ) and CP asym-
metries given in Table 8. Since the leading order calculation cannot describe the data, we use
full QCD FA here.

The upper plots of Fig. 33 show the CLs in the (ρ, η) plane when using only the B → ππ
branching fractions and CP asymmetries (left), and when using only the B → Kπ data (right).
The constraint from C+−

ππ and S+−
ππ shown in Fig. 24 is now reduced to two distinct zones in

the first and the third quadrant of the (ρ, η) plane. The Kπ measurements prefer large positive
values of η. Given the present experimental accuracy, the compatibility of the Kπ data (using
QCD FA) with the standard CKM fit is at the 20% level.

The combined fit to all B → ππ, Kπ observables in the (ρ, η) plane is shown in the lower
plot of Fig. 33. The preferred area is found in excellent agreement (p-value for the χ2

min of 21%)
with the standard CKM fit and has competitive precision. We find

ρ = 0.182+0.045
−0.047

[

+0.089
−0.092

]

, (133)

η = 0.332+0.032
−0.036

[

+0.056
−0.081

]

, (134)

where the errors outside (inside) brackets are at 1σ (2σ). For the UT angle γ, we find

γ =
(

62+6
−9

[

+12
−18

])◦
. (135)
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Fit Result Full Prediction
Quantity Central value ±CL = 0.32 ±CL = 0.05 ∆χ2

min CL > 5% range

C+−
ππ −0.27+0.08

−0.05
+0.18
−0.09 1.0 −0.45–0.59

S+−
ππ −0.70+0.20

−0.17
+0.38
−0.25 0.0 −1.00–0.11

C00
KSπ 0.039+0.028

−0.036
+0.045
−0.085 1.4 −0.36–0.56

S00
KSπ 0.827+0.037

−0.028
+0.071
−0.056 0.7 0.63–1.00

ACP (π+π0) [10−4] −5.2+1.6
−0.4

+3.6
−0.9 0.2 −6–15

ACP (K+π−) −0.100+0.035
−0.007

+0.063
−0.013 0.0 −0.23–0.26

ACP (K+π0) −0.035+0.042
−0.038

+0.072
−0.131 0.2 −0.40–0.55

ACP (K0π+) 0.0018+0.0036
−0.0041

+0.0059
−0.0044 0.1 −0.005–0.048

B(B0 → π+π−) 3.80+0.79
−0.40

+1.92
−0.90 0.7 1.7–24.8

B(B+ → π+π0) 7.4+0.9
−1.2

+2.0
−2.2 2.5 2.6–17.0

B(B0 → π0π0) 1.05+0.31
−0.29

+0.68
−0.50 2.3 0.2–4.4

B(B0 → K+π−) 22.4+1.2
−1.4

+2.3
−3.0 6.1 2.1–74.3

B(B+ → K+π0) 10.87+0.74
−0.62

+1.69
−1.22 2.0 0.6–45.5

B(B+ → K0π+) 21.1+1.0
−1.2

+1.9
−3.2 0.1 1.5–86.0

B(B0 → K0π0) 8.36+0.56
−0.44

+1.36
−0.86 4.9 0.7–37.0

Table 9: QCD FA fit results and predictions of ππ and Kπ branching fractions and CP -violating
asymmetries. Left hand part: for each quantity, a full QCD FA fit is performed to all ππ and Kπ
data but the one that is predicted. Central values and CL = 0.32 and CL = 0.05 uncertainties
are quoted in the two first columns; the third column gives the contribution of the quantity (when
included in the fit) to the overall χ2. Right hand part: raw predictions from QCD FA without
constraints from data. In both configurations, the CKM parameters obtained from the standard
CKM fit are also included. Branching fractions are given in units of 10−6.

Since to leading order in the Cabibbo angle λ the Kπ system is independent of the CKM phase,
the constraint on (ρ, η) from the combined ππ, Kπ fit is dominated by the π+π− observables.
The χ2

min amounts to 13.4 and is dominated by contribution from the Kπ data. The corre-
sponding χ2

min distribution is given in Fig. 34 (solid line histogram). The dashed histogram is
obtained with unbound parameters ρH,A (we recall that in full QCD FA they are constrained
within [0, 1]). The χ2 probability (p-value) rises to 42% at ρA = 1.4 and ρH = 9.2, where such
large values cannot be considered as corrections anymore. In other words, two additional free
parameters parametrizing power corrections suffice to reconcile the QCD factorization approach
with the data. The measured branching fractions for B0 → K+π− and B0 → K0π0 are in
marginal agreement with QCD FA (cf. Table 9). Removing each of these branching fractions
from the nominal (ρH,A < 1) combined ππ, Kπ fit decreases the χ2

min from 13.4 to 7.3 and from
13.4 to 8.5, respectively.
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C+−
ππ A+0

ππ A+−
Kπ A0+

Kπ A+0
Kπ C00

KSπ S00
KSπ B+−

ππ B+0
ππ B00

ππ B+−
Kπ B0+

Kπ B+0
Kπ B00

Kπ

S+−
ππ −0.44 −0.45 −0.39 +0.10 −0.07 −0.15 +0.39 +0.04 −0.06 +0.08 +0.07 −0.28 +0.34 −0.43

C+−
ππ +1.00 +0.47 +0.79 −0.49 +0.55 −0.35 −0.21 +0.48 +0.01 −0.29 −0.22 +0.22 −0.09 +0.05

A+0
ππ - +1.00 +0.23 +0.02 −0.24 +0.43 +0.13 +0.20 +0.36 +0.11 −0.10 +0.08 −0.28 +0.26

A+−
Kπ - - +1.00 −0.66 +0.72 −0.47 −0.21 −0.02 +0.01 +0.02 −0.00 +0.19 +0.05 +0.05

A0+
Kπ - - - +1.00 −0.74 +0.71 +0.13 −0.04 −0.07 −0.03 +0.16 −0.10 −0.08 +0.13

A+0
Kπ - - - - +1.00 −0.93 −0.14 +0.03 +0.05 +0.04 −0.12 +0.13 +0.31 −0.29

C00
KSπ - - - - - +1.00 −0.11 +0.07 +0.02 +0.00 −0.15 +0.10 +0.35 −0.37

S00
KSπ - - - - - - +1.00 +0.13 +0.75 +0.66 +0.09 −0.24 −0.09 +0.06

B+−
ππ - - - - - - - +1.00 −0.01 −0.51 −0.00 +0.26 +0.05 +0.09

B+0
ππ - - - - - - - - +1.00 +0.83 +0.04 +0.03 −0.21 +0.29

B00
ππ - - - - - - - - - +1.00 +0.14 −0.12 −0.10 +0.17

B+−
Kπ - - - - - - - - - - +1.00 +0.74 +0.57 +0.57

B0+
Kπ - - - - - - - - - - - +1.00 +0.46 +0.63

B+0
Kπ - - - - - - - - - - - - +1.00 −0.27

Table 10: Linear correlation coefficients for the QCD FA fit results given in Table 9. The Aij
pq

stand for the direct CP -asymmetry parameters ACP (piqj), and the Bij
pq denote the corresponding

branching fractions. Note that these correlations are not of experimental origin, but due to the
uncertainties in the theoretical parameters.

2.3 Data driven Predictions for the ππ and Kπ System

In the spirit of likelihood projections, we study the predictions of the combined ππ, Kπ QCD
FA fit on each observable, ignoring the measurement associated with the observable in the fit.
The results are hence unbiased by the actual measurement. In addition to the charmless data
we include the standard CKM fit here. The predictions obtained are summarized in Table 9 and
plotted in comparison with the experimental values in Fig. 35. Also given are the results obtained
from QCD FA and the standard CKM fit alone, for which in most cases the uncertainty largely
exceeds the experimental precision45. Instead when the fit is constrained by the experimental
data, the combined constraints determine rather precisely the parameters that are only loosely
bounded by the theory. The predictions of the full QCD FA fit are accurate and found to be
in good agreement with the measurements, with the exception of the above mentioned B(B0 →
K+π−) and B(B0 → K0π0), for which however the discrepancy does not exceed 2.5σ at present.
Due to the common uncertainties on the theoretical parameters, the results for the branching
fractions exhibit significant correlations, which have to be taken into account when interpreting
the results. For completeness, we give the linear correlation coefficients evaluated with toy
Monte Carlo simulation46 in Table 10. As an example, the CLs of B(B0 → K+π−) versus
B(B0 → K0π0) are plotted in Fig. 36 (the correlation coefficient is +0.57) and compared with
the measurements. A potential increase in the experimental value for B(B0 → K+π−) (due
to radiative corrections that were previously neglected, see the remark in the introduction to
Part VI) could help to reconcile theory and experiment. One observes a significant positive
correlation between the direct CP -violation parameters in π+π− and K+π− decays, which is

45The predictions of Ref. [135] from the same inputs appear to be much more precise, due to the treatment of the
uncertainties on the theoretical parameters, which the authors vary independently and finally add in quadrature.
On the contrary, our approach Rfit amounts to scan democratically the whole parameter space. While the
(commonly found) approach of Ref. [135] likely underestimates the overall uncertainty, Rfit may overestimate
it, by ignoring possible fine-tuning configurations where many theoretical parameters take extreme values in the
allowed ranges.

46The procedure is as follows: for each toy experiment, the experimental observables are fluctuated within their
Gaussian experimental errors; the full QCD FA fit is performed, and the variance between the fit results for the
observables is computed. The coefficients quoted in Table 10 correspond to 500 toy experiments.
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Figure 35: Comparison of the results from the global QCD FA fit to B → ππ, Kπ data (shaded
boxes) and the unconstrained QCD FA predictions with experiment for the CP -violating asymme-
tries (left) and the branching fractions (right) in B → hh′ (h, h′ = π,K) decays. The predictions
are obtained ignoring the measurement associated with the observable in the fit. The experimental
results are the world averages quoted in Table 8 and the theory values are those from Table 9. All
theory predictions use the standard CKM fit result as input. The error ranges shown correspond
to 1σ.
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Figure 36: Confidence level in the (B(K0π0),B(K+π−)) plane obtained from the global QCD
FA fit to B → ππ, Kπ data ignoring the measurements associated with the observables shown.
Dark, medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. The hatched
areas indicate the 1σ error bands of the experimental results.
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expected from SU(3) symmetry. We note in addition that

• the prediction for the not yet measured direct asymmetry in the B0 → π0π0 decay is

C00
ππ = 0.06+0.10

−0.12

[

+0.37
−0.24

]

, (136)

where the errors outside (inside) brackets are at 1σ (2σ);

• a large negative value for S+−
ππ is predicted, in contrast to the small value sin 2α (see

Table 2) that would be obtained from the standard CKM fit in the no-penguin case;

• the deviation between sin 2βeff ≡ S00
KSπ measured in B0 → K0

Sπ
0 and the charmonium

reference is sin 2βeff − sin 2β = 0.09 ± 0.04;

• the experimental evidence for negative direct CP violation in K+π− is consistent with the
(precise) expectation;

• the qualitative picture (hierarchy) of the branching fractions is understood in the SM.

Despite this success and given that both experimental and theoretical uncertainties are still
large, particular care is mandatory when analyzing possible anomalies in B → Kπ decays. In
Section VI.3 we revisit the Kπ system with the use of a more phenomenological approach.

3 Phenomenological Analysis of B → Kπ Decays

The decays B → Kπ have received considerable attention in the recent literature [238,239,232,
240] since a fit to the data leads to an apparent violation of the approximate sum rule de-
rived in Refs. [237]. Although the errors remain large, it has been argued by the authors of
Ref. [239,232,240] that a better phenomenological description could be achieved by including
non-standard contributions in electroweak penguins, that is, ∆I = 1 b→ s transitions.

In this section we discuss the implications of the experimental results on strong isospin sym-
metry in B → Kπ decays, by performing fits to the data under various dynamical hypotheses.
We interpret the numerical results by comparing them to those of the ππ modes, and give our
understanding of the present situation.

3.1 Experimental Input

We use the branching fractions and charge asymmetries for the B → Kπ modes given in Table 8
as inputs to our fits. The CP -averaged branching fractions are defined by

Bij ∝ τBi+j

2

(

|Aij |2 + |Aij|2
)

, (137)

and the four CP -violating asymmetries by

Aij =
|Aij |2 − |Aij |2
|Aij |2 + |Aij |2 , (138)

where (i, j) = (+,−) , (0,+) , (+, 0) , (0, 0) and i + j is the charge of the B meson. Note that
A0+ is zero by definition in some of the approximations considered below. The CP asymmetries
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C00
KSπ = −A00 and S00

KSπ are defined by

C00
KSπ =

1 − |λK0
Sπ0|2

1 + |λK0
Sπ0|2 , (139)

S00
KSπ =

2ImλK0
Sπ0

1 + |λK0
Sπ0|2 , (140)

where λK0
Sπ0 = − exp

{

i arg[(VtdV
∗
tb)

2]
}

A00/A00 in our phase convention.

3.2 Transition Amplitudes

Using the unitarity relation (5) and adopting convention C (cf. Section VI.1.1.1), each B → Kiπj

decay amplitude can be parameterized by VusV
∗
ub, VtsV

∗
tb and two complex quantities denoted

T ij and P ij . For example, for B0 → K+π− one has

A+− ≡ A(B0 → K+π−) = VusV
∗
ubT

+− + VtsV
∗
tbP

+− , (141)

and similarly for the other modes. The amplitudes T ij and P ij implicitly include strong phases
while the weak phases are explicitly contained in the CKM factors. An important difference with
respect to the ππ modes is that the CKM ratio |VtsV

∗
tb/(VusV

∗
ub)| ∼ 50 enhances considerably the

contribution of loops with respect to tree topologies: this implies a potentially better sensitivity
to unknown virtual particles, and thus to New Physics, but at the same time this involves more
complicated hadronic dynamics.

Without loss of generality, the complete B → Kπ system can be parameterized by eight
amplitudes and the CKM couplings VusV

∗
ub and VtsV

∗
tb. In the following, we will assume isospin

symmetry, so that there is a quadrilateral relation between these amplitudes.

3.3 Isospin Relations and Dynamical Scenarios

Using strong isospin invariance, the B → Kπ amplitudes satisfy the relations [241]

A0+ +
√

2A+0 =
√

2A00 +A+− , (142)

A0+ +
√

2A+0 =
√

2A00 +A+− . (143)

Note that for the CP -conjugate amplitudes one reads for instance A0+ ≡ A(B− → K0π−) and
accordingly for the other charges.

3.3.1 Neglecting Electroweak Penguin but not Annihilation Diagrams

In the absence of electroweak penguin diagrams the isospin analysis leads to two additional
constraints since the two quadrilaterals share the I = 3/2 amplitude as common diagonal,
with a length determined from the branching fractions, while the second diagonals bisect each
other [241]:

A+− +
√

2A00 = Ã+− +
√

2Ã00 , (144)√
2A00 +

√
2A+0 =

√
2Ã00 +

√
2Ã+0 , (145)

where Ã = exp [2i arg(VusV
∗
ub)] A. The argument goes as follows: since gluonic penguins are

∆I = 0 transitions, in the absence of electroweak penguins the amplitude A∆I=1,If=3/2 of the
transition from Ii = 1/2 to If = 3/2 is proportional to VusV

∗
ub and hence

A1,3/2 = Ã1,3/2 . (146)
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Figure 37: Left: confidence level as a function of the CKM angle α, in the Nir–Quinn approxima-
tion (no electroweak penguins). The hatched region represents the constraint from the standard
CKM fit. Right: constraint on the annihilation-to-tree amplitude ratio |N0+/T+−|, as defined in
Eq. (147). Electroweak penguins are neglected.

Note that Eqs. (144) and (145) separately hold for the T ij and P ij. Under these assumptions
it is possible to describe the full B → Kπ system with four out of the seven complex quantities
T ij and P ij. In the following parameterization, we use P+− and the three tree amplitudes T+−,
N0+ = T 0+ and T 00

C = T 00. The notation N0+ refers to the fact that the tree contribution to
the K0π+ mode has an annihilation topology (it also receives contributions from long-distance
u and c penguins). Since B0 → K0π0 is color-suppressed, its tree amplitude is denoted T 00

C .

A+− = VusV
∗
ub T

+− + VtsV
∗
tb P

+− ,

A0+ = VusV
∗
ubN

0+ − VtsV
∗
tb P

+− ,√
2A+0 = VusV

∗
ub (T+− + T 00

C −N0+) + VtsV
∗
tb P

+− , (147)√
2A00 = VusV

∗
ub T

00
C − VtsV

∗
tb P

+− .

In the absence of electroweak penguins, it is possible to invert the expressions for the ampli-
tudes and to extract the eight unknown quantities: |VusV

∗
ub T

+−|, |VusV
∗
ub N

0+|, |VusV
∗
ub T

00
C |,

|VtsV
∗
tb P

+−|, three relative strong phases and the weak phase α from the experimental ob-
servables47 (the so-called Nir–Quinn method [241]). However, as was stressed in Ref. [242], the
discrete ambiguity problem is even more delicate than in the ππ case, because the relative angles
between the amplitudes are not well constrained by the quadrilateral construction.

The constraint obtained on the angle α is shown in Fig. 37. Although it peaks near the value
from the standard CKM fit, the constraint is weak. Very large statistics would be required for
a meaningful determination of α by this method. More interesting, perhaps, is the constraint
on the annihilation-to-emission ratio, represented by the quantity |N0+/T+−| given on the right
hand plot of Fig. 37: although this ratio is expected to be suppressed from the point of view of
QCD factorization (see the next Section), large values (of order one) cannot be excluded. Note
that large contributions from annihilation topologies, if extrapolated to B+ → K+K0 in the
SU(3) limit, would eventually enter in conflict with the experimental bounds [135].

47The dependence with respect to α comes from the interference between VusV
∗

ub in the ∆I = 1 amplitude with
VtdV ∗

tb in the B0B0 mixing.
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Figure 38: Confidence level in the (ρ, η) plane for the isospin analysis of B → Kπ decays within
the framework of Ref. [243] (see text). In the left hand plot N0+ is set to zero, while in the right
hand plot it is allowed to vary freely within 10% of the T+− dominant amplitude. Dark, medium
and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. Also shown on each plot is
the prediction from the standard CKM fit.

3.3.2 Standard Model Electroweak Penguins and Vanishing Annihilation Topolo-
gies

Since the pioneering work of Nir and Quinn it has been realized that gluonic penguins are likely
to dominate in B → Kπ, and that CKM-enhanced electroweak penguins would even compete
with CKM-suppressed T -type amplitudes [244]. Thus one can add two ∆I = 1 amplitudes PEW

and PEW
C that come with the CKM factor48 VtsV

∗
tb :

A+− = VusV
∗
ub T

+− + VtsV
∗
tb P

+− ,

A0+ = VusV
∗
ubN

0+ + VtsV
∗
tb (−P+− + PEW

C ) ,√
2A+0 = VusV

∗
ub (T+− + T 00

C −N0+) + VtsV
∗
tb (P+− + PEW − PEW

C ) , (148)√
2A00 = VusV

∗
ub T

00
C + VtsV

∗
tb (−P+− + PEW) ,

where PEW
C is expected to be color-suppressed with respect to PEW.

The general parameterization (148) involves 11 hadronic parameters and the CKM couplings,
which cannot be extracted from the nine independent Kπ observables. In the SU(3) symmetry
limit, the PEW amplitude can be expressed model-independently in terms of the sum T+−+T 00

C ,
just the same way as for ππ [211]: this removes two hadronic parameters, which is however not
yet enough to close the system. Hence without an additional dynamical assumption one cannot
extract a correlation in the (ρ, η) plane from the Kπ observables alone.

Faced with this problem the authors of Ref. [243] proposed to neglect all exchange and
annihilation topologies and showed that in principle the apex of the Unitarity Triangle can be

48The ∆I = 0 contribution from electroweak penguins can be absorbed in the P+− amplitude.
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Figure 39: Constraints on the complex tree-to-penguin amplitude ratio in B0 → K+π− decays
(left), and the complex color-suppressed-to-color-allowed amplitude ratio (right), obtained when
using as additional input the CKM parameters ρ and η from the standard CKM fit. The gradually
shaded regions give the CLs within the framework of Ref. [243]: dark, medium and light shaded
areas have CL > 0.90, 0.32 and 0.05, respectively.

determined, up to discrete ambiguities (see also Ref. [245] for a short review of other approaches
analyzing the Kπ system). The additional hypotheses are

• negligible annihilation and long-distance penguin contributions to B+ → K0π+:

N0+ = 0 . (149)

• SU(3) limit for the color-allowed electroweak penguin amplitude:

PEW = R+
(

T+− + T 00
C

)

. (150)

• SU(3) limit and negligible exchange contributions for the color-suppressed electroweak
penguin amplitude:

PEW
C =

R+

2

(

T+− + T 00
C

)

− R−

2

(

T+− − T 00
C

)

. (151)

In the above equations R+ and R− are constants given by49

R+ = −3

2

c9 + c10
c1 + c2

= +(1.35 ± 0.12) 10−2 ,

R− = −3

2

c9 − c10
c1 − c2

= +(1.35 ± 0.13) 10−2 . (152)

The phenomenological fit is thus expressed in terms of T+−, P+−, T 00
C and (ρ, η), that is five

hadronic parameters and two CKM parameters. Figure 38 (left) shows the constraints on the
unitarity plane obtained within this approach. The intricate shape of the CLs is mainly due

49The numerics for R+ and R− has been worked out as in the ππ case (121), while the correlation between
them is neglected. Equation (151) has been first derived in Ref. [246].
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to the convolution of the Nir–Quinn constraints on the CKM angle α and the explicit CKM
dependence of the electroweak penguins in Eqs. (150)-(151).

Using the same framework and the standard CKM fit as an additional input, we have per-
formed a constrained fit of the tree-to-penguin and color-suppressed-to-leading-tree amplitude
ratios (Fig. 39 left and right, respectively). Because of the 3.3σ evidence of negative direct CP
asymmetry in B0 → K+π−, the relative tree-to-penguin phase (left hand plot) is positive. It is
surprising that the measurements seem to indicate that the expected double CKM suppression
of the tree-to-penguin ratio is well compensated by a large ratio of the hadronic matrix elements
(Fig. 39, left), which tends to contradict the trend observed in the ππ system. We further discuss
this point in Section VI.6. Another striking feature of the fit results, which has been already
observed in π0π0 versus π+π−, is the value of the color-suppressed amplitude as compared to
the leading-tree one (Fig. 39, right): order one is preferred, and a zero value for this amplitude
is excluded.

3.3.3 Including a Correction to the No-Rescattering Assumption

To correct the assumption of a negligible VusVub∗ term in B+ → K0π+, we attempt to include
an estimate for it into the amplitude parameterization. Model-dependent contributions to this
term have been evaluated in the QCD FA formalism [208,135] and are found to be around 10% in
magnitude with respect to the leading T+− amplitude. Since this estimate is fairly uncertain50,
we assign a 100% theoretical error to |N0+| and let its phase δ0+ vary in the fit:

N0+ = (0.1 ± 0.1) |T+−| eiδ0+
. (153)

The transition amplitudes then read as in Eq. (148). Note that in this model, the expressions
for the electroweak penguin remain unchanged with respect to Eqs. (150)–(151). While this is
true for PEW (up to a small correction coming from Q7,8 operators), it is incorrect for PEW

C ,
which receives a contribution from exchange topologies that cannot be expressed in terms of the
Kπ amplitudes alone [246]. We assume that the effect of this approximation is negligible.

The constraints obtained in the unitarity plane are shown on the right hand plot of Fig. 38.
The relaxed framework does not lead to major differences with respect to theN0+ = 0 hypothesis
(left hand plot of Fig. 38). We stress that no significant constraint is obtained on the phase
δ0+, and that the fit converges systematically towards the maximal allowed value for

∣

∣N0+
∣

∣ in
Eq. (153). With much improved experimental accuracy, the N0+ = 0 assumption will become
crucial to obtain meaningful constraints on ρ and η.

3.3.4 Constraining the Electroweak Penguins

To investigate whether the data together with the standard CKM fit can reveal indirect evi-
dence of electroweak penguin contributions, we correct Eqs. (150)–(151) by introducing two new
complex parameters XEW and XEW

C

PEW = XEW
[

R
(

T+− + T 00
C

)]

, (154)

PEW
C = XEW

C

[

RT 00
C

]

, (155)

50Annihilation topologies are expected to be suppressed by ΛQCD/mb. The authors of Ref. [208] estimate them
from a hard-scattering point of view, which results in a stronger, model-dependent suppression proportional to
αSΛQCD/mb.
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Figure 40: Constraints on the complex quantities XEW (left, where XEW
C is fixed to 1) and XEW

C

(right, where XEW is fixed to 1) defined in Eq. (154) and (155), respectively. Dark, medium and
light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. The standard CKM fit is used
as input to obtain these plots.

where we have imposed R+ = R− ≡ R. Within the SM and under the assumptions already
explicitly stated, we expect XEW ≈ XEW

C ≈ 1. We introduce two new fit scenarios: a first
where XEW ≡ 1 and XEW

C is free to vary in the fit (magnitude and phase), and a second where
conversely XEW

C ≡ 1 and XEW is let free.

The CLs (using the standard CKM fit as input) found for XEW (left) and XEW
C (right)

are given in Fig. 40. The constraints on both electroweak penguin contributions are marginal
and essentially any value of the relevant parameters can accommodate the data. This said,
one notices that the standard values XEW = XEW

C = 1 correspond to large CL regions. We
also point out that current data do not particularly favor a zero value for the strength of the
color-suppressed electroweak penguin XEW

C . Hence, from our point of view, it is not justified in
Eq. (148) to neglect PEW

C while keeping PEW, as is done by the authors of Ref. [239,232]: both
electroweak penguin amplitudes may be comparable in magnitude.

3.4 Kπ Observables from ππ Hadronic Parameters

In Section VI.3.3.2 we have found that the present data point towards noticeably different values
for the hadronic parameters T+−, P+− and T 00

C in the Kπ system, compared to the ππ one,
whereas they are expected to be equal in the SU(3) limit, if annihilation and exchange topologies
are negligible. Another manifestation of the same trend has been explored in Ref. [239,232],
where the authors compute the Kπ observables with the use of the hadronic parameters found
in fits to ππ decays. The pattern obtained that way differs from the one observed in the Kπ data.
We repeat this exercice with CKMfitter, using the following ratios of CP -averaged branching
fractions51

Rnc =
τB+

τB0

B(B0 → K+π−) + B(B0 → K−π+)

B(B+ → K0π+) + B(B− → K0π−)
= 0.91+0.08

−0.07 [1.2σ] ,

Rn =
1

2

B(B0 → K+π−) + B(B0 → K−π+)

B(B0 → K0π0) + B(B0 → K0π0)
= 0.78+0.11

−0.09 [1.8σ] , (156)

51The ratio Rnc is denoted R in Ref. [239,232].
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Figure 41: Ratios of branching fractions (156) versus the direct CP asymmetry parameter in
B+ → K+π0 decays as predicted from B → ππ and the standard CKM fit, assuming SU(3)
flavor symmetry and neglecting all annihilation and exchange diagrams. Dark, medium and
light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. The hatched bands indicate the
1σ regions of the corresponding measurements. (See also Fig. 31).

Rc = 2
B(B+ → K+π0) + B(B− → K−π0)

B(B+ → K0π+) + B(B− → K0π−)
= 1.16+0.13

−0.11 [1.4σ] ,

where the numbers in brackets indicate the departure (in standard deviations) from one, the
value predicted by gluonic penguin dominance. Note in this context that the ratio of two
Gaussian quantities (like branching fractions) does not have a Gaussian probability density (see,
e.g., the discussion in Appendix C of Ref. [6]).

We assume in the following the same (strong) hypotheses as in Ref. [212,239,232], namely
exact SU(3) symmetry and neglect of all annihilation and exchange topologies. This allows us
to identify

T+−
Kπ = T+−

ππ , P+−
Kπ = P+−

ππ , T 00
Kπ = T 00

ππ , (157)

while electroweak penguins remain estimated according to Eqs. (150)–(151). The ππ tree and
penguin amplitudes are extracted from the corresponding data using the standard CKM fit, along



102 Part VI – Charmless B Decays

the line described in Section VI.1.4.3. The Kπ observables evaluated that way are shown on
Fig. 41, where the Rnc, Rn and Rc ratios, as well as the CP asymmetry CK0π0, are represented
as functions of the CP asymmetry ACP (K+π0). The overall normalization of the branching
fractions as given by, e.g., B(K+π−), and the CP asymmetry ACP (K+π−) can be read off
Fig. 3152. The experimental values are indicated by the hatched 1σ error bands.

The two-fold discrete ambiguity (Fig. 41) corresponds to the two possible solutions for the
phase of T 00

C /T+− in the ππ system (see Fig. 27). The negative one for the latter is preferred
by the measurement of ACP (K+π0), which is consistent with zero. While there is agreement
between the predicted values of Rc and CK0π0 and the corresponding measurements, a larger Rn

is found, which emphasizes the somewhat large branching fraction of B0 → K0π0 (and confirms
the findings of Refs. [237,135,238,239,232]). As a consequence, we find that the predicted Rnc

exceeds the measurement, which is due to the contribution of PEW
C . Putting the latter amplitude

to zero like Ref. [239,232] would decrease the central value of Rnc to ∼ 0.94 (while not changing
the two other ratios), in better agreement with the experimental value.

Despite the intriguing aspect of the plots in Fig. 41, we stress that the present experimental
accuracy does not allow us to draw definite conclusions. To assess the overall compatibility, we
have performed a global ππ and Kπ fit with the assumptions (157) and with the input of the
standard CKM fit, resulting in a decent p-value of 25%: this is significantly better than the 1.6%
compatibility (2.4σ) that is found from the evaluation of an approximate sum rule [238]. This is
however consistent with the findings of Ref. [235]. To date we cannot exclude the hypotheses (157)
within the SM.

Nevertheless, if more precise data confirm the present pattern of the Kπ modes with respect
to the ππ ones, a challenge would be given to the theory. Various effects could come into play.

• Significant annihilation and exchange topologies and/or SU(3) breaking (in other words,
non-trivial rescattering effects): while large contributions of this type are unlikely, one has
learned from D meson decays, from B0 → D−

s K
+, and from unexpectedly large color-

suppressed transitions from beauty to charm, that the calculation of the heavy meson
non-leptonic decays is very difficult. As for charmless final states, fits using QCD FA
(Section VI.2) require non-vanishing power corrections, even if they finally turn out to
be moderate. Hopefully, with the decrease of the experimental bounds on the suppressed
B → KK modes, multichannel studies will provide more information.

• Experimental effects: absolute measurements of rates represent difficult analyses. For
example, radiative corrections to the decays with charged particles in the final states have
not been taken into account so far by the experiments. Their inclusion is expected to lead
to increased branching fractions of modes with (light) charged particles in the final state
(cf. the introduction to Part VI). As a consequence, the ratios Rnc and Rn should increase,
which could improve the agreement with the indirect constraints from the ππ system (see
Fig. 41).

• New Physics in loop-dominated amplitudes: according to the quantum numbers of the new
field, one may have anomalies in b→ d, ∆I = 1/2 (gluonic) and/or ∆I = 3/2 (electroweak)
penguin amplitudes, and/or in b → s, ∆I = 0 (gluonic) and/or ∆I = 1 (electroweak)
penguin amplitudes. This would require the introduction of new parameters, which would
need sufficiently accurate data to be fitted.

52As already pointed out, in the absence of annihilation and exchange topologies, the amplitudes for B0 →
K+π− and B0

s → K+K− are equal: hence one may read B0 → K+π− instead of B0
s → K+K− on Fig. 31.
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The authors of Ref. [239,232] have studied the latter possibility within a specific class of New
Physics models, where the hierarchy between b → d and b → s transitions is the same as in
the SM (∼ λ), and where New Physics only enters as an enhanced ∆S = ∆I = 1 electroweak
penguin amplitude PEW with a single (unknown) weak phase. This scenario is minimal in the
sense that only one magnitude and one phase has to be adjusted in order to describe the data. As
a by-product of its simplicity, its “naturalness” can be questioned: there is no obvious reason to
exclude the possibility that the failure of color-suppression in the ππ modes is a consequence of
significant non-standard corrections; moreover, the complete NP effect may not be proportional
to a single CP -violating phase53, and finally, the assumption that PEW is real with respect to
the sum T+− + T 00

C , as it is in the SM54, may be significantly violated.

4 Analysis of B → ρπ Decays

In this section we discuss the phenomenological implications of the experimental results from
the BABAR collaboration [247] on time-dependent CP -violating asymmetries in B0 → ρ±π∓

decays. We use amplitude relations based on flavor symmetries as explicit theoretical input
to dynamical constraints55. The analysis is restricted to the quasi-two-body representations of
B0 → (π±π0)π∓ decays, corresponding to distinct bands in the three-pion Dalitz plot. Wrong
charge assignments due to the finite width of the ρ resonance and interference effects between
different two-body states are neglected. It has been pointed out in Ref. [252] that this ne-
glect induces biases on the observed CP and dilution parameters that can amount to up to 8%
depending on the size of the B0 → ρ0π0 amplitude56. In the future full Dalitz plot CP analy-
ses [253,201], these model-dependent uncertainties will be significantly reduced.

As in all charmless analyses related to the UT angle α, the phenomenological effort focuses
on the determination of the penguin contribution to the transition amplitudes. We approach
the problem following a similar hierarchical structure as in Section VI.1.

(I) Using as input the present (yet incomplete) measurements or bounds on branching fractions
of the modes involved with the SU(2) analysis. Contributions from electroweak penguins
are neglected57. We also extrapolate the isospin analysis to future integrated luminosities
of 1 ab−1 and 10 ab−1, using educated guesses for measurements and experimental errors.

(II) Using (I) and the rates of B0 → K∗+π− and B0 → ρ−K+ decays together with SU(3)
flavor symmetry and neglecting OZI-suppressed penguin annihilation topologies.

(III) Using (II) and phenomenological estimates of |P+−| and |P−+| from the rates of B+ →
K∗0π+ (measured) and B+ → ρ+K0 (upper limit) decays, respectively, together with
SU(3) flavor symmetry and neglecting annihilation and long-distance penguin topologies.

53The most general parameterization would imply to introduce two new CP -violating phases, because the

arbitrary sum
∑

i
MNP

i e±iφi can be rewritten as M̃NP
1 ei±φ̃1+M̃NP

2 ei±φ̃2 , where the Mi are CP -conserving complex
numbers and the φi are CP -odd.

54For this to be true, one would have to show that NP does not enhance the coefficients c7,8, see Eq. (150).
55The present analysis does not include a discussion of results on pseudoscalar-vector modes from QCD Fac-

torization [135,248–250] or SU(3) symmetry including all SU(3) multiplets [251], since this goes beyond the scope
of this paper. A dedicated work on this will be forthcoming.

56Whereas the main part of the interference region between the ρ+ and ρ− has been removed from the analysis,
the ones between charged and neutral ρ’s are kept [247].

57 The treatment advertised in Eq. (120) cannot be directly translated to the ρπ system, if considered as a
two-body decay. Only in the case of a full Dalitz plot analysis, that allows one to extract the ∆I = 3/2 tree
amplitude, is it possible to take into account EW penguin contributions in a model-independent way [143]. Since
we learned from the ππ system that these effects are small, we can choose to neglect them for the numerical
discussion of present ρπ CP results.
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4.1 Basic Formulae and Definitions

We follow the conventions adopted in Section VI.1 and use the unitarity of the weak Hamiltonian
to eliminate the charm quark loop out of the penguin diagrams (C convention) in the transition
amplitudes. The complex Standard Model amplitudes of the relevant processes represent the
sum of complex tree (T ) and penguin (P ) amplitudes with different weak and strong phases.
The corresponding diagrams for the decay B0 → ρ±π∓ are the same as for B0 → π+π− (see
examples in Fig. 18). The transition amplitudes read

A+− ≡ A(B0 → ρ+π−) = VudV
∗
ubT

+− + VtdV
∗
tbP

+− ,
A−+ ≡ A(B0 → ρ−π+) = VudV

∗
ubT

−+ + VtdV
∗
tbP

−+ ,
A+− ≡ A(B0 → ρ+π−) = V ∗

udVubT
−+ + V ∗

tdVtbP
−+ ,

A−+ ≡ A(B0 → ρ−π+) = V ∗
udVubT

+− + V ∗
tdVtbP

+− ,

(158)

where the ρ meson is emitted by the W boson in the case of A+− and A−+, while it contains
the spectator quark in the case of A−+ and A+−.

The time-dependent CP asymmetries is given by

a±CP (t) ≡ Γ(B0(t) → ρ±π∓) − Γ(B0(t) → ρ±π∓)

Γ(B0(t) → ρ±π∓) + Γ(B0(t) → ρ±π∓)

= (Sρπ ± ∆Sρπ) sin(∆mdt) − (Cρπ ± ∆Cρπ) cos(∆mdt) , (159)

where the quantities Sρπ and Cρπ parameterize mixing-induced CP violation and flavor-dependent
direct CP violation, respectively. The parameters ∆Sρπ and ∆Cρπ are CP -conserving: ∆Sρπ is
related to the strong phase difference between the amplitudes contributing to B0 → ρ±π∓ de-
cays, while ∆Cρπ describes the asymmetry (dilution) between the rates Γ(B0 → ρ+π−)+Γ(B0 →
ρ−π+) and Γ(B0 → ρ−π+) + Γ(B0 → ρ+π−). Owing to the fact that B0 → ρ±π∓ is not a CP
eigenstate, one must also consider the time- and flavor-integrated charge asymmetry

Aρπ ≡ |A+−|2 + |A+−|2 − |A−+|2 − |A−+|2
|A+−|2 + |A+−|2 + |A−+|2 + |A−+|2 , (160)

as another source of possible direct CP violation.

We reorganize the experimentally convenient, namely uncorrelated, direct CP -violation pa-
rameters Cρπ and Aρπ into the physically more intuitive quantities A+−

ρπ , A−+
ρπ , defined by

A+−
ρπ ≡ |κ+−|2 − 1

|κ+−|2 + 1
= −Aρπ + Cρπ + Aρπ∆Cρπ

1 + ∆Cρπ + AρπCρπ
, (161)

A−+
ρπ ≡ |κ−+|2 − 1

|κ−+|2 + 1
=

Aρπ − Cρπ −Aρπ∆Cρπ

1 − ∆Cρπ −AρπCρπ
,

where

κ+− ≡ q

p

A−+

A+− , κ−+ ≡ q

p

A+−

A−+
, (162)

so that A+−
ρπ (A−+

ρπ ) involves only diagrams where the ρ meson is emitted by the W boson
(contains the spectator quark).

In analogy to the ππ system, we introduce the effective weak angles that reduce to 2α in the
absence of penguins

2α+−
eff ≡ argκ+− , 2α−+

eff ≡ arg κ−+ , (163)
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so that Sρπ and ∆Sρπ, which are given by

S + ∆Sρπ =
2Imλ+−

1 + |λ+−|2 , (164)

S − ∆Sρπ =
2Imλ−+

1 + |λ−+|2 ,

where58

λ+− ≡ q

p

A+−

A+− , λ−+ ≡ q

p

A−+

A−+
, (165)

can be rewritten as

S + ∆Sρπ =
√

1 − (C + ∆Cρπ)2 sin(2α+−
eff + δ̂) , (166)

S − ∆Sρπ =
√

1 − (C − ∆Cρπ)2 sin(2α−+
eff − δ̂) ,

with59 δ̂ = arg[λ+−κ−+∗
] = arg[λ−+∗

κ+−] = arg[A−+A+−∗
].

58The λ+−(−+) involve only one ρπ charge combination, but both amplitude types T (P )+− and T (P )−+. They
are insensitive to direct CPV but their imaginary part is directly related to the weak phase α (though complicated
by strong phase shifts and penguins). The quantities κ+−(−+) involve both ρπ charges, but only one amplitude
type, corresponding to whether ([−+]) or not ([+−]) the ρ has been produced involving the spectator quark.

Their moduli are linked to direct CPV while their phases measure effective weak angles α
−+(+−)
eff defined further

below.
Compared to CP eigenstates, the λ+− and λ−+ do not have the desired properties under CP transformation,

i.e., λ+− 6= 1 or λ−+ 6= 1 does not automatically entail CP violation. These inequalities are a necessary but not a
sufficient condition. Appropriate λ’s can be easily constructed. They should reflect the CP and the flavor specific
character of B0 → ρ±π∓ decays. A possible definition is

λ̃CP ≡ λ+− · λ−+ , λ̃tag ≡ λ+−/λ−+ ,

where λ̃CP 6= 1 in case of direct or mixing induced CP violation, and for example λ̃tag = 0 for the case that
B0 → ρ+π− is a flavor eigenstate. A more practical definition is given by:

|λCP |2 ≡ |λ+−|2 + |λ−+|2 + 2|λ+−|2|λ−+|2
2 + |λ+−|2 + |λ−+|2 ,

|λtag|2 ≡ 1 + 2|λ+−|2 + |λ+−|2|λ−+|2
1 + 2|λ−+|2 + |λ−+|2|λ+−|2 ,

ImλCP ≡ Imλ+−(1 + |λ−+|2) + Imλ−+(1 + |λ+−|2)
2 + |λ+−|2 + |λ−+|2 ,

Imλtag ≡ Imλ+−(1 + |λ−+|2) − Imλ−+(1 + |λ+−|2)
1 + 2|λ−+|2 + |λ−+|2|λ+−|2 ,

which has the desired properties, since if:

• B0 → ρ+π− is flavor eigenstate, e.g., A−+ = A+− = 0 so that λ+− = 0 and λ−+ = ∞, one has λtag = 0
with maximal dilution. The mode is self-tagging as is, e.g., B0 → ρ−K+, and no mixing-induced CPV can
occur.

• B0 → ρ±π∓ behaves like a CP eigenstate, i.e., |A+−| = |A−+| and |A+−| = |A−+| so that |λ+−| = |λ−+| =
|λ|, one has |λtag| = 1 with minimal dilution, and λCP = λ. One could hence disregard the charge of the
ρ in the analysis and just look at the time-dependent asymmetry between B0 → (ρπ)0 and B0 → (ρπ)0.

Note that in the presence of penguins, the value of λtag does depend on the weak phase α.
59The alternative parameterization introduced in Ref. [209] (see Footnote 35 in Section VI.1.2.1) can be extended

to the B → ρπ system. Restricted to the B0 → ρ±π∓ amplitudes, one has

A+−
′ = µa+−e−iδ̂/2 ,
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In the absence of penguin contributions (P+− = P−+ = 0), one has |κ+−| = |κ−+| =
|λ+−λ−+| = 1, that is α+−

eff = α−+
eff = α, so that the observables reduce to simple functions of α,

δ̂ and r̂:

Sρπ =
2r̂

1 + r̂2
sin 2α cos δ̂ ,

∆Sρπ =
2r̂

1 + r̂2
cos 2α sin δ̂ ,

Cρπ = 0 , (167)

∆Cρπ =
1 − r̂2

1 + r̂2
,

Aρπ = 0 ,

A+−
ρπ = A−+

ρπ = 0 ,

with r̂ = |T−+/T+−|. Hence α can be determined up to an eightfold ambiguity within [0, π]60.
If furthermore B0 → ρ±π∓ represents an effective CP eigenstate (T+− = T−+), the parameters
simplify to Sρπ = sin 2α and ∆Sρπ = Cρπ = ∆Cρπ = Aρπ = 0, hence reproducing the zero-
penguin case in B0 → π+π− decays. If the relative strong phase vanishes, but there exists a

non-zero dilution rT+− 6= 0 (i.e., ∆Cρπ 6= 0), one has Sρπ =
√

1 − ∆C2
ρπ sin 2α.

Branching fractions are in general given by the sum of the contributing squared amplitudes,
where final states (ρπ charges) are summed and initial states (B flavors) are averaged. The
B0 → ρ±π∓ branching fraction reads

B±∓
ρπ ∝ τB0

2

(

|A+−|2 + |A−+|2 + |A−+|2 + |A+−|2
)

. (168)

Observables from Other Modes

The various analyses discussed here involve SU(2) and SU(3) flavor partners of the signal mode
B0 → ρ±π∓. We use branching fractions (B) as well as charge asymmetries (A) for the charged
B and self-tagging channels. They are defined by

Bhh′ ≡ B(B → hh′) ∝ τB
2

(

|Ahh′ |2 + |Ahh′ |2
)

, (169)

Ahh′ ≡ |Ahh′ |2 − |Ahh′ |2
|Ahh′ |2 + |Ahh′ |2 , (170)

where τB denotes the lifetime of the decaying B meson (neutral or charged). More details are
given in the following.

A−+
′ = µa−+e+iδ̂/2 ,

(q/p)A+−
′ = µa+−e+i(2α+−

eff
+δ̂/2) ,

(q/p)A−+
′ = µa−+e+i(2α

−+

eff
−δ̂/2) ,

where µ (overall scale) and the a+−, . . . , are real numbers and where we have rotated the amplitudes by the

(arbitrary) global phase Aij
′ = Aijei(arg[A+−∗]−δ̂/2).

60In the absence of penguin contributions, the eight solutions for α and δ̂ satisfying Eqs. (166) and (167)
read [254]

α → π/4 − δ̂/2 , π/2 + α , 3π/4 − δ̂/2 , π/4 + δ̂/2 , π/2 − α , 3π/4 + δ̂/2 , π − α

δ̂ → π/2 − 2α , π + δ̂ , 3π/2 − 2α , −π/2 + 2α , −δ̂ , −3π/2 + 2α , π − δ̂
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Obs. BABAR Belle CLEO Average

B±∓
ρπ 22.6 ± 1.8 ± 2.2 [247] 29.1+5.0

−4.9 ± 4.0 [255] 27.6+8.4
−7.4 ± 4.2 [256] 24.0 ± 2.5

Aρπ −0.114 ± 0.062 ± 0.027 [247] - - −0.114 ± 0.067

Sρπ −0.13 ± 0.18 ± 0.04 [247] - - −0.13 ± 0.18

∆Sρπ 0.33 ± 0.18 ± 0.03 [247] - - 0.33 ± 0.18

Cρπ 0.35 ± 0.13 ± 0.05 [247] - - 0.35 ± 0.14

∆Cρπ 0.20 ± 0.13 ± 0.05 [247] - - 0.20 ± 0.14

A+−
ρπ −0.18 ± 0.13 ± 0.05 - - −0.18 ± 0.14

A−+
ρπ −0.52+0.17

−0.19 ± 0.07 - - −0.52+0.18
−0.20

B+0
ρπ 11.0 ± 1.9 ± 1.9 [257,258] 13.2 ± 2.3+1.4

−1.9 [259] < 43 [256] 12.0 ± 2.0

A+0
ρπ 0.23 ± 0.16 ± 0.06 [257,258] 0.06 ± 0.19±+0.04

−0.06 [259] - 0.16 ± 0.13

B0+
ρπ 9.3 ± 1.0 ± 0.8 [257,258] 8.0+2.3

−2.0 ± 0.7 [255] 10.4+3.3
−3.4 ± 2.1 [256] 9.1 ± 1.1

A0+
ρπ −0.17 ± 0.11 ± 0.02 [257,258] - - −0.17 ± 0.11

B00
ρπ 0.9 ± 0.7 ± 0.5(< 2.9) [257,258] 5.1 ± 1.6 ± 0.9 [260] < 5.5 [256] 1.7 ± 0.8

C00
ρπ - - - -

S00
ρπ - - - -

B−+
ρK 7.3+1.3

−1.2 ± 1.3 [247] 15.1+3.4
−3.3

+2.4
−2.6 [261] 16.0+7.6

−6.4 ± 2.8 [256] 9.0 ± 1.6

A−+
ρK 0.18 ± 0.12 ± 0.08 [247] 0.22+0.22

−0.23 ± 0.02 [261] - 0.19 ± 0.12

B+−
K∗π - 14.8+4.6

−4.4
+2.8
−1.3 [261] 16+6

−5 ± 2 [262] 15.3+4.1
−3.5

A+−
K∗π - - 0.26+0.33

−0.34
+0.10
−0.08 [262] 0.26 ± 0.34

B+0
ρK - - < 48 [263] < 48

B0+
K∗π 15.5+1.8

−1.5 ± 4.0 [264] 8.5+0.9
−1.1 ± 0.9 [265] 7.6+3.5

−3.0 ± 1.6 [256] 9.0+1.3
−1.2

Table 11: Compilation of results (from data up to Winter 2004) on B → ρπ branching fractions
(in units of 10−6) and CP asymmetries as well as dilution parameters. Limits are quoted at 90%
confidence level (CL). Also given are the branching fractions and direct CP asymmetries for the
modes B0 → K∗+π−, B0 → ρ−K+, B+ → K∗0π+ and B+ → ρ+K0 related to ρπ via SU(3)
flavor symmetry.

4.2 Experimental Input

The present (Winter 2004) results (including world averages taken from the HFAG [62]) for the
branching fractions and CP -violating asymmetries of all B → ρπ decays are given in Table 11.
Also given are the results for the modes B0 → K∗+π− and B0 → ρ−K+, which are the SU(3)
partners of the decays B0 → ρ+π− and B0 → ρ−π+, respectively. There is some disagreement
on possible evidence for the decay B0 → ρ0π0, which has not been seen by BABAR whereas Belle
finds a large central value for the branching fraction that may indicate a large color-suppressed
tree amplitude or significant penguin contributions.
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Aρπ Cρπ ∆Cρπ Sρπ ∆Sρπ Nρπ

Aρπ 100 −7.6 −6.7 −3.1 1.5 3.9
Cρπ 100 13.9 −7.7 −10.0 −7.4
∆Cρπ - 100 −9.5 −7.7 −6.8
Sρπ - - 100 22.9 1.2
∆Sρπ - - - 100 −3.0

Table 12: Correlation coefficients (in %) between the parameters in the time-dependent fit to
B0 → ρ±π∓ decays as measured by BABAR [247]. Note that the correlations between events
yields and the CP parameters are taken from the branching fraction analysis [247].

4.2.1 Direct CP Violation

The direct CP asymmetries A+−
ρπ and A−+

ρπ (see Table 11) have been computed from Eqs. (161)
and (162), using the linear correlation coefficients given in Table 12. We find a linear corre-
lation coefficient between A+−

ρπ and A−+
ρπ of 0.51. Confidence levels in the (A+−

ρπ ,A−+
ρπ ) plane

are shown in the left hand plot of Fig. 42. The BABAR experiment finds some indication for
direct CP violation (approximately 2.5 standard deviations including systematics) mainly in the
modes involving the A−+ and A+− decay amplitudes. This result is rather unexpected since, if
confirmed, it would require sizable penguin contributions to these amplitudes, with a hierarchy
opposite to the näıve factorization expectation [266]

P−+ ≪ P+− <∼ P+−
ππ . (171)

QCD factorization predicts potentially large corrections to the above hierarchy [135]; on the
other hand, because the strong phases are suppressed, direct CP violation in B0 → ρ±π∓ is
expected to remain below 10%.

4.2.2 Charge-flavor Specific Branching Fractions

The yields and CP -violation results are expressed in the basis defined in Eqs. (159), (160) and
(168). Since it is complete, we can transform it to any other complete basis, e.g., the branching
fractions of the four individual tag-charge contributions. The individual (i.e., not B-flavor-
averaged) branching fractions

Bρ+π− = B(B0 → ρ+π−) , Bρ−π+ = B(B0 → ρ−π+) ,

Bρ+π− = B(B
0 → ρ+π−) , Bρ−π+ = B(B

0 → ρ−π+) ,
(172)

are obtained via

BρQπ−Q(f,Q) =
1

2
(1 +QAρπ) (1 + f · (Cρπ +Q∆Cρπ))B±∓

ρπ , (173)

with the B0 flavors f(B0) = 1, f(B0) = −1, and the ρ charges Q(ρ±) = ±1. Adding statistical
and systematic errors in quadrature, we find (in units of 10−6):

Bρ+π− = 16.5+3.1
−2.8 , Bρ−π+ = 15.4+3.2

−2.9 ,

Bρ+π− = 4.8+2.6
−2.3 , Bρ−π+ = 11.4+2.8

−2.6 ,
(174)
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Figure 42: Confidence level in the A+−
ρπ versus A−+

ρπ (left plot) and B+−
ρπ versus B−+

ρπ (right plot)
planes. Shown are the 1σ (dark shaded), 2σ (medium shaded) and the 3σ (light shaded) regions.
The dashed line in the right hand plot approximately indicates vanishing dilution (∆Cρπ = 0,
neglecting AρπCρπ 6= 0).

and the correlation coefficients

Bρ−π+ Bρ+π− Bρ−π+

Bρ+π− −0.17 −0.47 −0.14

Bρ−π+ 1 −0.08 −0.40

Bρ+π− − 1 −0.06

(175)

One notices a significant lack of B0 → ρ+π− decays in the results (174). We can infer from
these numbers the B-flavor-averaged branching fractions (in units of 10−6)

B+−
ρπ ≡ 1

2

(

Bρ+π− + Bρ−π+

)

=
1

2
(1 + ∆Cρπ + AρπCρπ)B±∓

ρπ = 13.9+2.2
−2.1 ,

B−+
ρπ ≡ 1

2

(

Bρ−π+ + Bρ+π−

)

=
1

2
(1 − ∆Cρπ −AρπCρπ)B±∓

ρπ = 10.1+2.1
−1.9 , (176)

with a linear correlation coefficient of −0.28 between B+−
ρπ and B−+

ρπ . The CLs of the rates (176)
are depicted in the right hand plot of Fig. 42. The branching fractions B+−

ρπ and B−+
ρπ correspond

to transitions where the ρ meson is emitted by the W boson or originates from the spectator
interaction, respectively. Simple form factor arguments predict that B+−

ρπ should be larger than
B−+

ρπ , which is reproduced by experiment.

Also given in Table 11 are the ρπ flavor partners. Since ρ0π0 is a CP eigenstate (in the
two-body decay approximation), its sine and cosine coefficients, S00

ρπ, C00
ρπ, can be measured in a

time-dependent analysis, provided that the experimental sensitivity is sufficient. The other ρπ
modes are charged so that they provide two observables, one of which describes CP violation.
The decays B0 → K+(∗)h− are self-tagging so that they also provide two observables.
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Figure 43: Constraint on the UT angle α using the CP and branching fraction results for B0 →
ρ±π∓ decays and assuming vanishing penguin contributions. Indicated by the dark-shaded areas
are the solutions when further fixing the relative strong phase δ̂ to zero. Also shown is the
constraint from the standard CKM fit.

4.3 Penguins

The experimental results on K∗π and Kρmodes summarized in Table 11 indicate that large pen-
guin contributions may be present in the SU(3)-related B0 → ρ±π∓ decay amplitudes. On the
other hand, within QCD Factorization, the penguin-to-tree ratio for both charge combinations
is predicted to be significantly smaller (a factor of three) than for B0 → π+π− decays [135].

4.3.1 Zero-Penguin Case

As an exercise, we assume here that the penguin amplitudes P+− and P−+ are zero so that
α+−

eff = α−+
eff = α (cf. Eqs. (166) and 167). The compatibility of a theory without penguins

with the B0 → ρ±π∓ data is marginal. We find χ2 = 8.6 for two degrees of freedom which
corresponds to a CL of 0.014 (2.5σ - which is equal to the significance of direct CP violation).

Figure 43 shows the constraint on α obtained in this simplified setup. The eightfold ambiguity
within [0, π] arises due to the unknown strong phase δ̂. Although vanishing penguin amplitudes
are not a likely scenario, it allows us to assess the statistical power of the present data: if all
strong phases were known, α could be determined with an accuracy of 5.4◦ per solution. Further
setting δ̂ = 0 leads to a twofold ambiguity, one of which is in agreement with the standard CKM
fit.

4.3.2 Constraining the Penguins

In analogy to the B0 → π+π− case, we can constrain the penguin contributions by inserting
the value of α from the standard CKM fit. Whereas the information from the other charges
(via isospin) is used there, we restrict the analysis to B0 → ρ±π∓ here. Figure 44 gives the
CLs obtained in the P+−/T+− complex plane (left hand plot) as well as the P−+/T−+ complex
plane (right hand plot). Due to the negative values of the direct CP -violating asymmetries (161)
(cf. Table 11), positive strong phases are preferred for both ratios. Since the decays governed
by the A−+ and A+− amplitudes (for which the ρ meson contains the spectator quark) exhibit
larger direct CPV, more sizable penguin-to-tree ratios are required here. The characteristic
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Figure 44: Confidence levels in the complex planes |Rt/Ru|(P+−/T+−) (left) and
|Rt/Ru|(P−+/T−+) (right), using α from the standard CKM fit as input. Dark, medium and
light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. Shown by the hatched areas are
the corresponding CL > 0.05 regions obtained when using in addition SU(3) flavor symmetry
(Scenario (II), see Section 4.5).

hyperbolic shapes of the constraints is due to the fact that direct CP violation is the product
of penguin-to-tree ratio and strong phase difference. Also shown in Fig. 44 are the CL > 0.05
regions obtained when using SU(3) flavor symmetry and neglecting OZI-suppressed annihilation
terms, which due to the CKM-favored penguin amplitudes provides improved bounds (see the
discussion in Section 4.5).

4.4 SU(2) Symmetry

Similarly to the Gronau-London analysis in B → ππ and longitudinally polarized B → ρρ
decays [141], the full isospin analysis of B → ρπ decays allows one to constrain the angle α up
to discrete ambiguities [267]. However, instead of a triangular isospin relation, a pentagon has
to be determined in the complex plane, which reduces the sensitivity to α.

4.4.1 Isospin Analysis

The SU(2) flavor decomposition of the neutral and charged B → ρπ amplitudes is given, e.g.,
in Refs. [267,201]. Here we recall only the relevant relations, which complete Eq. (158)

2A00 ≡ 2A(B0 → ρ0π0) = VudV
∗
ubT

00
C − VtdV

∗
tb

(

P+− + P−+) ,

√
2A0+ ≡

√
2A(B+ → ρ0π+) = VudV

∗
ubT

0+ − VtdV
∗
tb

(

P+− − P−+) , (177)

√
2A+0 ≡

√
2A(B+ → ρ+π0) = VudV

∗
ub

(

T+− + T−+ + T 00
C − T 0+

)

+ VtdV
∗
tb

(

P+− − P−+) ,

and equivalently for the CP -conjugated amplitudes. The amplitudes satisfy the pentagonal
relations

√
2
(

A+0 +A0+
)

= 2A00 +A+− +A−+ ,
√

2
(

A+0 +A0+
)

= 2A00 +A+− +A−+ . (178)
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As in the case of B → ππ, the color-suppressed mode B0 → ρ0π0 constrains the (sum of the)
penguin contributions to B0 → ρ±π∓. The above isospin relations take advantage of the fact
that QCD penguins can only mediate ∆I = 1/2 transitions in the SU(2) limit. Electroweak
penguins, that we neglect here (see Footnote 57 in Section VI.4), can have ∆I = 3/2 and would
thus lead to additional terms proportional to VtdV

∗
tb.

Information counting results in 12 unknowns (6 complex amplitudes and the weak phase
α = π − β − γ minus one arbitrary global phase), and 13 observables for the complete SU(2)
analysis. The isospin analysis constrains the weak phase α up to discrete ambiguities, which
however are not necessarily degenerate thanks to the fact that the system is over-determined
(all observables are experimentally accessible). This is similar to the B → ρρ system (cf.
Section VI.5).

4.4.2 SU(2) Bounds

Using the SU(2) relations and the CP -averaged branching fractions, one can derive simple bounds
on the deviation from α induced by the penguin contributions [143,268]

|α− α±
eff | ≤ 1

2
arccos





1
√

1 −A±
ρπ

2

(

1 − 4
B00

ρπ

B±
ρπ

)



 , (179)

where we use the CP -averaged quantities

2α±
eff ≡ arg

[

q

p

A+− +A−+

A+− +A−+

]

, (180)

A±
ρπ ≡ |A+− +A−+|2 − |A−+ +A+−|2

|A+− +A−+|2 + |A−+ +A+−|2 , (181)

B±
ρπ ∝ τB0

4

(

|A+− +A−+|2 + |A−+ +A+−|2
)

. (182)

The latter two cannot be experimentally determined in a quasi-two-body analysis since they
involve the relative phases arg[κ−+λ+−∗

] and arg[κ+−λ+−∗
], which depend on the interference

between the two charge states ρ+π− and ρ−π+ in the Dalitz plot. Indirect isospin constraints
on B±

ρπ and A±
ρπ using the current results (Table 11) are insignificant [252]. As a consequence,

no useful constraint on |α− α±
eff | is obtained from the bound (179).

The presently available experimental information is insufficient to obtain a meaningful con-
straint on α. We thus attempt to give an outlook to future integrated luminosities accumulated
at the B factories.

4.4.3 Prospects for the Full Isospin Analysis

To perform an educated study of the full isospin analysis, we assume α = 94◦ and a set of
generating decay amplitudes chosen (arbitrarily) to approximately reproduce the experimental
results given in Table 11. We obtain from these amplitudes the inputs

B±∓
ρπ = 22.8 ± 0.82 [0.26] , Aρπ = −0.12± 0.025 [0.13] , C00

ρπ = 0.66 ± 0.162 [0.056] ,

B00
ρπ = 1.2 ± 0.19 [0.06] , Cρπ = 0.41 ± 0.052 [0.029] , S00

ρπ = −0.69 ± 0.222 [0.072] ,

B+0
ρπ = 8.6 ± 0.76 [0.24] , ∆Cρπ = 0.20 ± 0.052 [0.029] , A+0

ρπ = −0.29 ± 0.051 [0.028] ,

B0+
ρπ = 16.5 ± 0.40 [0.13] , Sρπ = −0.12± 0.065 [0.026] , A0+

ρπ = −0.16 ± 0.032 [0.013] ,

∆Sρπ = 0.30 ± 0.065 [0.016] ,
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Figure 45: Left: constraint on α using the full B → ρπ isospin analysis and assuming projec-

tions into future integrated luminosities of 1 ab−1 and 10 ab−1. The assumptions made on the
generating amplitudes are given in the text. The arrow indicates the true value of α used for
the generation of the toy observables. The hatched area shows the constraint obtained from the
present standard CKM fit. Right: same as left hand plot but with a ten times smaller B00

ρπ.

where the errors are extrapolated to integrated luminosities of 1 ab−1 [10 ab−1]. The statistical
errors are assumed to scale with the inverse of the square-root of the integrated luminosity. The
systematic uncertainties are dominated by the limited knowledge of the backgrounds arising from
other B decays. Because this knowledge, however, improves when more data become available,
the related uncertainty is assumed to decrease like the statistical errors. We neglect possible
irreducible systematics from tracking and neutral reconstruction efficiencies or other effects. For
the CP parameters, we assume the systematics decrease with the square root of the luminosity
up to 1 ab−1 due to an improved knowledge of the CP content of the primary B-background
modes, but then do not decrease any further since unknown effects, like CP violation on the tag
side, become dominant.

We derive the constraints on α shown in the left hand plot of Fig. 45. A wide range of
solutions exists besides the true value α, indicated by the arrow. The right hand plot of Fig. 45
shows the CLs obtained for α when the branching fraction of B0 → ρ0π0 is below the experi-
mental sensitivity (B00

ρπ = 0.1 × 10−6). The constraint improves compared to the previous case.

The conclusions drawn from this exercise are similar to what has been observed in B0 →
π+π− decays: unless the branching fraction B00

ρπ is very small (even smaller than expected from
the color-suppression mechanism), very large statistics is needed to significantly constrain α
from ρπ data alone using the quasi-two-body isospin analysis. It is effectively beyond the reach
of the first generation B factories.

4.5 SU(3) Flavor Symmetry

Similarly to the studies in B0 → hh′ decays, one can use SU(3) flavor symmetry and dynamical
hypotheses to obtain additional information on the penguin amplitudes contributing to B0 →
ρ±π∓.
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Figure 46: Left: Confidence levels for the SU(3) bounds (185) (dashed line) and (186) (solid
line). The arrows indicate the CL = 0.05 crossing values given in Eq. (187). Right: Lower
bounds on the branching fractions B+−

K∗π (dashed line) and B−+
ρK (solid line) obtained with the

use of SU(3) symmetry and inserting α from the standard CKM fit. The arrows indicate the
corresponding experimental values (same line types).

4.5.1 Estimating |P +−| and |P −+| from B0 → ρ−K+ and B0 → K∗+π−

As proposed in Ref. [143], the penguin amplitudes in B0 → ρ±π∓ can be more effectively
constrained with the use of the corresponding charge states in b→ uūs transitions, namely the
decays B0 → K∗+π− and B0 → ρ−K+ (Scenario (II)) for which the amplitudes read

A+−
K∗π ≡ A(B0 → K∗+π−) = VusV

∗
ubT

+−
K∗π + VtsV

∗
tbP

+−
K∗π ,

A−+
ρK ≡ A(B0 → ρ−K+) = VusV

∗
ubT

−+
ρK + VtsV

∗
tbP

−+
ρK .

(183)

Under the assumption of SU(3) flavor symmetry, and neglecting OZI-suppressed penguin anni-
hilation diagrams (see right hand diagram in Fig. 21), which contribute to B → ρπ but not to
B → ρK,K∗π, the penguin amplitudes in Eq. (183) and those entering A+− (A−+) are equal
(Scenario (II)):

P+− = P+−
K∗π , P−+ = P−+

ρK . (184)

This leads to the bounds [143]

|α− α+−
eff | ≤ 1

2
arccos





1
√

1 −A+−
ρπ

2

(

1 − 2λ2B+−
K∗π

B+−
ρπ

)



 , (185)

|α− α−+
eff | ≤ 1

2
arccos





1
√

1 −A−+
ρπ

2

(

1 − 2λ2
B−+

ρK

B−+
ρπ

)



 , (186)

where λ is the Wolfenstein parameter. Compared to the bound (179), the above SU(3) bounds
benefit from the relative CKM enhancement (suppression) of the penguin (tree) amplitudes in
the strange modes with respect to the b→ u transitions. The left-hand plot of Fig. 46 shows the
CLs for |α−α+−

eff | and |α−α−+
eff | obtained with the use of the results for the branching fractions
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given in Table 11. At 95% CL, we find61

|α− α+−
eff | < 17.6◦ , |α− α−+

eff | < 12.6◦ , (187)

which are more restrictive than the corresponding bounds obtained in the ππ system (see Sec-
tion VI.1.4)

Owing to the fact that non-zero direct CPV requires sizable penguin contributions, we can
reverse the procedure and infer lower limits on B+−

K∗π and B−+
ρK , using SU(3) and inserting α

from the standard CKM fit. The CLs obtained for both branching fractions are shown in
the right hand plot of Fig. 46. The arrows indicate the corresponding measurements. As ex-
pected, the relatively large CP asymmetry A−+

ρπ requires an increased B−+
ρK , while no useful lower

bound is obtained for B+−
K∗π. Although compatible within the rather large experimental errors

(CL = 0.46), one can conclude from this observation that if the SU(3) picture holds within the
SM, improved statistics is expected to give a lower value of |A−+

ρπ | than the current one, since

B−+
ρK is already known to good precision. Following the same line, we have attempted to obtain

a lower bound on the branching fraction B00
ρπ, which is however insignificant at present [252].

In turn, we have attempted in Fig. 47 to use the CP -conserving branching fractions B+−
ρπ and

B−+
ρπ as the only experimental input (or equivalently B±∓

ρπ , ∆Cρπ and the CP -conserving product

Cρπ · Aρπ) as well as their SU(3) partners B+−
K∗π and B−+

ρK , to infer bounds62 on A+−
ρπ and A−+

ρπ .
Since branching fractions are not sensitive to the sign of direct CPV, the figure is symmetric
around the zero axes. We determine the allowed domains (CL > 0.05)

|A+−
ρπ | < 0.64 , |A−+

ρπ | < 0.59 . (188)

Using the results given in Table 11 and the relations (184), we can set CLs for α. We obtain
six ambiguous solutions shown by the light shaded region in the left hand plot of Fig. 48. The

widths of the plateaus represent the uncertainties |α−α+−(−+)
eff | determined by the bounds (185)

and (186). The bounds on |α−α+−(−+)
eff | are not good enough to resolve all the eight ambiguities,

which are partially merged. The χ2
min = 0.3 for the best fit is satisfactory. Fixing arbitrarily

the penguin amplitudes to zero results in the significantly worse χ2
min = 8.8. Also shown in the

figure is the solution obtained when fixing the relative strong phase δ̂ to zero. Good agreement
with the standard CKM fit is observed.

It is interesting to correlate α with the relative strong phase δ̂ between A−+ and A+− (cf.
Eq. (166)). The corresponding CLs are shown in the right hand plot of Fig. 48. We observe a
structure of distinctive islands, and, when using the SM constraint (cf. Table 2) on α, we conclude
that values of δ̂ = 0, π are preferred, one of which (δ̂ = 0) is in conformity with expectations
from factorization. If δ̂ were given by theory or determined experimentally through a Dalitz
plot analysis [253], SU(3) symmetry would result in a useful constraint on α.

61Note that the numerical analysis performed with CKMfitter does not explicitly involve Eqs. (185) and (186),
since the full amplitude parameterizations are implemented. Fitting all experimental results to these amplitudes,
and using the SU(3) constraints (184), automatically reproduces the analytical bounds.

62The analytical SU(3) bounds on the direct CP asymmetries read

A+−
ρπ <

√

1 −
(

1 − 2λ2
B+−

K∗π

B+−
ρπ

)2

, A−+
ρπ <

√

1 −
(

1 − 2λ2
B−+

ρK

B−+
ρπ

)2

.
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Figure 47: The direct CP -violating asymmetries A+−
ρπ versus A−+

ρπ bound using SU(3) flavor
symmetry and the measured flavor-specific branching ratios (176) as the only input. Dark,
medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. Also shown are the
experimental values found by BABAR.

4.5.2 Estimating |P +−| and |P −+| from B+ → ρ+K0 and B+ → K∗0π+

The magnitude of the penguin amplitudes |P+−| and |P−+| can be estimated from the branching
fraction of the penguin-dominated decays B+ → ρ+K0 and B+ → K∗0π+ (Scenario (III)).
Neglecting the doubly CKM-suppressed u penguins and annihilation diagrams, the transition
amplitudes for these modes are given by

A+0
K ≡ A(B+ → ρ+K0) = V ∗

tbVtsP
+0
ρK ,

A0+
K ≡ A(B+ → K∗0π+) = V ∗

tbVtsP
0+
K∗π . (189)

Correspondingly to the relation (126) and within the same hypotheses, one has

|P+−| =
1√
rτ

fρ

fK∗

1

R+− |P 0+
K∗π|,

|P−+| =
1√
rτ

fπ

fK

1

R−+
|P+0

ρK |, (190)

where the correction factors R+− and R−+ are both fixed to R = 0.95 ± 0.23 (for simplicity
we choose the same value as in Eq. (126)), but they vary independently in the fit within their
theoretical errors. For the ρ(770) and the K∗(892) decay constants we use fρ = (209 ± 1)MeV
and fK∗ = (218 ± 4)MeV [135], respectively.

The branching fractions of these modes are given in Table 11. Figure 49 shows the constraints
obtained on α for Scenario (III). Since only an upper limit exists for B+ → ρ+K0, for illustration
purpose we assign the value (and error) of B(B0 → ρ−K+) to that branching fraction. Note that
the number of peaks doubles from eight to sixteen when using B+ → ρ+K0 since it determines
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Figure 48: Left: confidence levels obtained for α with the use of SU(3) flavor symmetry within
Scenario (II). The light shaded curve gives the nominal constraint, while the dark shaded one
corresponds to the solutions one would obtain if the relative strong phase δ̂ were known and
equal to zero. The hatched area shows the constraint obtained from the CKM fit using the
standard constraints (cf. Part III). Right: correlation between α and δ̂. The shaded areas indicate
CL = 0.32 domains and the solid lines show the CL = 0.05 regions. The periodicity is ∆α = 45◦

and ∆δ̂ = 90◦. The hatched area depicts the CL ≤ 0.05 allowed region for α obtained from the
CKM fit using the standard constraints (cf. Part III).

the magnitude of the penguin amplitude rather than an upper limit only (as does Scenario (II)).
We draw the following conclusions from this exercise:

• the constraint on α will be improved when the measurement of the branching ratio to
ρ+K0 is available.

• the uncertainties on the correction factors R+− and R−+ do not much degrade the con-
straints on α, i.e., theoretical uncertainties appear to be subdominant for Scenario (III).

• in all SU(3) scenarios, a precise determination of α would be obtained if the relative strong
phase δ̂ were known (for example from a Dalitz plot analysis [253] or from theory [135]),
in which case the rôle of the errors on the ratios R± may become important. However,
without this additional input, the constraints obtained by the different approaches are
insignificant.

5 Analysis of B → ρρ Decays

The isospin analysis of B → ρρ decays leads to the extraction of α in a way similar to B → ππ
decays [267]. The specific interest of these channels lies in the potentially small penguin con-
tribution, which is theoretically expected [266] and indirectly confirmed by the smallness of
the experimental upper bound on the B0 → ρ0ρ0 branching fraction [147] with respect to the
branching fractions of B0 → ρ+ρ− and B+ → ρ+ρ0 [147,148,145,62]. In addition, and more
importantly for a precision measurement, both direct and mixing-induced CP -violating asym-
metries of the color-suppressed decay B0 → ρ0ρ0 are experimentally accessible.

The analysis is complicated by the presence of three helicity states for the two vector mesons.
One corresponds to longitudinal polarization and is CP -even. Two helicity states are trans-
versely polarized and are admixtures of CP -even and CP -odd amplitudes. In the transversity
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Figure 49: Confidence levels obtained for α with the use of SU(3) flavor symmetry. Left: Sce-
nario (II) (light shaded, same as in left hand plot of Fig. 48), Scenario (III) but only using
B+ → K∗0π+ to constrain |P+−| (medium shaded), and Scenario (III) as previous case and
assuming in addition that the relative strong phase δ̂ is zero (dark shaded). Right: Scenario (II)
(light shaded, same as left plot); the medium and medium-dark shaded curves correspond to
Scenario (III) with SU(3) constraints on both penguins amplitudes from B+ → K∗0π+ and
B+ → ρ+K0, where we assume for that latter mode (which has not yet been seen) that the
branching fraction is equal to the one of B0 → ρ−K+. Medium shaded is for R that varies freely
within its uncertainties, while medium-dark shaded is for fixed R. The dark shaded curve gives
the result of the previous case when assuming δ̂ = 0. In both plots, the hatched area indicates
the constraint obtained from the standard CKM fit.

frame [269], one amplitude accounts for parallel transverse polarization and the other for per-
pendicular transverse polarization of the vector mesons, with respect to the transversity axis:
the first is CP -even and the second CP -odd. Hence the perpendicular polarization (if not iden-
tified or zero) dilutes the CP measurement. By virtue of the helicity suppression, the fraction
of transversely polarized ρ mesons is expected to be of the order of (ΛQCD/mB)2 ∼ 2% in the
factorization approximation [135,270] supplemented by the symmetry relations between heavy-
to-light form factors in the asymptotic limit [271]. This has been confirmed by experiment in
B+ → ρ+ρ0 [147,148] and B0 → ρ+ρ− [145] decays that are both found to be dominantly lon-
gitudinally polarized. As a consequence, one is allowed to restrict the SU(2) analysis described
in Section VI.1.2.1, without significant loss of sensitivity, to the longitudinally polarized states
of the B → ρρ system. This also applies to the treatment of electroweak penguins.

The isospin analysis relies on the separation of the tree-level amplitudes (I = 0 and I = 2)
from the penguin-type amplitudes (I = 0), since Bose statistics ensures that no odd isospin
amplitude is present in two identical meson final states. It has been pointed out in Ref. [152]
that due to the finite width of the ρ meson, I = 1 contributions can occur in B → ρρ decays.
Although no prediction is made, one may expect these to be of the order of (Γρ/mρ)

2 ∼ 4%.
In the following, we first neglect I = 1 contributions, and later present a preliminary study
including these effects in Section VI.5.4. Also neglected is isospin violation due to the strong
interaction as well as effects from the interference with the radial excitations of the ρ, with other
ππ resonances and with a non-resonant component; in the future these effects may be studied
by the experiments since they depend on the specific analysis requirements.
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Figure 50: Confidence levels for α from the SU(2) analysis of the B → ρρ system (light shaded).
The dark-shaded function is obtained by setting the error on S+−

ρρ,L to zero. It hence represents
the uncertainty due to the penguin contribution (∆α). Also shown is the prediction from the
standard CKM fit (hatched area), which includes the world average for sin 2β but ignores the
B → ρρ data.

5.1 Theoretical Framework and Experimental Input

Due to the lack of experimental information, an SU(3) analysis is not feasible at present
(the branching fractions of the SU(3) partners B0 → K∗+ρ− and the penguin-dominated
B+ → K∗0ρ+ have not been published yet). We hence restrict the numerical analysis to isospin
symmetry corresponding to Scenario (I) (cf. Section VI.1.2), which is however significantly more
fruitful than for the B → ππ system.

The experimental results used here are collected in Section III.2.11. The main ingredi-
ent is the measurement of sin 2αeff from the time-dependent CP and polarization analysis of
B0 → ρ+ρ− decays performed by BABAR [149,145].

5.2 Numerical Results

We present the CLs obtained from the isospin analysis of B → ρρ decays as a function of α
(Fig. 50) and in the (ρ, η) plane (left hand plot of Fig. 52). On both figures, the standard
CKM fit (excluding the B → ρρ data) is superimposed exhibiting agreement with the B → ρρ
constraints and, remarkably, a comparable precision. The p-value of the measurements within
the isospin framework (and the result from the standard CKM fit) is found to be 70%. The
hatched curve in Fig. 50 is obtained by setting the error on S+−

ρρ, L to zero, thus reflecting the

present uncertainty due to the penguin pollution (given the measurement of C+−
ρρ, L and of the

branching ratios). From this, the 90% CL bound on ∆α is found to be

−20◦ < ∆α < 18◦ . (191)

Converting this into a result for α and taking the solution that is in agreement with the standard
CKM fit, we find

α =
(

94 ± 12
[

+28
−25

]

± 13 [19]
)◦

,

where the first errors are experimental and the second due to the penguin uncertainty. For
CL > 10% the overall uncertainty on α amounts to 19◦. Errors in brackets above are given
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Figure 51: Confidence levels from the SU(2) analysis of the B → ρρ system. Dark, medium
and light shaded areas have CL > 0.90, 0.32, 0.05, respectively. Left: constraints in the (ρ, η)
plane. Overlaid is the prediction from the standard CKM fit, which includes the world average
for sin 2β but not the B → ρρ data. Right: constraints in the (S+−

ρρ,L, C
+−
ρρ,L) plane, with the

input values for ρ and η taken from the standard CKM fit. The circle indicates the physical limit
S+−

ρρ,L
2+C+−

ρρ,L
2 = 1, and the hatched area represents the CL of the BABAR measurement for which

the presence of the physical boundary has been properly taken into account (see Section II.2.2.3).
The contours correspond to 1σ and 2σ, respectively.
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Figure 52: Constraints on the penguin-to-tree ratio (Rt/Ru)|P+−/T+−| and the relative strong
phase arg[P+−T+−∗] (left), and on the color-suppressed to color-allowed ratio |T 00

C /T+−| and the
relative strong phase arg[T 00

C T+−∗] (right), obtained from the SU(2) analysis and using the result
from the standard CKM fit as input. Dark, light and very light shaded areas have CL > 0.90,
0.32, 0.05, respectively.



Part VI – Charmless B Decays 121

0

0.1

0.2

0.3

0.4

x 10
-4

0 0.1 0.2 0.3 0.4

x 10
-4

B0 → ρ+ρ–

B+ → ρ+ρ0

shaded areas have CL > 0.05, 0.32, 0.90

B
+–

ρρ

B
+

0 ρρ

CK M
f i t t e r

Winter 2004

0

0.1

0.2

0.3

0.4

x 10
-4

0 0.1 0.2 0.3 0.4

x 10
-5

B0 → ρ0ρ0

B+ → ρ+ρ0

shaded areas have CL > 0.05, 0.32, 0.90

B
00

ρρ

B
+

0 ρρ

CK M
f i t t e r

Winter 2004

Figure 53: Confidence levels for B(B+ → ρ+ρ0) versus B(B0 → ρ+ρ−) (left) and B(B+ → ρ+ρ0)
versus B(B0 → ρ0ρ0) (right), obtained from the isospin analysis ignoring the branching fractions
that are determined, and with the use of α from the standard CKM fit. The hatched areas indicate
the 1σ bands of the corresponding measurements.

at CL > 5% (2σ). The penguin error contains a systematic uncertainty of 0.2◦ (interpreted
as a theory error by Rfit) from the treatment of the electroweak penguins (see Eq. (121) in
Section VI.1.2.1). The full shift on α introduced by PEW amounts to −2.1◦. Taking this into
account our result agrees with the BABAR result [149]. The slightly larger experimental error
here is explained by the difference in the central value of α.

Since the CP -violating asymmetries in B0 → ρ0ρ0 have not been measured, the isospin
analysis is incomplete and one expects plateaus in the CL as a function of α. The width of these
plateaus is driven by the GLSS bound (113). However, peaks are observed in Fig. 50, which is
a consequence of the relative values of the three branching fractions: the tight upper limit on
B(B0 → ρ0ρ0) implies that the sum of the color-suppressed and the penguin amplitudes is small
so that B(B+ → ρ+ρ0) ∼ 0.5 × B(B0 → ρ+ρ−), which is not confirmed by the central values of
the measurements (B(B+ → ρ+ρ0)/B(B0 → ρ+ρ−) = 0.88+0.21

−0.15). This “incompatibility” (which
is well covered by the present experimental errors) lifts the degeneracy in the (infinite) solution
space of α. See Fig. 53 for representations of the predictions obtained for B(B+ → ρ+ρ0) versus
B(B0 → ρ+ρ−) and B(B+ → ρ+ρ0) versus B(B0 → ρ0ρ0) from the isospin analysis combined
with the standard CKM fit. The hatched areas give the 1σ bands of the present experimental
averages.

Using the standard CKM fit as input (excluding B → ρρ therein) and the B → ρρ branching
fraction measurements, one can obtain predictions for S+−

ρρ,L and C+−
ρρ,L by means of the isospin

analysis. The corresponding CLs are shown in the right hand plot of Fig. 51 together with the
measurement from BABAR. Due to the favorable bound on ∆α (191), the SU(2) prediction turns
out to be meaningful, in sharp contrast to the corresponding ππ case (cf. Fig. 25).
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Constraints on Amplitude Ratios

By inserting α from the standard CKM fit we derive constraints on the complex amplitude
ratios (Rt/Ru)P+−/T+− and T 00

C /T+−. Their CLs in polar coordinates are given in Fig. 52.
The smallness of the penguin-to-tree ratio becomes manifest on the left hand plot (although
rather large values are still possible). The magnitude of the color-suppressed-to-color-allowed
ratio (right hand plot) is found to be of the order of 0.2, in agreement with the näıve expectation.
Comparing these plots with Figs. 26 and 27 in the ππ system seems to suggest a non-trivial
dynamical mechanism, which drives the behavior of the penguin and color-suppressed amplitudes
differently with respect to the leading tree in V V and PP modes. See Section VI.6 for further
discussion of the amplitude ratios.

5.3 Prospects for the Isospin Analysis

As for ππ and ρπ, we attempt extrapolations of the isospin analysis to future integrated lumi-
nosities of 500 fb−1 and 1 ab−1. Note that the results strongly depend on the underlying physics,
the knowledge of which is insufficient up to now. We understand the scenarios studied here are
likely to be optimistic.

In the first scenario considered, with the exception of B(B0 → ρ0ρ0), all measurements are
extrapolated with the use of the present central values. The branching fraction of B0 → ρ0ρ0

is increased to 1.3 × 10−6 to ensure the compatibility of all observables with the isospin re-
lations (107). It is assumed to be dominated by longitudinal polarization with a longitudinal
fraction of f00

L = 0.976 (simple arithmetic average of f+−
L and f+0

L ). We further assume that
both time-dependent CP asymmetries in B0 → ρ0ρ0 are measured, and set them to S00

ρρ,L = 0.05

and C00
ρρ,L = 0.70, the preferred solutions of the standard CKM fit. The statistical and system-

atic uncertainties are extrapolated according to the luminosity increase. For B(B0 → ρ0ρ0),
B(B+ → ρ+ρ0) and f+0

L , we further reduce the extrapolated errors by a factor of 1.3 reflecting
the improvement (at fixed statistics) in the most recent B0 → ρ+ρ− analysis with respect to
the previous one [146]. The errors for S00

ρρ,L, C00
ρρ,L and f00

L are estimated from S+−
ρρ,L, C+−

ρρ,L and

f+−
L , respectively: they are scaled to the expected number of B0 → ρ0ρ0 events (taking into

account the different selection efficiencies), except for the systematic uncertainties on S00
ρρ,L and

C00
ρρ,L, which are roughly estimated from the present values on S+−

ρρ, L and C+−
ρρ,L. We obtain the

extrapolations

B+−
ρρ = 30.0 ± 1.6 [1.1] ± 2.0 [1.4] , f+−

L = 0.990 ± 0.012 [0.008] ± 0.014 [0.010] ,

B+0
ρρ = 26.4 ± 1.6 [1.1] ± 1.6 [1.2] , f+0

L = 0.962 ± 0.014 [0.010] ± 0.011 [0.008] ,

B00
ρρ = 1.30 ± 0.14 [0.10] ± 0.09 [0.06] , f00

L = 0.976 ± 0.030 [0.021] ± 0.035 [0.025] ,

S+−
ρρ,L = −0.19 ± 0.16 [0.11] ± 0.05 [0.04] , C+−

ρρ,L = −0.23 ± 0.11 [0.08] ± 0.07 [0.05] ,

S00
ρρ,L = 0.05 ± 0.39 [0.28] ± 0.08 [0.06] , C00

ρρ,L = 0.70 ± 0.28 [0.20] ± 0.10 [0.07] ,

where first errors given are statistical and second systematic. Errors outside [inside] the brackets
are extrapolated to 500 fb−1 [1 ab−1] integrated luminosity.

The results of the isospin analyses corresponding to these inputs are shown in Fig. 54 (left
hand plot). To illustrate the impact of the S00

ρρ,L measurement, we also give the result at 500 fb−1

ignoring S00
ρρ,L in the fit (hatched function). If neither S00

ρρ,L nor C00
ρρ,L were measured, a very

similar constraint would be obtained as in the latter fit: only the tiny double-bumps in the
hatched curves reflect the impact of C00

ρρ,L. As for ππ, very large statistics would be needed to
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Figure 54: Confidence level for α from the SU(2) analysis of the B → ρρ system, extrapolated at
integrated luminosities of 500 fb−1 (light shaded) and 1 ab−1 (dark shaded). The two scenarios
defined in the text are shown: the left (right) hand plot corresponds to a relatively large (small)
value for B00

ρρ, each one compatible with a subset of the current measurements. To illustrate the

impact of the S00
ππ measurement, we also show the result at 500 fb−1 ignoring the latter input

(hatched).

resolve the discrete ambiguities when relying on C00
ρρ,L only. The main additional information on

α is hence provided by S00
ρρ,L, which is due to its linear dependence on sin 2α (see the analytical

solutions of the isospin analysis derived in Footnote 35 in Section VI.1.2.1). With this scenario,
the (symmetrized) 1σ (resp. 2σ) uncertainty on α is expected to be of the order of 8◦ at 500 fb−1

and 6◦ at 1 ab−1 (resp. 16◦ and 10◦), which is small enough so that the residual SU(2)-breaking
effects discussed below have to be taken into account.

In a second scenario, the central value of B00
ρρ is fixed to the present one (0.6 × 10−6) and

the branching fraction of the B+ → ρ+ρ0 mode is decreased to 17 × 10−6, which is the value
preferred by the present isospin analysis when using the standard CKM fit as input (see Fig. 53).
The new set of extrapolations for the ρ+ρ0 and ρ0ρ0 modes are

B+0
ρρ = 17.0 ± 1.3 [0.9] ± 1.3 [1.0] , f+0

L = 0.962 ± 0.017 [0.012] ± 0.014 [0.010] ,

B00
ρρ = 0.60 ± 0.09 [0.07] ± 0.06 [0.04] , f00

L = 0.976 ± 0.044 [0.031] ± 0.051 [0.037] ,

S00
ρρ,L = 0.05 ± 0.57 [0.41] ± 0.12 [0.09] , C00

ρρ,L = 0.70 ± 0.41 [0.29] ± 0.15 [0.10] ,

where again errors outside [inside] the brackets are extrapolated to 500 fb−1 [1 ab−1] integrated
luminosity. The constraints on α resulting from these extrapolations are shown in Fig. 54
(right hand plot). The (symmetrized) 1σ (resp. 2σ) errors on α obtained with this setup
amount to 13◦ at 500 fb−1 and 7◦ at 1 ab−1 (resp. 19◦ and 16◦). This is significantly worse
than for the previous scenario, in which one benefits from an almost optimal bound on ∆α since
B00

ρρ ≈ B00
GLSS− = 1.25×10−6, while for the second scenario the lower bound B00

GLSS− = 0.20×10−6

is rather different63 from the central value of B00
ρρ. Furthermore, due to the small B00

ρρ the preci-
sion on S00

ρρ,L is insufficient to effectively suppress the ambiguities.

63The values for B00
GLSS− corresponding to the different scenarios are determined from Eq. (115), where we have

used as inputs the branching fractions of the longitudinally polarized ρ’s. Note that the upper bounds B00
GLSS+

correspond in both scenarios to very large B00
ρρ that are excluded by experiment.
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Figure 55: Confidence levels for α from the B → ρρ isospin analysis where isospin-breaking
corrections (with the exception of electroweak penguins) are neglected (solid lines), and when
including a relative 4% correction with arbitrary phases on the amplitude level (dashed lines),
according to Eq. (192). The left hand plot gives the results for the present experimental situation
(bound on B(B0 → ρ0ρ0)), while the right hand plot uses the extrapolation to 1 ab−1, defined in
Section 5.3. It includes the full isospin analysis with available measurements of S00

ρρ,L and C00
ρρ,L.

An important source of systematic uncertainty on the time-dependent CP -violating asym-
metries is the CP violation exhibited by the B-related background modes [145], that may be
hard to measure in the near future. To study its impact, we keep the size of this systematic
error unchanged in the extrapolation, while all other systematic errors are appropriately scaled
with the increasing luminosity. Applying this procedure to all time-dependent CP asymmetries,
no significant deterioration of the accuracy on α is observed.

5.4 Breaking of the Triangular Relation in B → ρρ

Reference [203] presents a study of isospin-breaking effects in B → ππ that come from the strong
interaction, through the π0–η–η′ mixing. These effects break the triangular relation (107) and
entail a systematic error on the angle α. The size of this error depends on the actual values of
the non-leptonic matrix elements, and on the relative amount of the I = 0 component in the π0

bound state, which could be of order 1–2%. In B → ρρ decays, besides a similar effect due to
the ρ–ω mixing, it is argued in Ref. [152] that a I = 1 ρρ state could be generated by the finite
width of the ρ. Although the latter effect does not break isospin symmetry in the sense that it
does not vanish in the mu = md limit, it can be parameterized the same way as above, through
the introduction of an additional amplitude in the isospin triangle (107).

Hence we model a possible breaking of the closure of the isospin relation by a contribution
∆A+0 to the A+0 amplitude given by

√
2 ∆A+0 = VudV

∗
ub ∆TT

+− + VtdV
∗
tb ∆PP

+− . (192)

Note that for arbitrary values of the relative coefficients ∆T and ∆P , the above equation
together with Eqs. (95) and (106) is the most general parameterization of B → ππ and B → ρρ
decays within and beyond the Standard Model (see Footnote 70 in Section VII.3). In this Section
however, we assume that ∆T and ∆P are unknown within a magnitude of up to (mρ/Γρ)

2 ∼
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4% [152] and with arbitrary strong phases64. The effect on α is given in Fig. 55. The left
hand plot shows the present experimental situation (bound on B(B0 → ρ0ρ0)), where the solid
line indicates the isospin analysis where isospin-breaking contributions with the exception of
electroweak penguins are neglected (same as Fig. 50), and the dashed line corresponds to the
replacement A+0 → A+0 + ∆A+0. The right hand plot shows the corresponding constraints for
the first scenario, defined in the previous section, at 1 ab−1.

The observed systematic uncertainty on α depends on whether or not the full isospin analysis
is applied. It is small for the GLSS bound (equivalent to the isospin analysis with upper limit
on B(B0 → ρ0ρ0)). However, significant effects can occur once the full isospin analysis is
performed. We estimate the size of the uncertainty for the setup we have tested to be of the
order of 3◦. Notwithstanding, one should keep in mind that the resulting effect depends, on the
one hand, on the relative size of the additional amplitude (192), and, on the other hand, on the
particular solution of the isospin analysis for the contributing amplitudes. It must therefore be
(re-)estimated for the set of measurements that is at hand. Furthermore, a careful experimental
analysis may partially disentangle these effects [152].

6 Comparison of Amplitude Ratios

Numerical values for the ratios of reduced tree and penguin amplitudes for the ππ, ρρ, Kπ and
ρπ systems, assuming the standard CKM fit and specific hadronic hypotheses (see table caption)
are given in Table 13. Before discussing in more detail the results, two reservations are in order:
the overall (mainly experimental) uncertainties on these ratios are still large, and within the
2σ errors no specific conclusions can be drawn from the comparison of the four systems. The
amplitude ratios are obtained assuming strict isospin symmetry for ππ and ρρ, and stronger
hadronic hypotheses for Kπ and ρπ. The results from the latter two systems should therefore
be interpreted with care. The results of the fit of the QCD Factorization on the ππ and Kπ
data (see Section 2.2) are also reported.

In the ππ system, the measurement of the time-dependent CP asymmetry requires a po-
tentially large penguin-to-tree ratio to be in agreement with the standard CKM fit. This was
expected after the first measurement of the surprisingly large branching fraction of B0 → K+π−.
However a puzzling feature is that the Kπ data alone prefer a small value for the same penguin-
to-tree ratio, and that the branching fraction for the K+π− mode is somewhat smaller than the
theoretical expectation (see Table 10). Various sources for this discrepancy have been discussed
in Section VI.3.

Another feature of the ππ , Kπ and, to a lesser extent, ρπ modes, is the apparent signifi-
cant violation of the color-suppression concept. While from the point of view of the 1/Nc → 0
limit this suppression is formally of order 1/Nc ∼ 0.3, näıve semi-perturbative counting pre-
dicts a further cancellation, leading to the well known a2 <∼ 0.2 “universal” factor [215]. This
property of the so-called “class II” decays, according to the classification of Ref. [215], remains
partially true in the QCD factorization formalism [207] although the latter admits the possi-
bility of large corrections [135]. There is evidence from Table 13 that the present data suggest
that the color-suppression mechanism is ineffective. Different manifestations of violation of the
color-suppression concept, and dependence of the a2 factor with respect to the involved particles,

64The effect of hadronic isospin-breaking effects is expected to be smaller than the one due to the finite width
of the ρ.
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Central value ± error at given CL

|P+−/T+−| |T 00
C /T+−|

Mode CL = 0.32 CL = 0.05 CL = 0.32 CL = 0.05 Method

B → ππ 0.23+0.41
−0.10

+0.81
−0.16 0.98+0.58

−0.30
+1.54
−0.49 SU(2)

B → ρρ 0.05+0.07
−0.05

+0.12
−0.05 0.21+0.11

−0.15 ±0.21 SU(2)

B → Kπ 0.04+0.03
−0.01

+0.14
−0.04 1.22+0.32

−0.16
+1.20
−0.32 SU(2)+ no annihil./exch.

B → ρπ[+−] 0.03+0.09
−0.03

+0.11
−0.03 0.48+0.14

−0.16
+0.25
−0.48 SU(3)+ no OZI-peng.

B → ρπ[−+] 0.10+0.02
−0.03

+0.03
−0.06 0.57+0.17

−0.18
+0.33
−0.57 SU(3)+ no OZI peng.

B → ππ 0.18+0.01
−0.03

+0.03
−0.05 1.17 ± 0.20 ±0.41 QCD FA combined fit

B → Kπ 0.17+0.01
−0.03

+0.03
−0.05 1.52+0.42

−0.47
+0.69
−0.71 QCD FA combined fit

Table 13: Magnitudes of penguin-to-tree (|P+−/T+−|) and color-suppressed-to-color-allowed
(|T 00

C /T+−|) amplitude ratios obtained for the four charmless decay modes studied in this part.
For the purpose of this comparison, the CKM elements are not included in the ratios, but their
input is taken from the standard CKM fit. We denote by B → ρπ[+−] ([−+]) the branch where the
ρ (π) is emitted by the W . For the ππ and ρρ modes, only isospin symmetry is assumed. Since
SU(2) is insufficient at present, the annihilation and exchange contributions are neglected for the
Kπ ratios, and the SU(3) partners K∗+π− and ρ−K+ are used to constrain the corresponding
penguin amplitudes for the ρπ modes (see text). The last two lines give the results of the com-
bined QCD FA fit to the ππ and Kπ data (Section VI.2.2). The strong phases obtained in this
framework are: in the ππ system, arg(P+−/T+−) = (−29+5

−2)
◦ and arg(T 00

C /T+−) = (146+6
−2)

◦;
and in the Kπ system, arg(P+−/T+−) = (−28+5

−1)
◦ and arg(T 00

C /T+−) = (−25+8
−5)

◦.

have been observed in simpler B decays65 without penguin contributions, e.g., B → J/ψK(∗)

and ∆C = 1 transitions [272].

The results for the amplitude ratios fitted simultaneously on the ππ and Kπ measurements
within the framework of QCD factorization are also given in Table 13. We find that this more
predictive approach (compared to the fits based only on flavor symmetry) re-establishes the good
agreement between the penguin-to-tree ratios in the ππ and Kπ systems: this can be interpreted
as the consequence of the smallness of the annihilation and exchange contributions estimated in
this approach. However larger |T 00

C /T+−| ratios are found, although with large errors.

Note that our definition of T 00
C implicitly contains long-distance penguin and exchange con-

tributions. Although the latter are 1/Nc suppressed as well, and there is no model-independent
distinction between the different topologies that are mixed by rescattering phenomena, it may
occur that a number of relatively small corrections constructively interfere in T 00

C and destruc-
tively in T+− to eventually give a globally large effect, which could explain the observed T 00

C /T+−

ratio [135,232].

Finally we stress that although the large penguin and color-suppressed amplitudes in the
ππ channels likely come from the same type of non-trivial hadronic dynamics, B → π0π0

65Not to mention the large 1/Nc effects in kaon and D-meson decays.
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cannot be a pure penguin mode. Indeed, were it the case, in the SU(3) limit and neglect-
ing electroweak penguin contributions B(B0 → π0π0) would be equal to B(B0 → K0K0)/2,
which is disfavored by the current data (see Table 8). This is somewhat unfortunate because
B(B0 → π0π0) ∼ B(B0 → K0K0)/2 would imply a stronger constraint on α from the B → ππ
isospin analysis, since it would closer approach the GLSS bound B00

GLSS− (115).

In näıve factorization, there is a clear hierarchy between penguins in PP , PV and V V
modes [266]. This is due to the Dirac structure of (V −A)(V +A) penguin operators, which do
not contribute when the meson that does not receive the spectator quark (the “upper” meson)
is a vector, as in B0 → ρ+π− and B0 → ρ+ρ−. Similarly, these operators contribute construc-
tively (resp. destructively) with (V − A)(V − A) penguin operators when the upper meson is
a pseudoscalar and the lower meson is a pseudoscalar (resp. vector), as in B0 → ρ−π+ (resp.
B0 → π+π−). This expectation seems to be in agreement with our fits to the present data (see
Table 13). However, as a consequence of the fact that (V − A)(V + A) operators are formally
power-suppressed in the full QCD factorization approach, the above simple hierarchy may re-
ceive large corrections [135]. Hopefully, a more detailed dynamical analysis will be possible when
the measurements of the strange PV and V V channels become more complete and precise.

The present pattern of amplitude ratios in the different decays, if confirmed when the ex-
perimental errors decrease, might challenge theoretical approaches that are based on the fac-
torization of non-leptonic matrix elements. Näıvely suppressed contributions, such as charming
penguins [273] or other type of rescattering effects (see, e.g., Ref. [274] for an example of a
final state interaction that does not vanish in the 1/mb → ∞ limit), could finally contribute at
leading order: the approach of Ref. [218], based on the SCET effective theory, might be able
to handle these difficult problems in a more systematic way. At present, it seems that it would
be difficult to keep all these effects small while maintaining agreement with the central values
of the experimental observables, unless one is willing to fine-tune all the observed “anomalies”
with New Physics contributions. An interesting question, among others, concerns the behavior
of rescattering effects with respect to the isospin or SU(3) quantum numbers of the relevant
amplitudes. More data and theoretical work are needed to answer this.

7 Conclusion

Due to the significant CP asymmetries on one hand, and the presence of loop-induced transitions
on the other hand, charmless B decays can be used for precision measurements of CP violation
within the SM, and they are sensitive probes of physics beyond the SM.

We have studied B → ππ,Kπ decays using various phenomenological approaches with dif-
ferent dynamical assumptions. These include SU(2) and SU(3) flavor symmetries and QCD
Factorization. An extra section has been devoted to the phenomenological analysis of B → Kπ
decays due to the peculiarity of the observed branching fraction pattern. Constraints on (ρ, η)
from these decays are weak since the sensitivity to the CKM phase through the tree amplitude
is CKM-suppressed with respect to B → ππ. However the Kπ modes represent a rich field
to test flavor symmetry, QCD Factorization and to search for manifestations of New Physics.
For the analysis of B → ρπ decays we have applied SU(2) and SU(3) symmetry, and SU(2)
symmetry is used for the B → ρρ system, mostly because the branching fractions of the relevant
SU(3) partners are not yet well known. Due to the powerful bound on the penguin pollution in
B0 → ρ+ρ− using the upper limit on B0 → ρ0ρ0, a significant constraint on α can be derived
from the measurement of sin 2αeff in a time-dependent analysis of B0 → ρ+ρ− performed by the
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BABAR collaboration. The ππ and ρπ systems do not (yet) provide useful constraints from the
corresponding isospin analyses, because of the poor sensitivity to the penguin contribution (ππ)
and the lack of a full Dalitz analysis (ρπ).

More specifically, we find for the ππ system that:

• hints of a large penguin contribution and a large violation of the color-suppression mecha-
nism are found with |P+−/T+−| = 0.23+0.41

−0.10 and |T 00/T+−| = 0.98+0.58
−0.30 so that the SU(2)

upper bound fails to provide a significant constraint on ∆α = α− αeff , for which we find
(CL > 10%): −54◦ < ∆α < 52◦.

• a somewhat better bound is obtained from the SU(3) analysis neglecting OZI- and power-
suppressed penguin topologies, −29◦ < ∆α < 28◦, with a weak constraint on α.

• at an extrapolation to 1 ab−1, exclusion areas for α can be obtained with the B → ππ
isospin analysis. However a precise measurement of α from the ππ system alone will likely
require larger amounts of data (∼ 10 ab−1) that could be reached at a next generation B
factory.

• useful information in the (ρ, η) plane is obtained with partial input from QCD Factoriza-
tion: either to gauge the uncertainty on SU(3) breaking, or to obtain an estimate of the
tree and penguin matrix elements (magnitudes and phases). The constraints obtained in
both cases are in agreement with the standard CKM fit.

• the full calculation of QCD Factorization (taking into account model-dependent power-
suppressed terms) is required to accommodate (ρ, η) extracted from the CP measurements
with the standard CKM fit. A leading order calculation (close to näıve factorization) leads
only to the marginal compatibility with a p-value of 5 × 10−5. By further constraining
the full model with all ππ and Kπ branching fractions and CP -violating asymmetries
measured so far, one finds the allowed region in the (ρ, η) plane in striking agreement with
the standard CKM fit (with comparable precision) and an overall p-value of 21%.

• we compute projections on the ππ, Kπ observables from the global QCD FA fit, where
all observables but the one that is projected upon are included in the fit (as well as the
standard CKM fit). The results are unbiased data driven predictions and exhibit high pre-
cision. The agreement with the measurements is satisfying, with the notable exceptions of
the branching fractions for B0 → K0π0 and B0 → K+π−. The corresponding predictions
from QCD FA alone (without experimental input to constrain the theory parameters) suf-
fer from much larger uncertainties, which is by part due to the conservative Rfit treatment
of the theoretical systematics.

• using SU(3) symmetry we predict the branching fraction and CP -violating asymmetries in
B0

s → K+K− decays from the B → ππ measurements and the standard CKM fit. We find
the 95% CL ranges 0.02 < Cs

KK < 0.32 and 0.12 < Ss
KK < 0.27. Only a weak constraint

can be derived for Bs
KK, for which however the correlation with Cs

KK is strong.

For the Kπ system we note:

• the “historical” proposal by Quinn and Snyder to use Kπ modes and isospin symmetry for
the extraction of α in the absence of electroweak penguins leads only to a weak constraint
with the present data. The subtle quadrilateral construction would need very precise mea-
surements to become meaningful, while at the same time there are convincing arguments
that electroweak penguin contributions cannot be neglected.
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• the recent proposal to constrain the apex of the UT assuming isospin symmetry, neglecting
all annihilation and long-distance penguin diagrams, and evaluating electroweak penguins
in terms of tree amplitudes in the SU(3) limit, is expected to provide meaningful results
when the data become more precise. However the dynamical assumptions behind this
method should be investigated further, since they are crucial for the result. In particular we
observe that the fit systematically prefers a non-zero VusV

∗
ub contribution to B+ → K0π+,

although theory predicts a small effect.

• within the same set of dynamical assumptions, we determine the allowed range of amplitude
ratios. Color-suppression appears to be significantly violated as in the ππ case, while the
penguin-to-tree ratio is, quite paradoxically, smaller than in the ππ system. This is in näıve
contradiction with the idea that the large branching ratios to Kπ with respect than the
ones to ππ are evidence for large penguins in B → PP transitions. Complicated hadronic
mechanisms and/or New Physics effects in either b → d or b → s transitions might be
at the origin of this intriguing pattern. However present experimental uncertainties still
exhibit a decent agreement with SU(3) between ππ and Kπ in the no-rescattering limit.

• the experimental uncertainties hinder us from obtaining significant constraints on elec-
troweak penguin contributions, even in the most restrictive theoretical scenario where
annihilation and exchange topologies are entirely ignored. The SM expectation for both
color-allowed and color-suppressed (the latter one should not be neglected) electroweak
penguins can describe the data; furthermore the feasibility of a more general study includ-
ing arbitrary NP contributions in either gluonic or electroweak penguins is not clear, again
due to the lack of experimental precision.

The following conclusions can be drawn from the analysis of the two-body ρπ system:

• scenarios using SU(2) as only input do not constrain α at the first generation B factories
if B(B0 → ρ0π0) is not significantly smaller than expected from color-suppression. The
reason for this failure is merely a problem of experimental precision to resolve α in the
pentagon. Setting arbitrarily all strong phases to zero and removing the penguins leads to
a value for α that is in agreement with the standard CKM fit with a statistical uncertainty
of 5.4◦.

• within SU(3) symmetry and neglecting OZI- and power-suppressed penguin contributions,
we observe some disagreement between the bound on direct CP -violating asymmetries
obtained from B(B0 → ρ−K+) for the B0 → ρ−π+ branch, and the central value of
the measurement. While this is not conflicting within the present experimental errors, it
requires a reduction of the observed A−+

ρπ with more data, if the SM and SU(3) picture
holds.

• within the same SU(3)-based hypotheses, we obtain the bounds |α − α+−
eff | < 17.6◦ and

|α− α−+
eff | < 12.6◦ at 95% CL.

• SU(3) flavor symmetry does not help to significantly constrain α when all theory parame-
ters are free to vary since the eightfold ambiguity due to the unknown relative strong phase
δ̂ remains. Using the standard CKM fit as input leads to the preferred values δ̂ ≈ 0,±π,
which is compatible with the no-rescattering expectation.

• all the approaches that we have studied suffer from the lack of knowledge of the interference
phase between the two charged ρ’s, which generate discrete ambiguities. In particular, a
powerful constraint on α, competitive with the standard CKM fit, would be obtained
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Figure 56: Confidence level from the SU(2) analysis of B → ππ (light shaded) and B → ρρ
(dark shaded) decays as a function of α. Also shown is the prediction from the standard CKM
fit (hatched area), which includes the world average of sin 2β but excludes B → ρρ.

from a Dalitz plot analysis together with the SU(3) constraints from penguin-dominated
partners.

We conclude from the SU(2) analysis of the ρρ system that

• even without a significant measurement of B(B → ρ0ρ0) a useful constraint on α is ob-
tained. The smallness of the theoretical uncertainties allows us to include the measure-
ments from the B → ρρ system into the standard CKM fit.

• the success of the ρρ system is threefold: (i) due to the small mass of the ρ with respect
to the B, the ρ mesons have dominant longitudinal polarization (CP -even) with respect to
their decay axis; (ii) small penguin contributions and color-suppression improve the ∆α
bounds in absence of the full isospin analysis, and (iii) the capability to measure S00

ρρ,L

(not possible for S00
ππ) significantly enhances the sensitivity of the full isospin analysis to

α, once B → ρ0ρ0 has been observed.

• the present uncertainty due to the penguin pollution is −20◦ < ∆α < 18◦ for CL > 10%
and the total uncertainty on α is 33◦ at two standard deviations. Including electroweak
penguins induces a shift of −2.1◦ ± 0.2◦ on α.

• two (possibly optimistic) attempts to extrapolate the results from the present central values
and errors into the future lead to expected 2σ errors on α of approximately 16◦–19◦ at
500 fb−1 and 10◦–16◦ at 1 ab−1 integrated luminosities, for the solution that is compatible
with the standard CKM fit.

• we study the finite width of the ρ and isospin-breaking effects using a simple ansatz. With
a breaking of the triangular relation at the 4% level, the corresponding uncertainty on α
is found to be of the order of 3◦ for the full isospin analysis, which however depends on
the actual values of the B → ρρ observables. Systematic effects from ππ resonances other
than the ρ(770) and/or non-resonant background have been neglected in this study but
may become important when the precision on α increases.
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Part VII

New Physics in B Transitions

1 General Remarks

Despite weak inconsistencies in sin 2β from penguin-dominated modes (see Section III.2.10) and
in B → Kπ decays (Section VI.3), the SM is able to accommodate the data from the B-meson
and kaon systems within the present experimental and theoretical uncertainties. Hence there is
no need (yet) to introduce contributions from physics beyond the SM. However, this does not
necessarily mean that New Physics (NP) contributions are totally absent. It is thus interesting
to investigate how far today’s experiments can constrain NP parameters.

A large variety of specific NP models exists in the literature, but for the purpose of a global
CKM fit, one should adopt a parameterization that is as model-independent as possible. The
results obtained under general assumptions may then be used to draw conclusions upon more
specific classes of models.

The NP analysis we are performing below proceeds in two steps:

• in the first step, we list the observables that are expected to be dominated by the SM
contributions, according to a specific assumption we make on the nature of the potential
NP. These observables are used to construct a model-independent Unitarity Triangle [275],
followed by a constrained fit on NP contributions in B0B0 mixing.

• in the second step, the result of this fit is used as an input to probe NP in B decays with
sizable contributions from b→ d or b→ s gluonic penguins.

Because the present experimental errors are still large, and since several key modes are not yet
well known, we do not attempt to perform an exhaustive numerical analysis as we did for the
SM fit. In some cases we use a rather “aggressive” interpretation of the experimental results,
which is justified in view of the expected improvement of the measurements in the near future.
The studies presented hereafter are to be viewed as preliminary proposals, which nevertheless
allow us to draw instructive conclusions.

2 New Physics in ∆B = 2 Transitions

With the use of dimensional arguments [276], one finds that in a large class of models NP
contributes mainly to the B0B0 mixing amplitude (∆B = 2). We will hence allow for arbitrary
NP corrections to the mixing, while however keeping the possibility that also the decays (∆B =
1) are non-standard.

New Physics effects in B0B0 mixing can be described model-independently by two additional
parameters, r2d and 2θd, with the definition [277,278]

r2d e
i2θd =

〈B0|Hfull
eff |B0〉

〈B0|HSM
eff |B0〉 , (193)

where Hfull
eff comprises NP and SM contributions and where HSM

eff contains only the SM contri-
bution. The SM values for these parameters are r2d = 1 and 2θd = 0.

We elaborate an analysis allowing to constrain both CKM (ρ and η) and NP (r2d and 2θd)
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parameters related to flavor-changing processes. It uses observables from the B-meson system
only since they are more sensitive to ρ and η than those obtained from the kaon system. It is
inspired by similar previous analyses [278,279,276].

2.1 Basic Assumption on New Physics and Physical Inputs

As in most model-independent NP parameterizations, we assume that NP contributions to tree-
mediated decays are negligible. More specifically, we require that decay transitions with four
flavor changes (i.e., b → q1q̄2q3, q1 6= q2 6= q3) are dominated by the SM (SM4FC). Hence the
CKM parameters related to these decays are extracted within the SM, with the presence of the
additional parameters coming from NP in B0B0 mixing. Here we assume that the unitarity of the
CKM matrix still holds in the presence of NP, in order to ensure that the SM contribution to the
B0B0 mixing keeps its usual expression as a function of (ρ, η) and other theoretical parameters.

The observables allowing us to constrain the SM and NP parameters within this well-defined
assumption are listed below:

• |Vub| and |Vcb| from b → u and b → c semileptonic decays, which are the same as in the
SM (Section III.2).

• the constraint on tan γ from the Dalitz plot analysis of B+ → D0K+ decays (the CL on
γ obtained in this analysis has to be interpreted with care, as discussed in Section V.2).

• the CP -asymmetry measurement in b → cūd and b → uc̄d non-leptonic decays (Sec-
tion V.1), which determines | sin(2β + 2θd + γ)|. We use the CL determined by the toy
simulation described in Section V.1, because it gives a stronger constraint than the Gaus-
sian approximation.

• the ∆I = 3/2 amplitude of b → uūd transitions is standard within the SM4FC assump-
tion66: hence, the isospin analysis of B → ππ and/or longitudinally polarized B → ρρ
decays and the Dalitz plot analysis of B0 → (ρπ)0 can be used to extract the quantity
sin(2β+2θd +2γ) (cf. Section VI.1.1.3). Since the constraint from the ππ system is rather
weak at present and the ρπ Dalitz plot analysis is not yet available, we will only use ρρ in
the following (cf. Section VI.5).

• the mixing-induced CP asymmetry in b→ cc̄s transitions (e.g., B0 → J/ψK0) determines
(2β+2θd), provided that NP contributions to the decay amplitudes of these transitions are
negligible (for general arguments see, e.g., Ref. [280]). Although this hypothesis does not
belong to the SM4FC rule, generic non-standard corrections to b → cc̄s amplitudes are
likely to be small, because these modes are dominated by V ∗

cbVcs SM tree amplitudes: QCD
penguins that would receive contributions from new particles in the loop are dynamically
suppressed by the weak coupling of, e.g., the J/ψ to gluons, while Z-penguin effects are
expected to be at most at the level of the current experimental uncertainty [281].

• the constraint on the sign of cos(2β + 2θd) from the time- and angular-dependent analysis
of B0 → J/ψK∗0 decays (cf. Section III.3.5). We use the Gaussian interpretation of the
experimental result, which essentially imposes cos(2β + 2θd) > 0, since it gives a stronger
constraint than the (correct) Monte-Carlo simulation.

66The Gronau-London isospin analysis allows to isolate the ∆I = 3/2 amplitude (see Section VI.1.1.3), which
is proportional to VudV ∗

ub in the SM4FC hypothesis (up to a small and computable VtdV ∗
tb electroweak penguin

contribution that we take into account). This holds independently of the magnitude and (CP -conserving plus
CP -violating) phase of the ∆I = 1/2 amplitude, which a priori receives contributions from both the SM (tree
and penguin diagrams) and the NP.
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Parameter Value ± Error Reference

αS(mb) 0.22 [282]
K1 −0.295 [282]
K2 1.162 [282]

mpole
b 4.8 ± 0.1theo [282]

z 0.085 ± 0.010theo [282]

ASL (−0.7 ± 1.3) × 10−2 see text

Table 14: Inputs used to predict the semileptonic CP -violating asymmetry ASL, which are not
already defined in Table 1. The errors given are treated as systematic theoretical uncertainties
within Rfit. If no error is given the uncertainty of the corresponding quantity is neglected. The
last line quotes the experimental average.

• the B0B0 oscillation frequency, as given by ∆md = r2d × ∆mSM
d .

• the CP -violating charge asymmetry in semileptonic B decays ASL defined by

ASL ≡ Γ(B0(t) → ℓ+X) − Γ(B0(t) → ℓ−X)

Γ(B0(t) → ℓ+X) + Γ(B0(t) → ℓ−X)
. (194)

In the presence of NP in mixing its theoretical prediction reads [283–286,282]:

ASL = −Re

(

Γ12

M12

)SM sin 2θd

r2d
+ Im

(

Γ12

M12

)SM cos 2θd

r2d
, (195)

where Γ12 and M12 are respectively the absorptive and dispersive parts in the B0B0 mixing
amplitude.

The theoretical prediction of (Γ12/M12)
SM at leading order 67 reads [282]:

(

Γ12

M12

)SM

= − 4πm2
b

3m2
WηBS0

(

m2
t /m

2
W

)

[

(

K1 +
K2

2

)

+

(

K1

2
−K2

)

m2
B −m2

b

m2
bB

+ (K2 −K1)

(

5B
′
S

8Bd
+ 3z

1 − ρ− iη

(1 − ρ)2 + η2

)]

, (196)

where K1 and K2 are Wilson coefficients, z ≡ m2
c/m

2
b and ηB = ηB × [αS(mb)]

−6/23(1 +
(αS/4π)(5165/3174)). The corresponding input values are given in Table 14.

We find the experimental value ASL = −0.007 ± 0.013 as an average of several mea-
surements: the direct determination of ASL [289–292] is dominated by the BABAR result
ASL = 0.005 ± 0.012 ± 0.014 [292]. The BABAR Collaboration also measured the quan-
tity |q/p| = 1.029 ± 0.013 ± 0.011 with a fit to fully reconstructed B decays [293]. This
translates into ASL = (1 − |q/p|4)/(1 + |q/p|4) = −0.057 ± 0.033.

67Next-to-leading order calculations of ASL have been performed in Refs. [287,288]. We do not use these results
in our analysis since experimental errors dominate at present. With increasing precision the NLO results must
be included.
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Constraint SM & NP dependence Numerical value

|Vcb| and |Vub| |Vcb| and |Vub| Section III.2

B+ → D(∗)0K+ Dalitz plot analysis tan γ Section V.2.

B0 → D(∗)±π∓ CP asymmetries | sin(2β + 2θd + γ)| Section V.1 (“toy”)
B → ρρ isospin analysis sin(2β + 2θd + 2γ) Section VI.5
B0 → J/ψK0 CP asymmetry sin(2β + 2θd) Section III.2
B0 → J/ψK∗0 time-dependent angular analysis cos(2β + 2θd) Section III.2 (“Gauss.”)
∆md ∆mSM

d r2d Section III.2
ASL Eqs. (195)–(196) Table 14

Table 15: Inputs to the fit with free New Physics contributions to B0B0 mixing, and their
dependence with respect to the SM and NP flavor changing parameters. Discussions on the
discrete ambiguities occurring in the measurements of tan γ, | sin(2β + 2θd + γ)| and sin(2β +
2θd + 2γ) are given in the corresponding sections.

A summary of the observables used in the NP fit is given in Table 15. The number of independent
constraints is sufficient to constrain both (ρ, η) on the one hand, and (r2d, 2θd) on the other hand,
up to discrete ambiguities.

We do not include the CP -violation parameter εK because it does not improve the constraint
on (ρ, η), unless possible NP contributions to K0K0 mixing are negligible, which is not a priori
known. We do not consider input from s → d and b→ s transitions either, which are therefore
left free in the fit within and beyond the SM.

2.2 Results

We perform a global fit using the inputs from Table 15 with r2d and 2θd left free to vary. The
constraint obtained in the (ρ, η) plane when excluding the sign measurement of cos(2β + 2θd) is
shown in the left hand plot of Fig. 57. There are eight solutions for the CKM angle γ, numbered
from 1 to 8, that lie on a circle determined by |Vub/Vcb|. Solutions 3, 4 and 7 have CLs below 5 %
and are therefore not shown on this plot. The other individual solutions are not well separated
yet due to the experimental uncertainties in the determination of γ from D(∗)0K+, D(∗)±π∓ and
ρρ. If we impose in addition the constraint68 cos(2β + 2θd) > 0, derived from the analysis of
J/ψK∗ decays [138], we obtain the right hand plot of Fig. 57 where four out of eight solutions
are further suppressed.

The CL for η = 0 in these fits depends crucially on the inputs from Table 15, in particular
on the current inputs from the B+ → D(∗)0K+ Dalitz plot analysis (tan γ), the B0 → D(∗)±π∓

CP asymmetries (| sin(2β + 2θd + γ)|), the B → ρρ isospin analysis69 (sin(2β + 2θd + 2γ)) and
the B0 → J/ψK∗0 time-dependent transversity analysis (cos(2β + 2θd)). With these inputs the
possibility that CP violation is absent in the SM is quite unlikely. With additional conjectures on
the NP’s nature, one could obviously improve the constraints: for example, with the assumption

68As described in Section III.3.5, this is an optimistic assumption, since the cos(2β) > 0 result found in Ref. [138]
is not yet statistically significant.

69Even if C+−
ρρ,L significantly departed from zero, the solution η = 0 would still be allowed by the full isospin

analysis in B0 → ρρ. This is because the isospin analysis only constrains the weak phase of the ∆I = 3/2
amplitude, and not the one of the ∆I = 1/2 amplitude, which could come from a different source of CP violation.
In the SM, these two phases are nevertheless correlated since they are related to common CKM couplings.
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Figure 57: Constraints in the (ρ, η) (top) and (γ, 2β + 2θd) (bottom) planes from the fit in the
framework of New Physics in B0B0 mixing. The top right and bottom plots give the corresponding
constraint when using only the two solutions β + θd and π + β + θd that are favored by the
cos(2β + 2θd) > 0 evidence in B0 → J/ψK∗ decays (Section III.3.5).
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Figure 58: Confidence level in the (2θd, r
2
d) plane obtained as a result of the global CKM fit that

includes New Physics in B0B0 mixing.

that NP is negligible in the decay, any non-zero direct CP -asymmetry measurement implies
η 6= 0 (e.g., the measurement of ε′/ε > 0). Generally speaking, the solution η = 0 is not a
natural value in the SM: the region of very small η corresponds to a fine-tuning scenario, in
which the SM generates vanishingly small CP violation, whereas large NP couplings are needed
to accommodate the data. See however Ref. [294] for an example of multi-Higgs-doublet model
that naturally predicts a real-valued CKM matrix. We note that at that time less experimental
input was available and consequently a real-valued CKM matrix could not be excluded.

Remarkably, Solution 1 in Fig. 57 is not only consistent with the standard (SM) CKM fit but
also has the largest CL: the SM solution is clearly preferred, while however the mirror solution
5 cannot be excluded at the 1σ level. At first sight, this is not surprising since most of the
observables used in the fit are expected to be dominated by SM contributions. Nevertheless this
leads to an important consequence, namely that NP corrections to B0B0 and K0K0 mixing are
likely to be small. In the case of B0B0, this is illustrated in Fig. 58 showing the constraints in
the (r2d, 2θd) plane: the SM solution r2d = 1 and 2θd = 0 is favored. Values for r2d as large as 2–3
cannot be excluded yet, which means that in principle order one NP contributions to the mixing
are allowed. Still, the model-independent constraint on r2d is much better than in the previous
similar analyses; the uncertainty will decrease with better precision on ∆md and ASL and, in
particular, on fBd

√
Bd. This highlights the need for improved determinations of the parameter

fBd

√
Bd both from theory (e.g., from improved Lattice QCD calculations) and from experiment

(e.g., from constraining |Vub|fBd
by a rate measurement of B → ℓνℓ decays). The constraint on

r2d would also be improved with a better knowledge of the angle γ.

With the constraint on (ρ, η) shown in the right plot in Fig. 57, we determine the contribution
to |εK | coming from the Standard Model. For Solution 1 we find 1.3×10−3 < |εK |SM < 5.0×10−3

for CL > 5%. This can be compared to the experimental value, |εK | = 2.282 × 10−3, and the
constraint 1.1 × 10−3 < |εK |CKM < 4.9 × 10−3 at CL > 5% (Table 2, Section III.3.2) obtained
from the standard CKM fit. That is, neither in the framework of NP in B0B0 mixing nor in the
SM, one can exclude NP contributions to K0K0 mixing of order 100% due to the uncertainties
on the bag parameter BK and also, to some extent, on the charm quark mass mc (cf. Table 1,
Section III.3.2). Solution 5 leads to negative values for |εK |SM and could only accommodate
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the measurement in the presence of NP effects in K0K0 mixing that, in addition to being large,
would have a sign opposite to the SM contribution.

It is interesting to note that no solution is obtained for 2θd = π. In Minimal Flavor Violation
(MFV) NP models (see, e.g., Refs. [295]) a single real parameter, Ftt, is needed in addition to
those of the SM to describe model-independently all the observables. In the SM, the value of
this parameter is Ftt|SM = S(m2

t /m
2
W ) = 2.41, where S(m2

t/m
2
W ) is the Inami-Lim function in

the B0B0 mixing amplitude. Our fits exclude a negative sign for Ftt corresponding to 2θd = π
leaving Ftt > 0 as the preferred solution. The parameter Ftt is related to our parameterization
by r2d = |Ftt|/S(m2

t /m
2
W ). With the inputs from Table 15 we obtain the range 1.03 < Ftt < 4.41

for CL > 10%. In MFV models the NP contribution to B0B0 mixing is directly related to
the NP contribution to K0K0 mixing. When taking into account the εK constraint we obtain
1.03 < Ftt < 4.18 for CL > 10%. In addition, the modification of ∆ms in MFV models is the
same as in ∆md. When also taking into account ∆ms in the fit, the bounds on Ftt are further
tightened: we find 1.18 < Ftt < 4.01 for CL > 10%.

An interesting question is how the non-standard Solution 5 can be excluded, independently
of the argument based on |εK | given above. A reduction of the uncertainties in the B+ →
D(∗)0K+ Dalitz plot analysis, in the B0 → D(∗)±π∓ CP asymmetries and in the B → ρρ isospin
analysis will not help in this respect [156], since all these constraints are invariant under the
transformation γ → γ + π. However, discriminating the Solutions 1 and 5 would be possible if
the measurement of ASL could be significantly improved.

In contrast to the analysis performed in Ref. [276], we study NP contributions to B0B0 mixing
model-independently, i.e., without the neglect of NP in the decay and without any dynamical
assumption. Better constraints can be expected, for instance, when precise measurements of γ
from tree-level decays become available.

3 New Physics in ∆B = 1 Decays

Flavor-changing neutral currents that occur only at the loop level in the SM receive large cor-
rections in many generic New Physics scenarios [296]. In this section we present constraints on
b→ d and b→ s transitions in a model-independent framework.

3.1 B → PP Modes: B0 → π+π− versus B+ → K0π+

The constraints on the angles γ and 2β + 2θd, obtained in the ∆B = 2 analysis of the previous
section, is used to constrain possible NP contributions in ∆B = 1 transitions. For this purpose,
we fit the magnitude of the penguin amplitude |P+−| occurring in B0 → π+π−. More precisely,
we define the ratio of b→ d to b→ s transitions by

rP
ππ ≡

√

√

√

√

√

τB+

τB0

PS
∣

∣

∣VcsV ∗
cbP

+−
ππ

∣

∣

∣

2

B(K0π+)
, (197)

where PS stands for the usual two-body phase space factor and where the penguin amplitude is
defined, in contrast to Section VI.1.1.1, in the T convention

A(B0 → π+π−) = VudV
∗
ubT

+−
ππ + VcdV

∗
cbP

+−
ππ . (198)

Although at first sight Eq. (198) relies on the SM and CKM unitarity, it remains valid in the
presence of arbitrary NP contributions, since any new amplitude with a new CP -violating phase
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Figure 59: Confidence level in the (γ, rP
ππ) plane obtained by the fit including NP in B0B0 mixing

and in b→ d, s transitions.

can be decomposed into two independent CKM couplings70. In other words, Eq. (198) is the
most general parameterization of the decay amplitude both within and beyond the SM.

In the SM the ratio rP
ππ is expected to be of order one: it would be equal to one if SU(3) sym-

metry were exact and in the limit of vanishing annihilation/exchange and electroweak penguin
topologies (cf. Section VI.1.2.3). Thus, any large ( >∼ 30%) deviation would be a hint of non-
standard particles occurring in the gluonic or electroweak penguin loops. Using Eqs. (198) for
the decay and (193) for the mixing, one can express rP

ππ in terms of the experimental observables
and the angles γ and 2β + 2θd

rP
ππ =





τB+

τB0

B(π+π−)

2λ2B(K0π+)

1 −
√

1 − C+−
ππ

2
cos(2β + 2θd + 2γ + 2αeff )

sin2 γ





1
2

. (199)

Figure 59 shows the confidence level as a function of γ and rP
ππ, using the following input

quantities:

• the constraints on γ and 2β + 2θd obtained from the New Physics fit in B0B0 mixing as
shown in the bottom plot of Fig. 57.

• the CP -violating asymmetries in B → π+π−: C+−
ππ and S+−

ππ =

√

1 − C+−
ππ

2
sin 2αeff (Ta-

ble 8, Section VI.1.3).

• the branching fractions of the three B → ππ modes (Table 8, Section VI.1.3), assuming
isospin symmetry.

• the branching fraction of B+ → K0π+ (Table 8, Section VI.1.3).

70 This can be seen as follows. Let us denote by MNPeiφNP an arbitrary NP amplitude with a
CP -violating phase φNP. One finds the identity MNPeiφNP = VudV

∗
ubTNP + VcdV ∗

cbPNP with TNP =
MNPIm

[

eiφNPV ∗
cdVcb

]

/Im [VudV ∗
ubV

∗
cdVcb] and PNP = MNPIm

[

VudV
∗

ube
−iφNP

]

/Im [VudV ∗
ubV

∗
cdVcb]. The whole ef-

fect of NP in the decay amplitude is to modify the “T”-type and “P”-type amplitudes with respect to their SM
values.
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The resulting constraints on rP
ππ prefer an order one value. Since we expect deviations up

to ±30 % from one due to the violations of the relation between π+π− and K0π+ penguin
amplitudes, non-standard corrections could be as large, in principle, as the SM contribution.
More precise measurements of the observables in the ππ system would significantly reduce the
allowed domain for rP

ππ, while the γ input from the NP fit in B0B0 mixing is found to be less
crucial.

3.2 B → V P Modes: B → φK0 versus B+ → K∗0π+

The b → d to b → s penguin ratio can be studied in vector-pseudoscalar channels using, for
example, the ρπ modes compared to the K∗π and Kρ partners. However a Dalitz plot analysis
of the π+π−π0 three-body decay is necessary to extract the penguin amplitudes. Hence we focus
on the ratio of two b → s transitions, represented by the decays B0 → φK0 and B+ → K∗0π+

(see also Ref. [297]). The first is particularly interesting in view of the marginal agreement
between BABAR and Belle in the measurement of the CP -asymmetry71 SφK ; general studies of
this decay can be found in Refs. [298].

We define the B0 → φK0 amplitude in the T convention by

A(B0 → φK0) = VusV
∗
ubP

u
φK + VcsV

∗
cbP

c
φK , (200)

and the corresponding penguin ratios by

rc
φK ≡

√

√

√

√

√

τB+

τB0

PS
∣

∣

∣VcsV ∗
cbP

c
φK

∣

∣

∣

2

B(K∗0π+)
, r

u/c
φK ≡

∣

∣

∣

∣

∣

P u
φK

P c
φK

∣

∣

∣

∣

∣

. (201)

In the SM, rc
φK is expected to be close to one, if SU(3) is a good symmetry and if electroweak

penguins and annihilation topologies are negligible. Long-distance u- and c- penguins are ex-

pected to be suppressed by 1/mb according to QCD FA [207]. Thus a value of rc
φK (resp. r

u/c
φK )

that differs significantly from one would point towards non-standard contributions in electroweak
penguins (resp. in either gluonic or electroweak penguins72 ). Note also that P u

φK appears in

Eq. (200) together with a λ2-suppressed factor. Thus the natural order of magnitude of the

ratio r
u/c
φK in the presence of a b → s NP amplitude that competes with the SM contribution is

1/λ2.

The explicit expressions for rc
φK and r

u/c
φK in terms of the observables are

rc
φK =





τB+

τB0

B(φK0)

2B(K∗0π+)

1 −
√

1 − C2
φK cos(2β + 2θd + 2γ − 2βeff )

sin2 γ





1
2

, (202)

r
u/c
φK =

1

λ

∣

∣

∣

∣

Vcb

Vub

∣

∣

∣

∣





1 −
√

1 − C2
φK cos(2β + 2θd − 2βeff )

1 −
√

1 − C2
φK cos(2β + 2θd + 2γ − 2βeff )





1
2

. (203)

71We use here the notation SφK and CφK for both decays B0 → φK0
S and B0 → φK0

L, where the relative sign
in φK0

S with respect to φK0
L is taken into account when the results of both channels for SφK are averaged. NP

effects that could spoil the relation between the two decays are expected to be highly suppressed [299].
72As pointed out in Ref. [133], it is not possible from the present data, and from theoretical arguments derived

with the use of strict SU(3), to exclude a value of the ratio r
u/c
φK as large as ∼ 10 in the SM. Such an extreme value

would point to very large non-perturbative rescattering effects. However we stress that the natural expectation in
the SM is r

u/c
φK ∼ 1. More data and a better understanding of rescattering effects in B decays will help to clarify

the situation.
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Figure 60: Confidence levels in the (γ, rc
φK) (upper) and (γ, r

u/c
φK ) (lower) planes for BABAR (left)

and Belle (right), obtained by the fit including NP in B0B0 mixing and in b → s transitions.

On the BABAR plots, small (resp. large) values for rc
φK (resp. r

u/c
φK ) correspond to the solution

cos 2βeff < 0, and conversely. On the Belle plots, the two solutions are merged.

We set CLs on the quantities rc
φK and r

u/c
φK , where we distinguish between the BABAR and Belle

results for CφK and SφK since they lead to different implications. The fit inputs used are:

• the constraints on γ and 2β + 2θd obtained from the NP fit in B0B0 mixing as shown in
the left hand plot of Fig. 57.

• the branching fraction B00
ΦK = (8.3+1.2

−1.0)×10−6 [62], and the CP asymmetries in B0 → φK0,

CφK and SφK =
√

1 − C2
φK sin 2βeff . BABAR measures: SφK = 0.47 ± 0.34+0.08

−0.06, CφK =

0.01 ± 0.33 ± 0.10 [136], and Belle finds: SφK = −0.96 ± 0.50+0.09
−0.11, CφK = 0.15 ± 0.29 ±

0.08 [137,62], where the first errors given are statistical and the second systematic.

• the branching fraction B0+
K∗π (Table 11, Section VI.4.2).
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The CL on (γ, rc
φK) for SφK and CφK measured by BABAR (upper left hand plot in Fig. 60)

shows two solutions for rc
φK due to the the twofold ambiguity73 on 2βeff . One of the solutions

(cos 2βeff > 0) is in agreement with rc
φK being one as expected if non-standard electroweak

penguins are absent. In the case of the SφK and CφK results from Belle (upper right hand plot
in Fig. 60) the two mirror solutions cannot be distinguished due to the SφK value being close
to minus one. Also in this case, the constraint on rc

φK is in agreement with one, which recalls
the remark in Ref. [300] that the measured branching ratio to φK is compatible with what is
theoretically expected.

In the case of r
u/c
φK , one of the solutions (cos 2βeff > 0) for the BABAR measurement (lower left

hand plot in Fig. 60) is consistent with order one values whereas the other solution (cos 2βeff < 0)
prefers large values. On the contrary, for the Belle result (lower right hand plot in Fig. 60), rather

large values for r
u/c
φK > 10 are preferred indicating non-standard gluonic or electroweak penguins.

Since rc
φK is found to be compatible with one, these large r

u/c
φK values suggest that the anomaly,

if there, may stem from gluonic penguins rather than from electroweak penguins, in contrast to

some proposals in the literature [281,301]. It is worthwhile to note that the constraints r
u/c
φK and

rc
φK can be significantly improved in the future by reducing the experimental uncertainties on
SφK and CφK , and that again the γ input is less crucial here.

4 Conclusion

We have studied the constraints from present data on the amplitude parameters in the presence
of arbitrary New Physics contributions to K0K0 and B0B0 mixing, and to b → d and b → s
penguin transitions. The construction of a model-independent Unitarity Triangle is not (yet)
precise enough to exclude sizable non-standard corrections to the mixing, in contrast to a prej-
udice commonly found in the literature.

The above statement should be softened in view of the great success of the standard CKM
fit. Although this success could be accidental, the more general description including NP contri-
butions is not particularly satisfying since it does not improve the fit while adding new, unknown
parameters. Notably, the preferred region is consistent with the SM values for the NP param-
eters in K0K0 and B0B0 mixing. It might still be that NP contributions to K0K0 and B0B0

mixing may still be present, but can only be uncovered if the uncertainties on the inputs are sig-
nificantly reduced. This situation will improve in the future as soon as accurate determinations
of the angles α and γ from tree-dominated decays become available, the sign of cos(2β + 2θd) is
fully settled and improved determinations of the parameter fBd

√
Bd are obtained.

We have proposed a fully model-independent parameterization of ∆B = 1 decays. Present
errors are large, thus excluding any definitive statement. A more precise measurement of the
observables of the B → ππ decays, in particular the time-dependent CP -asymmetry in π+π−,
would greatly improve the constraint on the b→ d to b→ s amplitude ratio, while the input on
the angle γ from the model-independent UT fit is less crucial. Still it can be said that potential
NP contributions cannot exceed 100% of the SM strength of the b→ d transition. More complete
data on the b → uūd decays to V P and V V final states would provide valuable independent
information. In addition, our fits to the B0 → φK0 CP asymmetries measured by BABAR and
Belle show that the Belle measurement slightly prefers NP contributions with gluonic, rather

73In the π+π− case (see the preceding section), the second solution for cos 2αeff is suppressed by the additional
constraints coming from the other ππ branching fractions.
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than electroweak, penguin quantum numbers. However, the discrepancy with the BABAR result
prevents us from drawing a firm conclusion.
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Part VIII

Conclusion

During five years of successful running of the B factories, the experiments BABAR and Belle have
produced a wealth of results, which greatly extend the knowledge on B physics acquired at the
precursor experiments ARGUS, CLEO, the LEP collaborations as well as CDF. Also using the
measurement of indirect CP violation in the neutral kaon system, these experiments succeeded
to predict CP violation in the B system, namely sin 2β, with a good precision and far prior to
its direct measurement. Today, however, the measurement of sin 2β surpasses in precision the
indirect determination. It represents the primary constraint on the Unitarity Triangle, and the
only one that is theoretically fully under control. Yet, the determination of ρ, η still requires
input from measurements for which the theoretical predictions suffer from notable hadronic
uncertainties. While these are reasonably well controlled, as far as the corresponding matrix
elements can be computed with Lattice QCD, they exhibit large errors. It is the goal of the
B factories to reduce this dependence on the strong interaction theory by means of direct and
precise measurements of the three Unitarity Triangle angles and the two sides.

Since α and γ are linked to CKM-suppressed b→ u transitions, large statistics samples are
required for their measurement. Encouraging results have been presented recently by BABAR

on the measurement of sin 2αeff from a time-dependent analysis of B0 → ρ+ρ−. Using its
SU(2) partners measured by BABAR and Belle, one can determine α with a precision of 19◦

at 90% CL, limited by the unknown penguin contribution. Due to the weak sensitivity to the
penguin contamination of the isospin relations in B → ππ, the results on sin 2αeff from the
measurement of time-dependent CP asymmetry are less constraining. The analysis of B → ρπ
decays mainly lacks the information from the Dalitz plot on the strong phase between the ρ+π−

and ρ−π+ states of the B0 decay. The near future will clarify the achievable precision on α
with these modes, which strongly depends on the underlying decay dynamics. Large B-related
backgrounds, which are unknown to some extend at present, complicate the experimental anal-
ysis of B → ρρ and (to a lesser degree) B → ρπ decays, and hence produce sizable systematic
uncertainties. The fruitful competition among the leading experiments provides important re-
dundant measurements for these modes. The extraction of γ from the interference of b → c
with b→ u transitions is even more challenging due to the disparateness of the amplitude sizes,
which suppresses either the observable CP -violating asymmetries or the total rate. A significant
measurement of γ in a single mode requires larger data samples than those presently available.
One way out of this is to combine measurements from a large number of different modes.

Two-body charmless B decays into pions and kaons are particularly convenient for phe-
nomenological analyses since all modes, apart from those dominated by suppressed annihilation,
exchange or b→ d penguin amplitudes, have been measured. Also, the simplicity of the exper-
imental signature reduces the systematic uncertainties. Penguin contributions, even in decays
without net strangeness in the final state, make them to potentially sensitive probes of physics
beyond the Standard Model.

Similarly, the measurement of mixing-induced or direct CP violation in modes that are dom-
inated by b → s penguin amplitudes enjoy rising interest and are among the most anticipated
results of the B factories. We note that a claim for New Physics not only requires that at
least one of these modes departs from the Standard Model reference value, but also that they
disagree among themselves if one wants to avoid a fine-tuning scenario. Due to the (inspiring)
dissonance from the many models introducing New Physics phenomena and predicting specific
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effects on the observables, it is difficult to investigate New Physics in a systematic way. We
have therefore chosen to build a general parameterization of generic New Physics amplitudes
that interact in B0B0 mixing and/or penguin B decays. The global CKM fit allows us to derive
constraints on these generic New Physics amplitudes. Specific New Physics models have then
to be in accordance with the allowed generic variable space.

We summarize in the following the main developments and results described in this work.

• All results are obtained with the use of the software package CKMfitter that employs
statistical analysis tools based on the frequentist approach Rfit. We have extended the
analysis to take into account one- and two-dimensional physical boundary conditions as
they occur in CP -asymmetry measurements.

• Among the main results of this paper are the numerical (Tables 2 and 3) and graphical
(Figs. 5, 6, 7 and 8) representations of the global CKM fit. The values of the Wolfenstein
parameters λ, A, ρ, η are found to be in agreement with the results from our previous
analysis (2001), and their 1σ errors have changed by relative +14%, −58%, −45% and
−64%, respectively, mainly due to the experimental improvements on sin 2β and |Vcb|.
We find for the apex of the Unitarity Triangle, the coordinate ρ = 0.189+0.088

−0.070 and η =
0.358+0.046

−0.042. For the goodness of the global CKM fit within the Standard Model, we find
a p-value of 71%.

• We have analyzed observables from rare kaon decays related to ρ, η and derived constraints
on the hadronic parameters B6, B8, related to ε′/ε. We discuss the present and future
constraints in the unitarity plane from the rare decays K+ → π+νν and K0

L → π0νν.

• The constraints on 2β+ γ and γ respectively from the CP analyses of B0 → D(∗)±π∓ and
B+ → D0K+ decays are displayed. The present experimental errors are still too large to
be competitive with the other measurements used in the global CKM fit.

• Results on charmless B decays to hh′ (h, h′ = π,K) are studied in four different scenarios
based on SU(2) and SU(3) flavor symmetries as well as QCD Factorization. Useful con-
straints on α are only obtained with significant theoretical input. A global fit of QCD
Factorization to all available ππ,Kπ observables leads to an acceptable overall descrip-
tion (p-value of 21%), however with large non-factorizable corrections, and is remarkably
predictive (cf. Fig. 35). Two predictions show deviations from the measurements: the
branching fractions for B0 → K+π− and B0 → K0π0, which come out somewhat large
and small, respectively. The discrepancy does however not exceed 2.5 standard deviations
in the worse case. The constraint on ρ, η obtained from this fit is in agreement with
the global CKM fit and competitive in precision. We do not observe significant hints for
deviations from the Standard Model in these decays. Using SU(3) symmetry, we predict
the branching fraction and CP -violating asymmetries in B0

s → K+K− decays.

• A specific section has been dedicated to the study of B → Kπ decays, where we analyze the
impact of electroweak penguins in discussing the recent literature. Using a phenomenolog-
ical parameterization and various dynamical hypotheses, we find that the current data do
not significantly constrain electroweak parameters, neither hadronic amplitude ratios. In
particular, the determination of the parameters related to electroweak penguins is not pos-
sible at present. We do not observe an unambiguous sign of New Physics, whereas central
values of the parameters show evidence for potentially large non-perturbative rescattering
effects. It is not clear to us whether a unified theoretical approach would be able to explain
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the whole set of observables in the ππ and Kπ systems, if future measurements confirm
the present pattern.

• Results on charmless B decays to ρπ and their SU(3) partners are studied with the use
of SU(2) and SU(3) flavor symmetry. The discrete ambiguities due to the unknown rel-
ative strong phase between the B0 → ρ+π− and B0 → ρ−π+ amplitudes obstruct useful
constraints on α in these modes. A Dalitz plot analysis is required to measure this phase.
Within SU(3) symmetry and neglecting certain suppressed topologies, bounds on direct
CP -violating asymmetries are derived. It is found that the present amount of direct CP
violation measured by the parameter A−+

ρπ tends to violate this bound, suggesting that the
size of the effect is a statistical fluctuation that is expected to reduce with the availability
of more data.

• The isospin analysis of the B → ρρ system provides a useful constraint on α, which
is found to be in agreement with the expectation from the global CKM fit. Including
isospin-breaking corrections from electroweak penguins, and choosing the solution that
is preferred by the CKM fit, we derive from the BABAR measurement of time-dependent
CP asymmetries in B0 → ρ+ρ− decays α = (94 ± 12 [+28

−25] ± 13 [19])◦. Here the first
errors given are experimental, the second due to the penguin uncertainty, and the errors
in brackets are at 2σ. If color suppression holds and if penguins are small, we expect that
the present branching fraction measured for B+ → ρ+ρ0 should reduce with more data in
order to close the isospin triangles. The potential to measure mixing-induced CP violation
in B0 → ρ0ρ0 promises a brighter future, to reduce the uncertainty α − αeff due to the
unknown penguin pollution in ρ+ρ−, than it can be expected for ππ. We have studied
a simple extension of the isospin analysis to account for possible isospin-breaking effects.
We find that the systematic uncertainties on α for the full isospin analysis can be of the
order of 3◦, depending on the amplitude structure of the decays.

• We refer to Section VI.7 for a more detailed summary of the results on all charmless B
decays studied in this paper.

• We have studied the present data constraints on the amplitude parameters in the presence
of arbitrary New Physics contributions to B0B0 mixing and to b → d and b → s penguin
transitions. The construction of a model-independent Unitarity Triangle is not precise
enough to exclude sizable non-standard corrections to the mixing, which appears to be
somehow in contrast to a prejudice found in the literature. The situation will improve in
the future as soon as accurate determinations of the angles α and γ from tree dominated
decays become available, and the theoretical errors on the lattice matrix elements relevant
for the mixing are reduced. For ∆B = 1 transitions we have shown that a general param-
eterization may give significant model-independent constraints on potential New Physics
contributions, when the CP -violation measurements become more precise.

The outstanding role of B physics in the quest for a better understanding of CP violation in
the Standard Model and beyond, as well as for the precise metrology of the off-diagonal CKM
matrix elements, is assured by the continuous rise of the peak luminosity at the B factories.
New and competitive results from the Tevatron experiments are expected soon, in particular
the highly important measurement of B0

sB
0
s oscillation. We have attempted to extrapolate the

results leading to the Unitarity Triangle angle α up to luminosities of 1 ab−1 (and 10 ab−1 in
some cases). It seems reasonable to expect that a determination of α, dominated by B → ρρ, to
an error of about 6◦ or better (not including isospin-breaking effects) can be achieved towards
the end of the first generation B-factory program, with an expected integrated luminosity of
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combined roughly 2 ab−1. Plausible extrapolations for the angle γ are more difficult since all
measurements in the beauty-to-charm sector crucially depend on the ratios of the corresponding
CKM-suppressed-to-CKM-favored amplitudes, which are only approximately known at present.

In summary, we can hope for a precise metrology of the Unitarity Triangle angles within a
few years, but—in view of the present results—we do not expect it to be sufficiently accurate
to reveal inconsistencies with the CKM picture. Therefore, besides ∆ms, major attention is
directed to the forthcoming measurements of CP -violation parameters in penguin-dominated
modes. The near future will show whether the current pattern turns into a significant deviation
from the expectation, or if the discrepancies fall behind the theoretical uncertainties that are
expected in these modes.
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Part IX

Appendix

A Statistical Significance of B0
sB0

s oscillation

The purpose of this appendix is to evaluate the statistical significance of the world average results on
B0

sB
0
s oscillation. At present, the world average likelihood as a function of ∆ms exhibited a roughly

parabolic behavior at ∆ms ≃ 17 ps−1. Following an analytical approach, we address two questions:

• what is the PDF of a likelihood measurement of ∆ms and what is the confidence level (CL) as a
function of ∆ms to be associated with an observation obtained with the current level of sensitivity;

• what is the expected likelihood behavior and how reliable it is to use the likelihood to infer CLs.

A.1 Definitions and Proper Decay Time Modeling

Using the simplified framework of Ref. [123], we denote for a homogeneous event sample:

• Ps± the (true) time distribution (in unit of the Bs lifetime τB) of mixed (Ps−) and unmixed (Ps+)
events, given by

Ps± =
1

2
e−t(1 ± cos(xst)) , (204)

with xs = ∆msτb,

• w the mistag rate, and D = 1 − 2w the corresponding dilution factor;

• fs the fraction of signal events in the sample;

• The background is assumed to:

– follow the same exponential distribution as the signal,

– be purely of the unmixed type,

– be affected by the same mistag rate;

• Gt the detector resolution function for the time measurement t→ tmes;

It is assumed to be a Gaussian of zero mean and time dependent width

σ =
√

a+ bt2 (205)

Gt(tmes − t) =
1√
2πσ

exp

(

−1

2

(

tmes − t

σ

)2
)

, (206)

with a accounting for the decay length measurement and b accounting for the momentum measure-
ment

a =

(

m

p

σL

cτB

)2

, b =

(

σp

p

)2

. (207)

With these notations the proper time distribution of events, classified as mixed or unmixed, read

P−(tmes) =

(

fs
1

2
(1 −D cos(xst)) + (1 − fs)w

)

e−t ⊗Gt , (208)

P+(tmes) =

(

fs
1

2
((1 +D cos(xst)) + (1 − fs)(1 − w)

)

e−t ⊗Gt . (209)

Taken together, these distributions are normalized to unity

+∞
∫

−∞

(P− + P+)dtmes = 1 . (210)
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A.2 Measurement

The xs measurement is assumed to be performed with the use of the log-likelihood

L(xs) =
∑

−

ln(P−) +
∑

+

ln(P+) , (211)

where the first (second) sum runs over mixed (unmixed) events. The measured value of xs (xmes
s ) is

defined to be the one maximizing L(xs)

∂L(xs)

∂xs

∣

∣

∣

∣

xs=xmes
s

= 0 . (212)

The outcome of the experiment xmes
s is a random number, which, for large enough statistics, follows a

Gaussian PDF

P(xmes
s | xs) ≡ Φxs

lo (xmes
s ) =

1√
2πΣ(xs)

exp

(

−1

2

(

xmes
s − xs

Σ(xs)

)2
)

, (213)

where the standard deviation Σ(xs) is given by the second derivative of L, through the integral A

(
√
NΣ(xs))

−2 =

+∞
∫

−∞

(

(Ṗ−)2

P−
+

(Ṗ+)2

P+

)

dtmes ≡ A(xs) , (214)

Ṗ± =
∂P±

∂xs
(215)

= ∓fs
1

2
D t sin(xst)e

−t ⊗Gt . (216)

Here N is the total number of mixed and unmixed events, and the integrals are performed with the use
of the true value of xs, not the measured one74.

It follows from Eq. (213) that one may set a confidence level CL(xhyp
s ) on a given xs hypothetical

value xhyp
s using the χ2 law

CL(xhyp
s ) =

∫

<

Φxs

lo (xmes
s

′)dxmes
s

′ = Prob(χ2, 1) , (218)

χx
s (xmes

s ) =
xmes

s − xhyp
s

Σ(xhyp
s )

, (219)

where the integral is performed over the xmes
s

′ domain where Φxs

lo (xmes
s

′) < Φxs

lo (xmes
s ), that is to say where

χx
s (xmes

s
′) > χx

s(xmes
s ).

A.2.1 Parabolic Behavior

If the log-likelihood is parabolic nearby its maximum

L(xhyp
s ) ≃ L(xmes

s ) +
1

2

∂2L
∂x2

s

∣

∣

∣

∣

xs=xmes
s

(

xhyp
s − xmes

s

)2
, (220)

74If the event sample is not homogeneous but is an admixture of ns homogeneous subsamples, each with a
detector resolution function Gt

i, a signal fraction f i
s, a mistag rate wi, and representing a fraction fi of the

overall sample of N events, the corresponding time distribution are denoted P i
± (the factor fi being not included).

The A integral (as well as other integrals introduced below) is then to be replaced by the weighted sums

A(xs) =

ns
∑

i=1

fiA
i(xs) . (217)
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then, in the vicinity of xmes
s , Σ(xhyp

s ) ≃ cst = Σ(xmes
s ), and one can evaluate Σ as the second derivative

of the experimental log-likelihood, taken at the measured value xmes
s . In effect

− ∂2L
∂x2

s

∣

∣

∣

∣

xs=xmes
s

= −





∑

−

(

P̈−P− − (Ṗ−)2

P 2
−

)2

+
∑

+

(

P̈+P+ − (Ṗ+)2

P 2
+

)2


 (221)

(N→∞)−→ NA(xs) = Σ−2 , (222)

where P̈± denotes the second derivative with respect to xs

P̈± =
∂2P±

∂x2
s

(223)

= ∓fs
1

2
D t2 cos(xst)e

−t ⊗Gt , (224)

which however does not appear in the final expression thanks to Eq. (210), and assuming that xmes
s = xs

(which is true for N → ∞).

Equivalently, one can evaluate Σ by locating the value of xhyp
s which yields a drop of −1/2 of the

log-likelihood, for the experiment at hand, or one can compute directly the χ2 using the approximation

χ2(xhyp
s ) =

(

xmes
s − xhyp

s

Σ(xhyp
s )

)2

≃ 2(L(xmes
s ) − L(xhyp

s )) ≡ χ̃2(xhyp
s ) . (225)

Bayesian point of view

Because of the simplicity of the above relations, one may introduce the concept of the PDF of the true value

of xs by remarking that, if xmes
s is viewed as a non-random number (the actual outcome of a finalized single

experiment) while the true value of xs is taken to be a random number, the object

P(xs | xmes
s ) ≡ Φ

xmes
s

lo (xs) , (226)

allows to define

CL(xhyp
s ) = Prob(χ2, 1) , (227)

χ =
xhyp

s − xmes
s

Σ(xmes
s )

, (228)

which is numerically identical to the one of Eq. (218) — if Σ(xmes
s ) = Σ(xhyp

s ) — but with a completely different
reading: one states that the CL of xhyp

s is given by

CL(xhyp
s ) =

∫

<

P(xmes
s | xhyp

s

′
)dxhyp

s

′
, (229)

where the integral is performed over the xhyp
s

′
domain where P(xmes

s | xhyp
s

′
) < P(xmes

s | xhyp
s ) .

A.2.2 Non-Parabolic Behavior

Obviously, for large enough xhyp
s , the approximationΣ(xhyp

s ) ≃ Σ(xmes
s ) breaks down since the sensitivity

of the experiment vanishes due to the finite vertex resolution, i.e., Σ(xhyp
s → ∞) → ∞. It follows that

the likelihood is not parabolic for large enough xhyp
s . The vanishing sensitivity makes χ2, as defined by

Eq. (219), a poor test statistics to probe for large xs values. Furthermore, as discussed in Section A.4 to
infer from the χ2 value the correct CL(xhyp

s ) is not a straightforward task: Eq. (218) does not apply (i.e.,
it is not a real χ2) because Eq. (213) is a poor approximation.

The redefinition of the χ2 using the right hand side of Eq. (225) provides a more appropriate test
statistics to deal with large values of xhyp

s . Whereas Eq. (218) does not apply, χ̃2 is capable of ruling out
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xhyp
s values lying beyond the sensitivity reach75 (if L(xmes

s ) value is large enough) provided one computes
the CL using

CL(xhyp
s ) =

∞
∫

χ̃2(xhyp
s )

Ψxhyp
s (χ̃2′) Dχ̃2′ , (230)

where Ψxhyp
s is the PDF of the χ̃2 test statistics, for xs = xhyp

s , to be obtained with the use of toy
Monte Carlo. A tempting shortcut is to bypass the toy Monte Carlo simulation and to assume that the
approximation

CL(xhyp
s ) ≈ Prob(χ̃2(xhyp

s ), 1) , (231)

remains valid although the approximation of Eq. (225) is known to break-down.

Bayesian point of view

The xhyp
s ’PDF’ introduced in Eq. (226) can be redefined as

P(xhyp
s | xmes

s ) ≡ ϕ
xmes

s

L (xhyp
s ) = const × exp

(

L(xhyp
s ) −L(xmes

s )
)

, (232)

where the constant should be such that ϕL is normalized to unity when integrated over xhyp
s . In the present case,

such a constant does not exist because

lim
x
hyp
s →∞

L(xhyp
s ) = finite constant , (233)

and hence ϕL itself tends asymptotically towards a constant. We will consider below the average value of ϕL
as computed using the average likelihood which one would obtain. Ignoring statistical fluctuations the average
function is denoted

ϕxs

L (xhyp
s ) = N

∫

(P xs

− ln(P
x
hyp
s

− ) + P xs

+ ln(P
x
hyp
s

+ ))dtmes , (234)

and its leading order, next-to-leading order and next-to-next-to leading order approximations are denoted ϕL:lo
,

ϕL:nlo
and ϕL:nnlo

. The numerical value of the ratio

Rtail ≡
ϕL(∞)

ϕL(xs)
, (235)

which vanishes exponentially with N , is a measure of how non-Gaussian the likelihood is.

A.3 Experimental Constraint

The question arises as to how to incorporate experimental constraints derived from the Bs mixing analysis
into a global CKM fit. A possibility is to add to the (twice)log-likelihood of the global fit the term

χ2(xhyp
s ) = 2(L(∞) − L(xhyp

s )) , (236)

or equivalently to multiply the likelihood L by the ratio

∆L =
P(xhyp

s | xmes
s )

P(∞ | xmes
s )

, (237)

where the constant denominator is introduced here for convenience only. Since the L function is defined
up to an irrelevant additive constant, using Eq. (236) or Eq. (225) amounts to making the same approx-
imation, which is guaranteed to be correct, for large enough statistics, and in the vicinity of xmes

s .

The question remains to determine under which conditions on N and xhyp
s the approximation is

1. obviously valid: that is to say to determine the domain of validity of the leading order (N → ∞)
key-formula Eq. (213). To answer this question, one should compute its next-to-leading order
(NLO) correction terms: Section A.4 is devoted to that.

2. non-obviously valid: that is to say to determine whether or not, even though the key-formula
does not apply, Eq. (236) provides nevertheless a means to compute the CL with an acceptable
accuracy: Section A.5 discusses that.

75The rejection of xhyp
s values beyond the sensitivity reach is not a paradox: it uses the fact that large values

are unlikely to yield an indication of a clear signal, especially at low values of xs.
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A.4 Next-to-Leading Order Key-Formula

The next-to-leading order key-formula can be written as76

Φxs

nlo(x
mes
s ) = Φxs

lo (xmes
s ) e−axs

3
χ3

(1 + axs

0 χ) , (238)

axs

0 =
2B − C

2A

1√
NA

= −Σ̇ , (239)

axs

3 =
3B − C

6A

1√
NA

, (240)

where A(xs) is the integral defined in Eq. (214), and B(xs) and C(xs) are the two new integrals

B(xs) =

+∞
∫

−∞

(

Ṗ−P̈−

P−
+
Ṗ+P̈+

P+

)

dtmes , (241)

C(xs) =

+∞
∫

−∞

(

(Ṗ−)3

P 2
−

+
(Ṗ+)3

P 2
+

)

dtmes . (242)

The integral C tends to be small because, (i) the two contributions have opposite signs, and (ii) the
denominator is of order two: it follows that a3 ≃ a0/2. The right hand side of Eq. (239) links the next-
to-leading order correction terms a0 and a3 to the dependence on xs of Σ. When Σ depends significantly
on xs the key-formula breaks down: not only is the standard treatment of Section A.2.1 invalid (and
the Bayesian treatment mathematically unjustified), but the well-known formula Eq. (218) itself becomes
incorrect, even if one uses the correct Σ(xs).

The expression Eq. (238) is identical to Eq. (213) for small χ values. Although it extends the range
of validity to larger χ values, it cannot be trusted too far away from the origin, where higher order
corrections start to play a role. In particular, Φnlo becomes negative (hence meaningless) for χ > −a−1

0

(a0 is negative since it is equal to minus the derivative of Σ with respect to xs).

Since Φ is sizeable only insofar χ ∼ O(1) the next-to-leading order terms, when relevant, are of the

form N− 1
2 × [ratio of integrals]. Hence they are negligible for large enough N and for a small enough

ratio of integrals.

The most likely value for xmes
s is no longer xs, and a non-zero value of B leads to a O(1/N) bias in

the measurement. The expected value of xmes
s reads

〈xmes
s 〉 = xs −

(

B(xs)

A

Σ

2

)

Σ . (243)

The bias is negligible (in unit of Σ) if the event sample is large enough, i.e. if N ≫ B2/(4A3). To
next-to-leading order, the double-sided CL reads

CLnlo(x
hyp
s ) =

∫

<

Φ
xhyp

s

nlo (xmes
s

′)dxmes
s

′ , (244)

where the integral is performed over the xmes
s

′ domain where Φ
xhyp

s

nlo (xmes
s

′) < Φ
xhyp

s

nlo (xmes
s ).

76In the course of the computation, the a3 correction term appears in the exponential, as indicated. However
the formula is correct up to the next-to-leading order only, and the a3 term can be brought down to the level of
the a0 term without affecting this. Although it would guaranty the proper normalization of Φnlo to unity, this
simplification is not done below.
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A.5 Using the Likelihood Function

A.5.1 Average Likelihood Shape

To next-to-leading order, and in the vicinity of the true xs value, the average log-likelihood function takes
the form (cf. Section A.7)

Lnlo(x
hyp
s ) ≃ L(xs) − α1χ+ α2χ

2 − α3χ
3 , (245)

with

α1 = 0 , α2 = −1

2
, α3 = −3B − 2C

6A

1√
NA

≃ −a3 ≃ 1

2
Σ̇ , (246)

and

χ ≡ xs − xhyp
s

Σ(xs)
. (247)

Although the above expression reaches its maximum at χ = 0, this does not contradict the fact that
xmes

s is a biased estimator of xs: because of the statistical fluctuations, the first term of the expansion is
non-zero for a given experiment (cf. Section A.7).

A.5.2 Amplitude Formalism

It was shown in Ref. [123] that the log-likelihood function L(xs) can be retrieved from the functions
A(xs) and σ[A](xs) defined as the measurement and the uncertainty on the measurement of an ad hoc
amplitude coefficient A placed in front of the cosine modulation term

P−(tmes)[A] =

(

fs
1

2
(1 −DA cos(xst)) + (1 − fs)w

)

e−t ⊗Gt , (248)

P+(tmes)[A] =

(

fs
1

2
(1 +DA cos(xst)) + (1 − fs)(1 − w)

)

e−t ⊗Gt . (249)

Restated in the framework of the present work, the advantage of this indirect probe of the oscillation
phenomenon stems from the fact that the dependence on A is linear and hence the correction terms of the
NLO key-formula vanish: the measurement of A is purely Gaussian, and it follows that merging different
experimental measurements is straightforward.

The result established in Ref. [123] takes the form

Lx
s (xhyp

s ) =
A(xhyp

s ) − 1
2

σ2[A]
+ Lx

s (∞) . (250)

It can be shown to be an excellent, though approximate, relationship by introducing the objects

E− =

(

fs
1

2
+ (1 − fs)w

)

e−t ⊗Gt , (251)

E+ =

(

fs
1

2
+ (1 − fs)(1 − w)

)

e−t ⊗Gt , (252)

K−(xs) = − 1

E−

(

fs
1

2
D cos(xst)e

−t ⊗Gt

)

, (253)

K+(xs) =
1

E+

(

fs
1

2
D cos(xst)e

−t ⊗Gt

)

, (254)

Eq. (248) takes the form

P±(xhyp
s ) = E±(1 + AK±(xhyp

s )) . (255)

The two K±(xhyp
s ) objects bear the properties:

• | K± |≤ 1, in principle.
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• | K± |≪ 1, in practice. This is because the D coefficient is usually smaller than one, hence
higher powers of K are suppressed, but also because when considering large enough xs values the
convolution with the finite detector response Gt washes out the cosine modulation

lim
xhyp

s →∞
K±(xhyp

s ) = 0 . (256)

Hence the log-likelihood of Eq. (211) (with or without A) can be expanded to the second order in K±

(omitting here the ± index distinguishing mixed and unmixed events)

L(xhyp
s : A) =

∑

ln(P (xhyp
s )) (257)

=
∑

ln(E) +
∑

ln(1 + AK(xhyp
s )) (258)

≃ Lx
s (∞) +

∑

(AK(xhyp
s ) − 1

2
A2K2(xhyp

s )) . (259)

The log-likelihood we are interested in is

L(xhyp
s ) = L(xhyp

s : A ≡ 1) ≃ Lx
s (∞) +

∑

(K(xhyp
s ) − 1

2
K2(xhyp

s )) . (260)

The derivative of the log-likelihood used to compute A(xhyp
s ) is

∂L(xhyp
s : A)

∂A =
∑

(K(xhyp
s ) −AK2(xhyp

s )) , (261)

from which one obtains

A(xhyp
s ) =

∑K(xhyp
s )

∑K2(xhyp
s )

± 1
√

∑

K2(xhyp
s )

, (262)

where the expression for the uncertainty neglects higher order Kn≥3 terms. Using Eq. (262) in Eq. (260)
one recovers Eq. (250). Equation (262) yields a slightly biased estimator of A because the higher order
terms do not exactly cancel out, even on the average77. This bias is negligible for all values of xhyp

s but
for xhyp

s ≃ xs where, although it remains small, it becomes noticeable.

A.6 Discussion on Numerical Examples

For illustration, we use here numbers that correspond to the present level of sensitivity of the world
average

N = 1200 , fs = 0.35 , w is set to zero , a = 0.0046 , b = 0.0090 .

The numerical values of the coefficients introduced previously are given in Table (16) for four ∆ms values.

Figure 61 shows the next-to-leading-order Φnlo PDF Eq. (238) of the ∆ms measurement for a true
value of ∆ms = 10 ps−1 and the leading order PDF Φlo Eq. (213). The two PDFs being barely distin-
guishable, the leading order approximation is excellent.

Figure 62 gives the next-to-leading-order Φ17
nlo PDF of the ∆ms measurement (solid line) and leading

order PDF Φ17
lo (dotted line), for a true value ∆ms = 17 ps−1. The two PDFs differ significantly, but

the leading order approximation remains acceptable in the core of the distribution. However it would
underestimate by a factor about two the probability to obtain a measurement above ∆ms = 20 ps−1. The
right hand plot in Fig. 62 shows the next-to-leading-order Φ17

nlo PDF (solid line) together with Φ20
nlo PDF

(dotted line) and the leading order PDF Φ20
lo for ∆ms = 20 ps−1 (dashed-dotted line). The integral of

Φ17
nlo above ∆ms = 20 ps−1 is not a good approximation of the CL of a true value ∆ms = 20 ps−1 leading

to a measurement ∆ms = 17 ps−1, the latter being defined as the integral of Φ20
0 below ∆ms = 17 ps−1.

However, in the present case, one cannot fully rely on the approximation Φ20
0 ≃ Φ20

nlo owing to the large
variation between Φ20

lo and Φ20
nlo.

Figure 63 shows the solutions amplitude A given in Eq. (262) for different true values of ∆ms.

77They would cancel if the background were affecting in the same way P− and P+.
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Figure 61: Left: next-to-leading-order Φ10
nlo PDF of the ∆ms measurement (solid line) and leading order

PDF Φ10
lo (dotted line), for a true value ∆ms = 10 ps−1. The two PDFs are barely distinguishable. The

leading order approximation is excellent. Right: next-to-leading-order Φ10
nlo PDF (solid line) and Φ11

nlo PDF,

for ∆ms = 11 ps−1 (dotted line). The integral of Φ10
nlo above ∆ms = 11 ps−1 is a good approximation of

the CL of a true value ∆ms = 11 ps−1 leading to a measurement ∆ms ≤ 10 ps−1, the latter being defined
as the integral of Φ11

0 below ∆ms = 10 ps−1.

Figure 62: Left: next-to-leading-order Φ17
nlo PDF of the ∆ms measurement (solid line) and leading order

PDF Φ17
lo (dotted line), for a true value ∆ms = 17 ps−1. The two PDFs differ significantly, but the leading

order approximation remains acceptable in the core of the distribution. However it would underestimate
by a factor two about the probability to obtain a measurement above ∆ms = 20 ps−1. Right: next-to-

leading-order Φ17
nlo PDF (solid line) together with Φ20

nlo PDF (dotted line) and the leading order PDF
Φ20

lo for ∆ms = 20 ps−1 (dashed-dotted line). The integral of Φ17
nlo above ∆ms = 20 ps−1 is not a good

approximation of the CL of a true value ∆ms = 20 ps−1 leading to a measurement ∆ms = 17 ps−1, the
latter being defined as the integral of Φ20

0 below ∆ms = 17 ps−1. However, in the present case, one cannot
fully rely on the approximation Φ20

0 ≃ Φ20
nlo owing to the large variation between Φ20

lo and Φ20
nlo.
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∆ms (ps−1) 10 17 20 25

Σ (ps−1) 0.33 1.38 2.67 7.36

A 0.77 10−2 0.44 10−3 0.11 10−3 0.15 10−4

B/A -0.18 -0.19 -0.21 -0.17
C/A 0.03 -0.002 -0.007 0.005
D/A 1.40 0.53 0.65 1.31
E/A 0.08 0.005 0.001 0.00
F/A 0.05 0.007 0.002 -0.001
G/A -1.27 -0.51 -0.30 -0.38

a0 -0.06 -0.26 -0.55 -1.26
a3 -0.03 -0.13 -0.28 -0.62

α3 0.03 0.13 0.27 0.63
α4 0.004 0.04 -0.22 -5.48

∆ms[max] 15.1 22.2 24.9 30.8
Rtail 3. 10−6 0.12 0.37 0.75

Table 16: Numerical values entering into the NLO PDF Φnlo and NNLO average likelihood, for four
values of ∆ms. The definition of the four integrals D, E, F and G are given in Section A.7. The value
above which Φnlo becomes negative is ∆ms[max] = ∆ms − a−1

0 Σ ≃ ∆ms − A/B ≃ ∆ms + 5( ps−1). The
ratio Rtail = ϕL(∞)/ϕL(∆ms) provides a measure of how far from its Gaussian limit the likelihood is.

A.7 Next-to-Leading Order Likelihood

We consider a likelihood

L =

N
∑

i=1

lnP , (263)

where the PDF P depends on the parameter xs. We denote

• xs the true value of the parameter,

• P0 the PDF when evaluated with xs.

In the vicinity of xs, the Taylor expansion to the fourth order is

L(xhyp
s ) = α0 − α1χ+ α2χ

2 − α3χ
3 + α4χ

4 , (264)

with

α0 =
∑

ln(P0) , α1 =
∑

[

Ṗ0

P0

]

Σ , α2 =
1

2

∑

[

P̈0

P0
− Ṗ 2

0

P 2
0

]

Σ2 ,

α3 =
1

6

∑

[

˙̈P 0

P0
− 3

Ṗ0P̈0

P 2
0

+ 2
Ṗ 3

0

P 3
0

]

Σ3 , α4 =
1

24

∑

[

¨̈P 0

P0
− 3

P̈ 2
0

P 2
0

− 4
Ṗ0

˙̈P 0

P 2
0

+ 12
Ṗ 2

0 P̈0

P 3
0

− 6
Ṗ 4

0

P 4
0

]

Σ4 .

For a given experiment, the values of the ai coefficients are correlated random numbers. On the average,
their values are obtained by replacing the sum by N

∫

P0. Using Eq. (210), one gets

α1 = 0 , α2 = −1

2
, α3 =

1

6

−3B + 2C√
NA

3
2

, α4 =
1

24

−3D − 6E + 12F − 4G

N
3
2A2

,

where the last term involves the new set of integrals

D(xs) =

+∞
∫

−∞

(

P̈ 2
−

P−
+
P̈ 2

+

P+

)

dtmes , E(xs) =

+∞
∫

−∞

(

Ṗ 4
−

P 3
−

+
Ṗ 4

+

P 3
+

)

dtmes ,



156 Appendix

Figure 63: Amplitude A solutions given in Eq. (262) (where orders up to K4(xhyp
s ) are considered in the

expansion used here) for different true values of ∆ms.

F (xs) =

+∞
∫

−∞

(

Ṗ 2
−P̈−

P 2
−

+
Ṗ 2

+P̈+

P 2
+

)

dtmes , G(xs) =

+∞
∫

−∞

(

Ṗ−
˙̈P−

P−
+
Ṗ+

˙̈P+

P+

)

dtmes .

In effect, the maximum of Lnlo is reached for

0 = −α1 + 2α2χ− 3α3χ
2 (265)

xmes
s ≃ xs −

(

α1

2α2
− 3α2

1α3

8α3
2

)

. (266)

B Combining Inconsistent Measurements

When several measurements xexp(i) ± σxexp
(i), with i = 1, .., N , of the same physical observable X are

available, the question arises on how to combine them into a single measurement 〈xexp〉. Combining
the measurements can serve two purposes: merely, it can be to provide a summary carrying the overall
information within a conveniently easily-quoted global measurement, or, more ambitiously, it can be to
provide a means to incorporate the set of measurements into a more involved analysis, like a global CKM
fit, where the physical observable X enters as one input among others.

We note that the averaging method introduced below is not yet applied in the present CKM analysis.
We reserve its use for forthcoming occasions.

The weighted mean (WM) method defined by

〈xexp〉 = σ2
〈xexp〉

N
∑

i=1

σ−2
xexp

(i)xexp(i) , (267)

σ−2
〈xexp〉

=

N
∑

i=1

σ−2
xexp

(i) , (268)
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is the optimal scheme to merge the individual measurements. However it assumes that the measurements
are consistent the ones with the others. It leads to an easily-quoted global measurement X = 〈xexp〉 ±
σ〈xexp〉. Furthermore, because the underlying hypothesis is clear (the set of measurements is taken to be
consistent) the WM method is statistically well-defined and its result is easy to use: the true value of the
physical observable being assumed to be x, the probability for this value to yield for the χ2

χ2(x) =

( 〈xexp〉 − x

σ〈xexp〉

)2

, (269)

a value larger than the observed one, is given by:

P(x) = Prob(χ2, 1) . (270)

A measure of the consistency of the set of measurements is provided by the χ2

χ2(〈xexp〉) =

N
∑

i=1

(

xexp(i) − 〈xexp〉
σxexp

(i)

)2

, (271)

and, more conveniently, by its associated confidence level

P(〈xexp〉) = Prob(χ2(〈xexp〉), N − 1) . (272)

If the value of χ2(〈xexp〉) is too large, one may suspect that some of the measurements in the set are
flawed. If one insists on a democratic treatment of the xexp(i), i.e., if one refuses to remove the suspected
ones, the PDG-recommended scheme [12], termed the rescaled weighted mean below (RWM), consists of
rescaling the error σ〈xexp〉 of Eq. (268) by the scale factor

S =
√

χ2(〈xexp〉)/(N − 1) , (273)

if the latter exceeds unity

Σ〈xexp〉 = σ〈xexp〉 S . (274)

The RWM method is simple and convenient, however, it suffers from two important drawbacks:

1. Psychostatistics

On the average, the quoted error is necessarily enlarged with respect to the one of the un-rescaled
weighted mean (WM), even for consistent data sets. Tampering with Eq. (268) implies a depar-
ture from well-defined statistics to enter the realm of ill-defined (psycho)statistics, where working
hypotheses are no longer fully explicited.

2. Schizostatistics

The average 〈xexp〉 may lie outside the range of values covered by the measurements. This is
because the democratic treatment does not allow to detect measurements which obviously stick
out from the set. Such a measurement, termed an outlier in the following, pulls the average toward
its value, albeit it may remain inconsistent with the resulting weighted mean, even though the
error of the latter is rescaled.

In this paper we advocate the use of a method, termed the Combiner, which is an extension to the
weighted mean method78. Although the Combiner does not provide an escape from the first drawback,
it is shown below to be more satisfactory with respect to the second drawback. The discussion of the
above drawbacks is further expanded below.

78Another approach for the combination of inconsistent measurements has been developed in Ref. [302].
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B.1 Psychostatistics

There is no way out of the first drawback: this is because accepting the possibility of having in the
set of measurements some that are biased in an unspecified way implies a loss of information, which,
furthermore, is ill-defined. When the standard deviation is rescaled following the RWM scheme, the
(re)definition of Eq. (269) is to be taken, at best, as a test statistics. It is no longer a pure χ2 term and
Eq. (270) does not hold. Moreover, the use of this test statistics is ill-defined. Its distribution cannot be
determined, since the underlying hypothesis is now unspecified (the set of measurements is taken to be
inconsistent, but this is not a precisely defined hypothesis).

However the aim of the RWM method being to be conservative, the price to pay is to accept the
use of ill-defined statistics and to deal with χ2(x) as if it were a pure χ2. Stated differently, applying
Eq. (270) yields over-conservative confidence levels, which, after all, is precisely what one is looking for.

B.2 Schizostatistics

The second drawback is worth being spelled out explicitly. If one is dealing with two measurements which
are sufficiently apart for the rescaling of Eq.(274) to be enforced, namely, if

∆x2
exp ≡ (xexp(2) − xexp(1))2 > σ2

xexp
(1) + σ2

xexp
(2) , (275)

leading to a rescaled uncertainty (cf. Eq. (274))

Σ〈xexp〉 =
σxexp

(1)σxexp
(2)|∆xexp|

σ2
xexp

(1) + σ2
xexp

(2)
, (276)

then the RWM method is prone to contradict itself.

On the one hand, using Σ〈xexp〉 in place of σ〈xexp〉 in Eq.(269), yields

χ2(x = xexp(1)) =

(

σxexp
(1)

σxexp
(2)

)2

, (277)

χ2(x = xexp(2)) =

(

σxexp
(2)

σxexp
(1)

)2

, (278)

independently on how far apart the two measurements are, provided Eq. (275) is fullfilled. Hence, if
the two measurements have widely different uncertainties, the measurement with the largest uncertainty
(e.g., the second one: σxexp

(2) ≫ σxexp
(1)) is viewed as corresponding to a true value of the physical

observable x = xexp(2) which is utterly ruled out by the data (χ2(x = xexp(2)) ≫ 1), even though the
weighted mean error is rescaled.

On the other hand, the weighted mean is pulled away from both measurements in proportion of
∆xexp. As a result, from the view point of both measurements i = 1, 2, the hypothesis that the true
value of the physical observable is x = 〈xexp〉 leads to

χ2(x = 〈xexp〉)(i) =

(

xexp(i) − 〈xexp〉
σxexp

(i)

)2

= ∆x2
exp

σxexp

2(i)

(σxexp
2(1) + σxexp

2(2))2
, (279)

and hence is liable to be ruled out as well, if ∆xexp is large enough. In particular, if σxexp
(2) ≫ σxexp

(1)

χ2(x = 〈xexp〉)(1) ≃ S2

(

σxexp
(1)

σxexp
(2)

)2

≪ 1 , (280)

χ2(x = 〈xexp〉)(2) ≃ S2 . (281)

Therefore, if the second measurement has a much larger uncertainty than the first measurement, the
conjunction of Eqs. (278-280) implies that when the rescaling is significant, the RWM result and the
second measurement are mutually incompatible: this contradicts the use of the second measurement to
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define the weighted mean, especially considering its impact on Σ〈xexp〉 as displayed by Eq. (276).

For twin measurements with identical σxexp
, the RWM method is not self-contradictory: whereas

Eq. (279) indicates that from the view point of both measurements the RWM value may be unacceptable,
Eqs. (277-278) guarantee that the rescaled uncertainty yields an acceptable χ2 for both.

If only two measurements enter into play, not much can be done to circumvent this second drawback,
since there is no objective way to identify the flawed one. However, if more than two measurements are
available, one may rely on the consistency of a subset of them to identify the possible outliers.

B.3 The Combiner

The Combiner method is explicitly build as an extension to the weighted mean: by construction, it tends
to reproduce Eqs.(267-268) in the case of a consistent set of measurements. The (psycho)statistical point
of view which is taken here is that some of the measurements to be averaged might be incorrect: if such
measurements occur, they should be removed from the set.

B.3.1 Principle

The removal of incorrect measurements relies on the clustering of the other measurements around a com-
mon mean. Rather than removing abruptly a measurement if it meets some criteria, the Combiner does
not cut but considers all possible hypotheses about the correctness of the measurements. A configuration
being defined as a subset of measurements that are assumed to be consistent the ones with others, the
Combiner weighs all possible configurations to build an overall likelihood. To reproduce the WM result,
the Combiner favors the configurations involving the largest number of measurements, provided they
have good probabilities.

B.3.2 Notations

We denote:

• c, an ordered list of N bits. It is referred to as a configuration, indicating which measurements are
considered. For example, for N = 3, the configuration c ≡ 101 means that the two measurements
i = 1 and i = 3 are to be merged, while disregarding the measurement i = 2. The void configuration
being of no interest, the total number of configurations considered amounts to 2N − 1.

• nc, the number of bits set to one. It is referred to as the multiplicity of the configuration.

• call = 11 . . . 1, the configuration where all measurements are considered (ncall
= N).

• χ2
c , the χ2 obtained from the weighted mean (cf., Eqs. (267-271)) of the nc measurements to be

considered in the configuration c.

• Pc = Prob(χ2
c , nc − 1), the corresponding configuration probability (cf., Eq. (271)).

• Pc = 1 − Pc

• 〈xexp〉(c) and σ〈xexp〉(c), the results of the weighted mean for the configuration c.

• Gc ≡ Gc(x), the Gaussian likelihood (to be interpreted as a PDF when used in a Bayesian approach)
with mean value 〈xexp〉(c) and standard deviation σ〈xexp〉(c).

• wc, a weight characterizing the configuration c. The sum of these weights over the 2N − 1 config-
urations is normalized to unity, i.e.,

∑

c wc = 1.

• c′ > c denotes two configurations such that all the bits set at one in c′ are also set at one in c,
and there is at least one bit set at one in c′ which is not set at one in c (e.g., 1111 > 1101, but
1101 6> 1011). The configuration c′, embedding c, is said to be larger than c.

• Products of probabilities over void configurations are set to one, e.g.,
∏c′>c

c′ Pc′ ≡ 1, if no c′ exist
for which c′ > c holds (i.e., c is the largest configuration: c = 11 . . .1).
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B.3.3 Definition

With these notations, the WM method consists of using only the configuration call. In a likelihood analysis
relying on those measurements, this treatment is equivalent to adding to the overall log-likelihood the
term

χ2(x) = −2 lnG(x) , (282)

where the global likelihood G is the fully combined Gaussian G = Gcall
. The RWM method consists

of using the same configuration, but, if S > 1, it modifies Gcall
by rescaling its standard deviation. As

pointed-out in the Introduction (cf. Section B.1) even though in that case −2 lnGcall
defines a pseudo-χ2,

it should be used as a pure χ2.

Instead of using a single Gaussian, the Combiner uses for the global likelihood a compound function:

G(x) =
∑

c

wcGc(x) , (283)

which enters into the computation of the pseudo-χ2 of Eq. (282) here also to-be-used as a pure χ2. What
remains to be done is to define appropriately the weights wc. Obviously there is an infinite number of
choices. Since the goal is to protect the analysis from biased measurements and over-optimistic σ〈xexp〉

values, which is admittedly a vague goal, one must rely on educated guesswork to pick-up a particular
definition of the weights.

The C-Combiner

For the C-Combiner, the weights are defined as

w(C)
c = a Pc

c′>c
∏

c′

Pc′ , (284)

where the constant a ensures the proper normalization of the weights. The first term is a measure of
the validity of the combination, while the second term suppresses it, if any configuration larger than
c receives a high probability. If a configuration c is such that all larger configurations are unlikely, it
does not get suppressed by the above expression. For example, if an outlier measurement is utterly
incompatible with all the others, it is kept by the C-Combiner with a weight equal to a. It is termed the
Cool-Combiner because of that. However, if the number of consistent measurements grows, the outlier
weight, a, decreases accordingly.

The T-Combiner

For the T-Combiner, the weights are defined as

wc =
Pc

∑nc=nc′

c′ Pc′

(

1 −
nc′=nc
∏

c′

Pc′

)

nc′>nc
∏

c′

Pc′ . (285)

The first term is a measure of the relative validity of the configuration c, with respect to configurations
of the same multiplicity nc. The second term weighs the validity of the configurations of multiplicity nc,
taken as a whole. The third term suppresses configurations of multiplicity nc if any higher multiplicity
configuration receives a large probability. Therefore, whether or not a configuration c′ is larger than c,
if nc′ > nc, it is sufficient for c′ to receive a large probability to suppress c. For example, if an outlier
measurement is utterly incompatible with all the others, it is suppressed by the Combiner, if some of the
others are mutually compatible. It is termed the Tough-Combiner because of that. For the configuration
c = call, the third term receives no contribution and is defined to be equal to one. The above expression
ensures the normalization of the weights to unity.
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Figure 64: Likelihoods G for the T-Combiner (solid), the C-Combiner (dashed), and for the
RWM method (dotted). The vertical lines indicate the locations of the two individual measure-
ments which develop a mutual disagreement rising from the upper left figure to the lower right
figure. The dotted line corresponds to the likelihood of the C-Combiner.

B.4 Illustrations

B.4.1 Twin Measurements

To illustrate how the Combiner works, we first consider the evolution of the likelihood G as a function
of the discrepancy between twin measurements xexp(1) and xexp(2), with σxexp

(1) = σxexp
(2) = σ0 = 1.

Figure 64 shows the combined likelihood for the two Combiner approaches and for the RWM method.
The measurements, indicated by the vertical lines, develop a mutual disagreement which increases from
the upper left figure to the lower right figure. One observes that the Combiner likelihoods become broader
with increasing discrepancy and eventually splits up into two Gaussian-like likelihoods, where the T- and
C-Combiner behave similarly. In the limit of extreme incompatibility, the two curves become genuine
Gaussians with central values xexp(1) and xexp(2), respectively, and width σ0. On the contrary, the RWM
Gaussian stays on the central value while the error increases to always keep the two measurements within
the (so-called) 68% probability limit. The unsatisfactory behavior of the RWM method becomes obvious
at large inconsistencies. One observes on the four lower curves in Fig. 64 that, whereas the Combiner
treats the center value x = 0 as being unlikely — it is favored by the weighted mean, although there exist
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Figure 65: The left plot shows the toy Monte Carlo distribution of the mean value 〈x[C]〉 as
provided by the T-Combiner (shaded histogram), for a set of five consistent measurements which
are Gaussian distributed around 〈xexp〉 = 5, each with a standard deviation σ(i) = 1. A Gaussian
fit to the distribution results in σ = 0.47. Also shown is the weighted mean distribution (solid
line) characterized by the standard deviation σWM :5 = 5−1/2 ≃ 0.45. The right hand plot shows
the distribution of the RMS, σ[C], of the T-Combiner (shaded histogram) compared to the RMS,
σ[RWM], of the rescaled weighted mean.

no supporting measurement, while the rescaled uncertainty gives rise to unduly broad tails which do not
show up when using the Combiner.

This first example already exhibits advantages of using the Combiner. However it does not allow to
demonstrate fully the superiority of the method because it uses twin measurements. As discussed previ-
ously (cf. Section B.2), the behavior of the RWM method is even less satisfactory if the two measurements
have very different σxexp

. In addition, since only two measurements are available, the Combiner cannot
use the clustering of correct measurements to suppress the flawed one(s). As shown in the next section,
the behavior of the Combiner is markedly different for a set of more than two measurements among which
a subset is consistent.

B.4.2 Information Loss

It was mentioned before that enlarged errors (broader likelihoods) are an unavoidable side-effect when
taking into consideration the possibility of biased measurements. This entails a loss of information when
the set is consistent. To quantify this loss of information, we perform a toy Monte Carlo simulation of a
set of N = 5 measurements, each distributed following the same Gaussian, 〈xexp〉(1 − 5) = 〈x0〉 = 5 and
σxexp

(1 − 5) = σ0 = 1. We use the RWM method and the T-Combiner to obtain the distributions of the
mean value and the distributions of the root mean square (RMS) of the likelihood G.

The results are given in Fig. 65. The left plot shows the distribution of the mean value 〈x[C]〉
as provided by the T-Combiner. The distribution of 〈x[C]〉 is very close to be a Gaussian of width
σ = 0.47. This is to be compared with the (optimal) WM Gaussian distribution of width σWM :5 =
5−1/2 ≃ 0.45. This width is also obtained for the rescaled weighted mean, as the center value of the
likelihood is not affected by the enlargement of the width. Although statistical outliers are suppressed in
the Combiner, giving rise to a narrower effective width, the increase of the width due to the statistical
occurrence of seeming inconsistencies superseeds the narrowing suppression effect. The right figure shows
the distribution of the RMS, σ[C], of the T-Combiner, to be compared to the distribution of the RMS,
σ[RWM], of the rescaled weighted mean. The increase of the errors is stronger for the Combiner.
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Figure 66: Likelihoods G obtained by the four approaches: T-Combiner, C-Combiner, weighted
mean and the rescaled weighted mean. The vertical lines indicate the five individual measure-
ments of which one is inconsistent.

B.4.3 Inconsistent Set

The second example uses the following set of N = 5 measurements: xexp(1 − 5) = 3.7, 4.2, 5.0, 5.5, 0.0,
all with identical errors σxexp

(1 − 5) = 1. While the first four data points are mutually compatible with
a Gaussian distribution (χ2/Ndof = 1.9/3), the last measurement is an outlier leading to a large overall
χ2/Ndof = 18.9/4, translated into a scale factor of S = 2.2. The C- and the T-Combiner yield for the
likelihood G (quoting only the leading terms):

c 00001 11110 01110 10110 11010 11100
C-Combiner:

w
(C)
c 0.358 0.213 0.102 0.097 0.064 0.063

c 11110 01110 10110 11010 11100 -
T-Combiner:

w
(T)
c 0.580 0.125 0.118 0.079 0.077 -

Quoted are only the configurations with wc > 0.05. One observes that configurations where the incom-

patible measurements are mixed, i.e., bit five and another one are set to one, have negligible weights for

both the C and the T-Combiner. The C-Combiner allows a sizable single weight for outlier (measure-

ments five) which, while it is suppressed by the T-Combiner.

The Combiner likelihoods are shown in Fig. 66 together with the WM and the RWM likelihoods.

Whereas one may be satisfied by either the C-Combiner or the T-Combiner, one observes that the WM

and the RWM methods contradict themselves: the outlier pulls the mean value significantly but, even

in the RWM method, the outlier and the mean value remain incompatible. Furthermore, in the example

considered here, the measurement the farthest apart from the outlier, although correct, is also incompat-

ible with the mean value.

To study the recovery capability of the Combiner we plot in Fig. 67 the distribution of the mean value

〈x[C]〉 as provided by the T-Combiner (on the vertical axis) for the set of inconsistent measurements, four

of which are Gaussian distributed around 〈xexp〉 = 5, each with a standard deviation σ(i) = 1, while the

fifth measurement is uniformly distributed between x5 = −5 and x5 = 15 (on the horizontal axis). The

latter is effectively removed from the measurement set by the T-Combiner when it departs from 〈xexp〉
by about 1.5σ(i). We show that, for the T-Combiner, the distribution of the mean value and the RMS
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Figure 67: Distribution of the mean value 〈x[C]〉 as provided by the T-Combiner (on the vertical
axis) for a set of inconsistent measurements, four of which are Gaussian distributed around
〈xexp〉 = 5, each with a standard deviation σ(i) = 1, while the fifth measurement is uniformly
distributed between x5 = −5 and x5 = 15 (on the horizontal axis). The latter is effectively
removed from the set by the T-Combinerwhen it departs from 〈xexp〉 by about 1.5σ(i).
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Figure 68: The left plot shows the toy Monte Carlo distribution of the mean value 〈x[C]〉 as
provided by the T-Combiner (shaded histogram), for a set of inconsistent measurements four
of which are Gaussian distributed around 〈xexp〉 = 5, each with a standard deviation σ(i) = 1,
while the fifth measurement is uniformly distributed between x5 = −5 and x5 = 15. A Gaussian
fit to the distribution results in σ = 0.56, which is to be compared with the optimal WM result
σWM :4 = 0.5, obtained when the fifth measurement is removed from the set. Also shown is the
weighted mean distribution (solid line). The right hand plot shows the distribution of the RMS,
σ[C], of the T-Combiner (shaded histogram) compared to the RMS, σ[RWM], of the rescaled
weighted mean.
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for the toy experiments in Fig. 68 is very close to be a Gaussian of width σ = 0.47 (left hand plot). This

is to be compared with the optimal WM Gaussian distribution of width σWM :4 = 0.5 (discarding the

inconsistent measurement). The rescaled weighted mean exhibits a significantly larger scattering than the

Combiner. The right figure shows the distribution of the RMS, σ[C], of the T-Combiner, to be compared

to the distribution of the RMS, σ[RWM], of the rescaled weighted mean. The increase of the errors (i.e.,

the loss of information) is stronger for the rescaled weighted mean.
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