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Abstract The decay B0
s → μ+μ− is a key probe for

the search of physics beyond the Standard Model. While

the current measurements of the corresponding branching

ratio agree with the Standard Model within the uncertain-

ties, significant New-Physics effects may still be hiding in

B0
s → μ+μ−. In order to reveal them, the observable A

μμ
�Ŵs

,

which is provided by the decay width difference �Ŵs of the

B0
s -meson system, plays a central role. We point out that

a measurement of a CP-violating observable Sμμ, which is

induced through interference between B0
s –B̄0

s mixing and

Bs → μ+μ− decay processes, is essential to obtain the full

picture, in particular to establish new scalar contributions

and CP-violating phases. We illustrate these findings with

future scenarios for the upgrade(s) of the LHC, exploiting

also relations which emerge within an effective field theory

description of the Standard Model, complemented with New

Physics entering significantly beyond the electroweak scale.

1 Introduction

The decay B0
s → μ+μ− is one of the most interesting pro-

cesses offered by Nature, allowing us to test the Standard

Model (SM) and probe New Physics (NP). In the SM, this

channel has no contributions at the tree level and shows a

helicity suppression [1]. Consequently, the SM branching

ratio is enormously suppressed, and only about three out

of one billion B0
s mesons decay into the μ+μ− final state.

Another key feature of B0
s → μ+μ− is related to the impact

of strong interactions. As gluons do not couple to the lep-

tonic final state, only the B0
s decay constant fBs enters the

theoretical description, which can be calculated by means of

lattice QCD [2].

As NP effects may enhance the branching ratio of B0
s →

μ+μ− significantly, experiments have searched for this chan-

a e-mail: robert.fleischer@nikhef.nl

nel for decades [3]. It has been a highlight of the results of

the Large Hadron Collider (LHC) that B0
s → μ+μ− could

eventually be observed by the CMS and LHCb collaborations

and is now experimentally well established [4], with a mea-

sured branching ratio in the ballpark of the SM prediction. In

addition to the branching ratio, B0
s → μ+μ− offers another

observable, A
μμ
�Ŵs

, which is accessible thanks to the sizeable

decay width difference�Ŵs of the mass eigenstates of the B0
s -

meson system [5]. This observable is theoretically clean and

plays an important role in the search for NP effects [6–8]. A

pioneering measurement of A
μμ
�Ŵs

has recently been reported

by the LHCb collaboration [9]. This analysis requires, in con-

trast to the measurement of the branching ratio, time infor-

mation for untagged Bs data samples.

If also tagging information is available, a CP-violating

observable Sμμ can be measured which arises from the inter-

ference between B0
s –B̄0

s mixing and decay processes. Should

it be possible to determine the helicity of the final-state

muons, yet another CP asymmetry Cμμ can be measured,

as discussed in detail in Refs. [5,6]. It is not independent

from A
μμ
�Ŵs

and Sμμ, as the observables satisfy the following

relation:

(

A
μμ
�Ŵs

)2
+
(

Sμμ

)2 +
(

Cμμ

)2 = 1 . (1)

In these observables, as in the case of A
μμ
�Ŵs

, the decay con-

stant fBs cancels. Consequently, they are theoretically clean.

Within the SM, the CP asymmetries vanish. However, in

the presence of physics beyond the SM, we may in gen-

eral encounter new sources of CP violation, generating non-

vanishing CP asymmetries and affecting also the observable

A
μμ
�Ŵs

.

In analyses of rare B(s) decays, it is usually – for simplicity

– assumed that CP-violating NP phases vanish. Within spe-

cific models, such assumptions can be made, where an impor-

tant example is given by scenarios with “Minimal Flavour

Violation” [10]. However, we would rather like to learn from
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experimental data whether new CP-violating phases enter the

dynamics of the decay B0
s → μ+μ−.

In this paper, we explore this question. Interestingly, we

find that Sμμ is an essential observable to reveal the nature

of possible NP effects. The sign of the CP asymmetry Cμμ

would allow us to resolve certain ambiguities. We shall illus-

trate these findings with various examples, showing in par-

ticular how we may establish new (pseudo)-scalar contribu-

tions to B0
s → μ+μ− and further resolve their structure and

dynamics. These considerations are completely general and

can also be applied to the rare B0
s → τ+τ− and B0

s → e+e−

decays [8].

The outline of this paper is as follows: in Sect. 2, we

discuss the theoretical description of B0
s → μ+μ− and

introduce the corresponding observables. In Sect. 3, we

explore then the situation with general CP-violating NP

contributions. Assuming relations between short-distance

coefficients, which are motivated by considerations within

effective field theory, we analyze the interplay between the

B0
s → μ+μ− observables in Sect. 4. In Sect. 5, we shall

address experimental aspects by discussing scenarios and

illustrating their physics reach by making assumptions about

the experimental precision. Finally, we summarize our key

results and give a brief outlook in Sect. 6.

2 Theoretical description and observables

2.1 Decay amplitude

The theoretical framework to describe the decay B̄0
s →

μ+μ− is given by effective quantum field theory, which

allows the calculation of a low-energy effective Hamiltonian

of the following general structure [1,5,7]:

Heff = −
GF√
2π

V ∗
ts Vtbα

[

C10 O10 + CS OS + CP OP

+C ′
10 O ′

10 + C ′
S O ′

S + C ′
P O ′

P

]

. (2)

Here GF is Fermi’s constant, V ∗
ts Vtb is a factor with elements

of the Cabibbo–Kobayashi–Maskawa (CKM) matrix, and α

denotes the QED fine structure constant. The Wilson coeffi-

cients C
(′)
10 , C

(′)
P and C

(′)
S describe heavy degrees of freedom,

which have been integrated out from appearing as explicit

fields, and are associated with the four-fermion operators

O10 = (s̄γμ PL b)(μ̄γ μγ5μ), O ′
10 = (s̄γμ PRb)(μ̄γ μγ5μ),

OS = mb(s̄ PRb)(μ̄μ), O ′
S = mb(s̄ PLb)(μ̄μ),

OP = mb(s̄ PRb)(μ̄γ5μ), O ′
P = mb(s̄ PLb)(μ̄γ5μ),

(3)

with mb denoting the b-quark mass, and

PL ≡
1

2
(1 − γ5) , PR ≡

1

2
(1 + γ5) . (4)

In general, the Wilson coefficients are different for b → s

and b → d transitions, and depend on the flavour of the

final-state leptons [8]. For simplicity, we do not give the cor-

responding labels explicitly in the following discussion. In

the SM, we have only to deal with the O10 operator, having

a real coefficient CSM
10 .

Introducing the combinations of Wilson coefficients

P ≡
C10 − C ′

10

CSM
10

+
M2

Bs

2mμ

(

mb

mb + ms

)

(

CP − C ′
P

CSM
10

)

≡ |P|eiϕP ,

(5)

S ≡

√

√

√

√1 −
4m2

μ

M2
Bs

M2
Bs

2mμ

(

mb

mb + ms

)

(

CS − C ′
S

CSM
10

)

≡ |S|eiϕS , (6)

where MBs , mμ, mb, ms are the corresponding particle

masses and ϕP , ϕS denote CP-violating phases, we obtain

the following expression for the decay amplitude [5]:

A(B̄0
s → μ+

λ μ−
λ ) ∝ V ∗

ts Vtb fBs MBs mμCSM
10 [ηλ P + S] .

(7)

Here λ = L, R describes the helicity of the final-state leptons

with ηL = +1 and ηR = −1.

In the SM, we have

P|SM = 1, S|SM = 0, (8)

and the relevant Wilson coefficient is given as [6]

CSM
10 = −ηY sin−2 θW Y0(xt ) = −4.134, (9)

where ηY describes QCD corrections, θW is the weak mix-

ing angle, Y (xt ) represents one of the Inami–Lim functions,

and xt ≡ m2
t /M2

W parametrizes the top-quark and W mass

dependence [11]. We would like to emphasize that, by con-

vention, CSM
10 does not have a complex phase. However, it

takes a negative value, such that

CSM
10 = −|CSM

10 |. (10)

In the following discussion, the CP-violating phases ϕP

and ϕS play a central role. While the latter is directly related

to the phase of the short-distance coefficient CS −C ′
S of new

scalar contributions, the former may get contributions both

from C10 − C ′
10 and from the coefficient CP − C ′

P , which

arises from new pseudo-scalar operators.

2.2 Branching ratio and effective lifetime

Due to B0
s –B̄0

s mixing, an initially, i.e. at time t = 0, present

B0
s meson evolves into a time-dependent linear combination

of B0
s and B̄0

s states. For the “untagged” rate
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〈Ŵ(Bs(t) → μ+
λ μ−

λ )〉
≡ Ŵ(B0

s (t) → μ+
λ μ−

λ ) + Ŵ(B̄0
s (t) → μ+

λ μ−
λ )

∝ e−t/τBs
[

cosh(ys t/τBs ) + A
λ
�Ŵs

sinh(ys t/τBs )
]

= Rλ
He−Ŵ

(s)
H t + Rλ

Le−Ŵ
(s)
L t , (11)

no “tagging” of the initially present Bs meson is needed. This

quantity depends only on two exponentials and involves the

parameter

ys ≡
�Ŵs

2Ŵs

= 0.0645 ± 0.0045, (12)

which characterizes the decay width difference of the Bs

mass eigenstates, with τBs ≡ 1/Ŵs denoting the Bs mean

lifetime [12,13]; for the experimental value, see Ref. [14].

The decay dynamics enters through the following observable

[5,6]:

A
λ
�Ŵs

=
Rλ

H − Rλ
L

Rλ
H + Rλ

L

=
|P|2 cos(2ϕP − φNP

s ) − |S|2 cos(2ϕS − φNP
s )

|P|2 + |S|2
≡ A

μμ
�Ŵs

, (13)

which is independent of the muon helicity, as reflected by the

definition of A
μμ
�Ŵs

. Within the SM, we have

A
μμ
�Ŵs

|SM = +1. (14)

The phase φNP
s originates from possible CP-violating NP

contributions to the B0
s –B̄0

s mixing phase

φs = −2βs + φNP
s , (15)

which is already strongly constrained by experimental data

for CP-violating effects in B0
s → J/ψφ and decays with

similar dynamics, yielding the following results [14–16]:

φs = −0.030 ± 0.033 = −(1.72 ± 1.89)◦ (16)

φNP
s = 0.007 ± 0.033 = (0.4 ± 1.9)◦, (17)

where we have used the SM value φSM
s = −2βs = −(2.12±

0.04)◦ in Eq. (17).

Since it is challenging to measure the muon helicity, we

consider the helicity-summed rates

Ŵ(B0
s (t) → μ+μ−) ≡

∑

λ=L,R

Ŵ(B0
s (t) → μ+

λ μ−
λ ) (18)

Ŵ(B̄0
s (t) → μ+μ−) ≡

∑

λ=L,R

Ŵ(B̄0
s (t) → μ+

λ μ−
λ ), (19)

and use them to define an untagged rate 〈Ŵ(Bs(t) → ℓ+ℓ−)〉
in analogy to Eq. (11). The branching ratio reported by exper-

iments actually corresponds to the following time-integrated

untagged rate [5,12]:

B(Bs → ℓ+ℓ−) ≡
1

2

∫ ∞

0

〈Ŵ(Bs(t) → ℓ+ℓ−)〉 dt. (20)

Combining the CMS result from 2013 [17] with the most

recent LHCb analysis [9] yields

B(Bs → μ+μ−)LHCb’17+CMS = (3.0 ± 0.5) × 10−9. (21)

This average was calculated by means of the Particle Data

Group (PDG) procedure [18]. For comparison, we give also

the constraint B(Bs → μ+μ−)ATLAS’16 = (0.9+1.1
−0.8)×10−9

reported by the ATLAS collaboration [19].

In the SM, we have the following expression [1]:

B(Bs → μ+μ−)SM =
τBs G4

F M4
W sin4 θW

8π5

∣

∣CSM
10 Vts V ∗

tb

∣

∣

2

(1 − ys)

× f 2
Bs

MBs m2
μ

√

√

√

√1 − 4
m2

μ

M2
Bs

, (22)

where special care has to be taken concerning the use of renor-

malization schemes to properly include next-to-leading-

order electroweak corrections (for details, see Ref. [1]).

Using current state-of-the-art input parameters yields the fol-

lowing result [8]:

B(Bs → μ+μ−)SM = (3.57 ± 0.16) × 10−9. (23)

In a very recent analysis [20], QED corrections from dynam-

ics below the renormalization scale μ = mb were calculated,

affecting the branching ratio by almost 1%.

In order to search for NP effects by means of the branching

ratio of B0
s → μ+μ−, the following ratio plays the key role

[5,6]:

R ≡
B(Bs → μ+μ−)

B(Bs → μ+μ−)SM

, (24)

taking by definition the SM value

R|SM = 1. (25)

Using the expressions given above yields

R =
[

1 + A
μμ
�Ŵs

ys

1 + ys

]

(|P|2 + |S|2) = ϒP |P|2 + ϒS|S|2

(26)

with

ϒP ≡
[

1 + ys cos(2ϕP − φNP
s )

1 + ys

]

,

ϒS ≡
[

1 − ys cos(2ϕS − φNP
s )

1 + ys

]

. (27)
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The numerical results in Eqs. (21) and (23) give

R
∣

∣

LHCb’17+CMS
= 0.84 ± 0.16. (28)

The effective lifetime of the decay B0
s → μ+μ−, which

is defined through

τ s
μμ ≡

∫∞
0 t 〈Ŵ(Bs(t) → μ+μ−)〉 dt
∫∞

0 〈Ŵ(Bs(t) → μ+μ−)〉 dt
, (29)

contains the same physics information as the observable

A
μμ
�Ŵs

[5]:

A
μμ
�Ŵs

=
1

ys

[

(1 − y2
s )τ s

μμ − (1 + y2
s )τBs

2τBs − (1 − y2
s )τ s

μμ

]

. (30)

A pioneering measurement of the effective lifetime of B0
s →

μ+μ− was recently reported by the LHCb collaboration [9]:

τ s
μμ =

[

2.04 ± 0.44(stat) ± 0.05(syst)
]

ps. (31)

Using Eq. (30), this result can be converted into

A
μμ
�Ŵs

= 8.24 ± 10.72, (32)

where the error is fully dominated by the uncertainty of τ s
μμ.

In view of the general model-independent range

−1 ≤ A
μμ
�Ŵs

≤ +1, (33)

it will be crucial to improve the experimental precision for

this observable at the LHC upgrade(s) in order to use this

quantity for testing the flavour sector of the SM.

2.3 CP asymmetries

In contrast to the untagged Bs rate in Eq. (11), the tagged,

time-dependent rates involve oscillatory sin(�Ms t) and

cos(�Ms t) terms, where �Ms is the mass difference

between the heavy and light Bs mass eigenstates. We obtain

a CP-violating rate asymmetry of the following form [5,6]:

Ŵ(B0
s (t) → μ+

λ μ−
λ ) − Ŵ(B̄0

s (t) → μ+
λ μ−

λ )

Ŵ(B0
s (t) → μ+

λ μ−
λ ) + Ŵ(B̄0

s (t) → μ+
λ μ−

λ )

=
Cλ

μμ cos(�Ms t) + Sλ
μμ sin(�Ms t)

cosh(ys t/τBs ) + Aλ
�Ŵs

sinh(ys t/τBs )
, (34)

with the observables

C
λ
μμ = −ηλ

[

2|P S| cos(ϕP − ϕS)

|P|2 + |S|2

]

≡ −ηλCμμ
SM−→ 0,

(35)

S
λ
μμ =

|P|2 sin(2ϕP − φNP
s ) − |S|2 sin(2ϕS − φNP

s )

|P|2 + |S|2

≡ Sμμ
SM−→ 0, (36)

where ηL = +1 and ηR = −1 for left- and right-handed

muon helicity, respectively. It should be noted that the CP

asymmetry Sλ
μμ, which is caused by interference between

B0
s –B̄0

s mixing and Bs → μ+μ− decay processes, does actu-

ally not depend on the muon helicity, just as the observable

A
μμ
�Ŵs

≡ Aλ
�Ŵs

. Using the helicity-summed rates introduced

above yields

Ŵ(B0
s (t) → μ+μ−) − Ŵ(B̄0

s (t) → μ+μ−)

Ŵ(B0
s (t) → μ+μ−) + Ŵ(B̄0

s (t) → μ+μ−)

=
Sμμ sin(�Ms t)

cosh(ys t/τBs ) + A
μμ
�Ŵs

sinh(ys t/τBs )
, (37)

where the Cλ
μμ terms cancel because of the ηλ factor. It should

be noted that a non-vanishing Cμμ would be a smoking-gun

signal for a new scalar contribution S. CP-violating asym-

metries of this kind in Bs,d → ℓ+ℓ− decays were also con-

sidered for various NP scenarios in Refs. [21–23], neglecting

the effects of �Ŵs and the associated observable A
μμ
�Ŵs

. For

a more recent study, including the untagged observable, see

Ref. [6].

It should be stressed that the non-perturbative decay con-

stant fBs cancels in A
μμ
�Ŵs

as well as in Sμμ and Cμμ, thereby

making these observables theoretically clean probes for the

search of NP signals [5,6]. In the SM, a tiny residual uncer-

tainty arises from QED corrections, which lead to effects at

the 10−5 and 10−3 levels for A
μμ
�Ŵs

and the CP asymmetries

Sμμ, Cμμ, respectively [20].

In the following discussion, we will explore the interplay

of A
μμ
�Ŵs

and Sμμ with the observable R to search for NP

and reveal its nature, in particular whether it involves new

(pseudo)-scalar contributions. Experimental feasibility stud-

ies of measurements of the CP asymmetry in Eq. (37) have

not yet been performed to the best of our knowledge. How-

ever, we envision that an effort should be made to perform

such a measurement at the LHC upgrade(s). In view of the

relation in Eq. (1), a measurement of Cμμ would not pro-

vide independent information. As such an analysis would

require the reconstruction of the muon helicity, it is much

more challenging than the asymmetry in Eq. (37) involv-

ing the helicity-averaged rates. However, we will show that

already information on just the sign of Cμμ would be suffi-

cient to resolve certain ambiguities affecting the determina-

tion of P and S. We encourage experimentalists to explore

avenues to eventually measure the sign of the Cμμ observable.
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3 General CP-violating new physics

3.1 Theoretical description

Let us start the general discussion of the CP-violating coeffi-

cients P and S in Eqs. (5) and (6), respectively, with the ratio

R in Eq. (24). Using the expression in Eq. (26), we obtain

r ≡
[

1 + ys

1 + A
μμ
�Ŵs

ys

]

R = |P|2 + |S|2. (38)

If we had a precise measurement of A
μμ
�Ŵs

, we could straight-

forwardly convert R into r . In view of the large uncertainty

in Eq. (32), we use the general range in Eq. (33) to calculate

0.69 ≤ r ≤ 1.13, (39)

where we have also taken into account the 1σ uncertainty of

R, given in Eq. (28). This observable fixes a circular band

with radius
√

r in the |P|–|S| plane, which we show in Fig. 1.

Using the observable A
μμ
�Ŵs

, we can calculate a straight line

in this plane through

|S|
|P|

=

√

√

√

√

cos �P − A
μμ
�Ŵs

cos �S + A
μμ
�Ŵs

, (40)

where we have introduced the abbreviations

�P ≡ 2ϕP − φNP
s , �S ≡ 2ϕS − φNP

s . (41)

If we assume that the CP-violating phases ϕP and ϕS take

trivial values, i.e. 0◦ or 180◦, R allows us to fix a circle in

the |P|–|S| plane through Eq. (26), and the intersection with

the straight line following from

|S|
|P|

=

√

√

√

√

cos φNP
s − A

μμ
�Ŵs

cos φNP
s + A

μμ
�Ŵs

=

√

√

√

√

1 − A
μμ
�Ŵs

1 + A
μμ
�Ŵs

(42)

fixes |P| and |S|, as discussed in detail in Refs. [5–8]; note

that we use the result for φNP
s in Eq. (17). However, if we

allow for general CP-violating phases, any point on the cir-

cle with radius
√

r is allowed since we obtain |S| = 0 for

cos �P = A
μμ
�Ŵs

and |P| = 0 for cos �S = −A
μμ
�Ŵs

.

The measurement of a non-vanishing CP asymmetry Sμμ

would immediately establish the presence of non-trivial CP-

violating phases. This observable fixes another straight line

in the |P|–|S| plane:

|S|
|P|

=
√

sin �P − Sμμ

sin �S + Sμμ

. (43)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1 Allowed region in the |P|–|S| plane following from r , which

is obtained by varying A
μμ
�Ŵs

between −1 and +1 and taking the 1 σ

uncertainty of the current R measurement into account. The black star

indicates the SM values given in Eq. (8)

However, as the CP-violating phases are in general unknown,

the slope of this straight line is not determined, in analogy to

the constraint following from A
μμ
�Ŵs

.

We have three independent observables at our disposal, r

as well as A
μμ
�Ŵs

and Sμμ, which depend on the four unknown

parameters |P|, �P and |S|, �S . Using the general expres-

sions for A
μμ
�Ŵs

and Sμμ in Eqs. (13) and (36), respectively,

yields

A cos �P − B sin �P = C (44)

with

A ≡ Sμμ + sin �S (45)

B ≡ A
μμ
�Ŵs

+ cos �S (46)

C ≡ A
μμ
�Ŵs

sin �S − Sμμ cos �S . (47)

This equation allows us to determine �P as a function of �S

with the help of

sin �P = −
(

BC

A2 + B2

)

±

√

(

BC

A2 + B2

)2

+
(

A2 − C2

A2 + B2

)

(48)

=
−BC ± |A|

√
A2 + B2 − C2

A2 + B2
. (49)

The expression under the square root is actually factorizable,

thereby yielding

√

A2 + B2 − C2 =
∣

∣

∣
1 + A

μμ
�Ŵs

cos �S + Sμμ sin �S

∣

∣

∣
.

(50)
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Fig. 2 Flowchart to illustrate the general strategy to determine |P| and

|S| as functions of the the CP-violating phase ϕS from the B0
s → μ+μ−

observables

Using then the observables r and A
μμ
�Ŵs

, we may determine

|P| =

√

√

√

√

(

cos �S + A
μμ
�Ŵs

cos �S + cos �P

)

r ,

|S| =

√

√

√

√

(

cos �P − A
μμ
�Ŵs

cos �P + cos �S

)

r (51)

as functions of the CP-violating phase �S . Using instead of

A
μμ
�Ŵs

the CP asymmetry Sμμ yields

|P| =

√

(

sin �S + Sμμ

sin �S + sin �P

)

r ,

|S| =

√

(

sin �P − Sμμ

sin �P + sin �S

)

r . (52)

The expression in Eq. (49) leaves us with a twofold ambi-

guity for ϕP for every value of ϕS . Information on the sign

of Cμμ allows us to determine the correct branch and thus

obtain a single solution for ϕP as a function of ϕS . However,

both branches have the same dependence of |P| and |S| on

ϕS , so a single solution for |P| and |S| as a function of ϕS

can be obtained even when no information on the sign of

Cμμ is available. In the flowchart in Fig. 2, we illustrate this

general method for analyzing the observables provided by

the B0
s → μ+μ− decay, and we will provide an example of

this formalism in the next section.

3.2 Discussion and illustration

3.2.1 Vanishing mixing-induced CP violation

An interesting situation arises for Sμμ = 0. Although one

may naively conclude that the CP-violating phases take then

simply trivial values, this is actually not the case because of

the structure of the expression in Eq. (36). In fact, we obtain

the following extremal values on the circle with radius
√

r

in the |P|–|S| plane:

|P±| =

√

√

√

√

(

1 ∓ A
μμ
�Ŵs

2

)

r , |S±| =

√

√

√

√

(

1 ± A
μμ
�Ŵs

2

)

r ,

(53)

where the region between these points can be accessed by

varying �S . In the case of A
μμ
�Ŵs

= ±1, we have

|S| = 0, |P| =
√

r , sin �P = 0, (54)

yielding A
μμ
�Ŵs

= + cos �P = ±1, or

|P| = 0, |S| =
√

r , sin �S = 0, (55)

yielding A
μμ
�Ŵs

= − cos �S = ±1. For |Aμμ
�Ŵs

| < 1, we get

|S|
|P|

=

√

√

√

√

(1 − A
μμ
�Ŵs

)(1 + A
μμ
�Ŵs

)

1 + 2 A
μμ
�Ŵs

cos �S + (A
μμ
�Ŵs

)2
. (56)

A particularly interesting situation arises for A
μμ
�Ŵs

= 0, cor-

responding to the following point in the |P|–|S| plane:

|P| = |S| =
√

r

2
. (57)

3.2.2 Sizeable mixing-induced CP violation

Let us now turn to mixing-induced CP violation in B0
s →

μ+μ−, and discuss a scenario with a large value of Sμμ,

which requires significant CP-violating phases originating

from physics beyond the SM. In order to illustrate this situ-

ation and the formalism discussed in Sect. 3.1, we consider

an example which is characterized by

|S| = 0.30, ϕS = 20◦. (58)

Assuming furthermore

ϕP = 30◦, (59)

the central value of the observable R in Eq. (28) yields

|P| = 0.89. (60)

These values of |P| and |S| fall well within the currently

allowed region in the |P|–|S| plane shown in Fig. 1. We

obtain the following set of observables:

R = 0.84, A
μμ
�Ŵs

= 0.37, Sμμ = 0.71, Cμμ = 0.60,

(61)
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and assume that they were measured at a future experiment.

Let us now illustrate how we may obtain insights into NP

effects using these observables. The deviation of A
μμ
�Ŵs

from

the SM prediction +1 would indicate NP effects. Having the

measured A
μμ
�Ŵs

at hand, we may use Eq. (38) to convert R

into r , yielding

r = 0.87. (62)

Moreover, the precision of the measured B0
s → μ+μ−

branching ratio will then have significantly increased (see

Sect. 5 for a more detailed discussion), allowing us to reduce

the width of the circular band in Fig. 1. However, without

any information on Sμμ, we could not narrow down further

|S| and |P| in a model-independent way, i.e. we would still

be left with the whole circular region, and could in particular

not establish a non-vanishing scalar contribution S.

The measurement of the observable Sμμ different from

zero would signal new sources of CP violation. Using then

Eq. (49), we could determine ϕP as a function of ϕS , as

Fig. 3 Correlation between ϕP and ϕS for A
μμ
�Ŵs

= 0.37 and Sμμ =
0.71. The red and grey curves correspond to Cμμ > 0 and Cμμ < 0,

respectively. The green dot marks the input parameters in Eq. (58)

illustrated in Fig. 3. The information on the sign of Cμμ would

allow us to resolve the ambiguity, as indicated in the figure.

Note that the points (ϕS, ϕP ) = (0◦, 0◦) and (180◦, 180◦)
would be excluded through the contours. Using Eqs. (51)

or (52), we obtain |S| and |P| as functions of ϕS , as shown

in Fig. 4. Here, information about the sign of Cμμ plays no

further role. Interestingly, we would now be able to put a

lower bound on |S|, i.e. could conclude that we have new

scalar contributions. We insist on the fact that in order to

obtain this highly non-trivial information, a measurement of

the CP asymmetry Sμμ is required.

Although we can only determine the B0
s → μ+μ−

parameters as functions of ϕS , this analysis would have

profound implications, establishing in particular new scalar

and pseudo-scalar contributions with CP-violating phases. In

order to obtain further insights, more information is needed

and assumptions about short-distance coefficients have to be

made.

4 Relations between (pseudo)-scalar coefficients

4.1 General framework

The effects of new particles enter the coefficients in Eqs. (5)

and (6) through the short-distance coefficients CP , C ′
P and

CS , C ′
S , which describe new pseudo-scalar and scalar contri-

butions, respectively, and C10, C ′
10. As the constraints from

the ATLAS and CMS experiments at the LHC for direct

searches of new particles support the picture of a NP scale

�NP which is much larger than the electroweak scale �EW,

the corresponding NP effects can be described in a model-

independent way through an effective Lagrangian where the

heavy degrees of freedom, i.e. the NP particles, have been

integrated out at �NP. If we require then invariance under

the SM gauge group SU (2)L × U (1)Y for the renormaliza-

Fig. 4 The coefficients |S| and |P| determined as functions of ϕS for the example discussed in the text. The corresponding input parameters are

marked by the green dot
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tion group evolution between �NP and �EW, a “SM Effective

Field Theory” (SMEFT) can be set up [24,25] and matched to

the effective Hamiltonian in Eq. (2) describing B0
s → μ+μ−

decays. Following these lines and applying the machinery of

effective quantum field theory, the following relations among

the corresponding short-distance coefficients can be derived

[26]:

CP = −CS (63)

C ′
P = C ′

S . (64)

A further application of these relations – assuming no new

sources of CP violation – can be found in Ref. [7], while a

fit of data to the SMEFT scenario with complex coefficients

was performed in Ref. [27]. For a discussion within specific

models, see Ref. [6].

In this section, we explore the implication of Eqs. (63)

and (64) for the general analysis of CP violation discussed

in Sect. 3. To this end, we express the relevant quantities in

terms of the scalar short-distance coefficients

CS ≡ |CS|ei ϕ̃S , C ′
S ≡ |C ′

S|ei ϕ̃′
S , (65)

which yields

P ≡ |P|eiϕP = |P| cos ϕP + i |P| sin ϕP

= C10 −
1

w

[

1 + |x |ei�

1 − |x |ei�

]

|S|eiϕS (66)

with

w ≡

√

√

√

√1 −
4m2

μ

M2
Bs

, C10 ≡
C10 − C ′

10

CSM
10

(67)

and

x ≡ |x |ei� ≡
∣

∣

∣

∣

C ′
S

CS

∣

∣

∣

∣

ei(ϕ̃′
S−ϕ̃S). (68)

We will refer to this notation as the SMEFT parametrization.

It it useful to write Eq. (66) in the following form:

wP +
[

1 + |x |ei�

1 − |x |ei�

]

S = w C10. (69)

In the Appendix, we present expressions that allow us

to obtain the B0
s → μ+μ− observables in terms of the

parametrization introduced above. As P requires input for

C10, C ′
10, we shall now first discuss these coefficients.

4.2 Closer look at C10 and C ′
10

The Wilson coefficients C10 and C ′
10 enter in P through the

following combination:

C10 ≡ |C10|eiϕ10 ≡
C10 − C ′

10

CSM
10

= 1 + C
NP
10 , (70)

where ϕ10 is a CP-violating phase and

C
NP
10 ≡ |CNP

10 |eiϕNP
10 =

CNP
10 − C ′

10

CSM
10

(71)

parametrizes NP effects. The relations

|C10| =
√

1 + 2|CNP
10 | cos ϕNP

10 + |CNP
10 |2, (72)

|C10| cos ϕ10 = 1 + |CNP
10 | cos ϕNP

10 ,

|C10| sin ϕ10 = |CNP
10 | sin ϕNP

10 , (73)

tan ϕ10 =
|CNP

10 | sin ϕNP
10

1 + |CNP
10 | cos ϕNP

10

(74)

allow us to express C10 in terms of the – in general – complex

NP coefficient CNP
10 .

In order to reveal the substructure of P , information on

C10 is required. In specific models, we may calculate CNP
10

(see, for instance, Ref. [6]). Alternatively, using experimen-

tal data for B → K (∗)ℓ+ℓ− decays, we may determine

C10 − C ′
10 from experiment (see Ref. [28] and references

therein). In practice, the corresponding NP contributions are

extracted through involved global fits to sets of large num-

bers of observables. We use the results from Ref. [28], where

different scenarios for NP in real Wilson coefficients are dis-

cussed. Considering NP in individual Wilson coefficients, the

authors find that the data is best explained by a contribution

to the short-distance coefficient C9 of the four-fermion oper-

ator O9 = (s̄γμ PLb)(μ̄γ μμ), which does not contribute to

B0
s → μ+μ−, yielding CNP

10 = 0 and thus C10 = 1. How-

ever, a similarly good fit is obtained by assuming the relation

CNP
9 = −CNP

10 for real coefficients, which appears in models

with new particles that couple only to left-handed leptons. In

this case, we find

C
NP
10 = −0.16+0.04

−0.04, (75)

where the minus sign follows from CSM
10 taking a negative

value, as given in Eq. (9), resulting in

C10 = 0.84+0.04
−0.04. (76)

In Ref. [28], CP-violating phases are neglected. However,

the short-distance coefficients are in general complex, and the

phases can be included in the fit. In Ref. [29], such an analysis

is performed. The results are presented as 2D confidence
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contours in the complex plane of the coefficients C10 and C ′
10.

To probe for the possible size of ϕ10 and |C10|, we assume

that C ′
10 = 0 and convert the 1σ allowed regions for the

complex Wilson coefficient C10 shown in Ref. [29] into C10

using Eq. (70), yielding

− 40◦ < ϕ10 < −14◦ ∨ 14◦ < ϕ10 < 40◦, (77)

0.79 < |C10| < 0.98. (78)

Due to the structure of Eq. (74), we obtain a rather constrained

range for the CP-violating phase ϕ10. It is also interesting to

note that the range for the absolute value |C10| is consistent

with the result in Eq. (76).

In the future, analyses of CP-violating effects in B →
K (∗)ℓ+ℓ− and Bs → φμ+μ− observables, as introduced in

Refs. [30,31], will allow us to get a much sharper picture

of |C10| and a possible complex phase ϕ10. It would be very

useful to add the complex coefficient C10 as a default output

to the corresponding sophisticated fits to the semileptonic

rare B(s) decay data.

For the numerical illustrations below, we will either use

the range in Eq. (76) for real Wilson coefficients C10 and

C ′
10, or we will consider the case |C10| = 1, ϕ10 = 0◦, where

NP effects would enter exclusively through (pseudo)-scalar

contributions.

An interesting situation arises if we consider a scenario

where NP effects enter only through C10, with vanishing coef-

ficients CP , C ′
P and CS , C ′

S , yielding P = C10 and S = 0.

Specific examples are given by models with extra Z ′ bosons

(see, for instance, Ref. [6]) and scenarios with modified Z

couplings (such as in models with vector-like quarks [32]).

We would then have the simple expressions

A
μμ
�Ŵs

= cos
(

2ϕ10 − φNP
s

)

, Sμμ = sin
(

2ϕ10 − φNP
s

)

(79)

with Cμμ = 0. Consequently, the observables would lie on a

circle with radius one in the A
μμ
�Ŵs

–Sμμ plane.

4.3 Extraction of |x | and �

Applying the method presented in Sect. 3.1, we may deter-

mine |S|, |P| and ϕP from the B0
s → μ+μ− observables as

functions ϕS . Using Eq. (66), we may convert these param-

eters into the ratio x of the – in general – complex scalar

short-distance coefficients:

|x |ei� =
w(P − C10) + S

w(P − C10) − S
, (80)

with

|x | =

√

√

√

√

w2 |P − C10|2 + |S|2 + 2 w ℜ
[

(P∗ − C∗
10)S

]

w2 |P − C10|2 + |S|2 − 2 w ℜ
[

(P∗ − C∗
10)S

]

(81)

and

cos � ∝ w2|P − C10|2 − |S|2,
sin � ∝ 2 w ℑ

[

(P∗ − C
∗
10)S

]

, (82)

yielding

tan � =
2 w ℑ

[

(P∗ − C∗
10)S

]

w2|P − C10|2 − |S|2
. (83)

The quantities entering these expression can be expressed

in terms of the absolute values and phases of the relevant

complex coefficients as

|P − C10| =
√

|P|2 − 2|P||C10| cos(ϕ10 − ϕP ) + |C10|2

(84)

and

ℑ
[

(P∗ − C
∗
10)S

]

= |S|
[

|P| sin(ϕS − ϕP ) − |C10| sin(ϕS − ϕ10)
]

(85)

ℜ
[

(P∗ − C
∗
10)S

]

= |S|
[

|P| cos(ϕS − ϕP ) − |C10| cos(ϕS − ϕ10)

]

.

(86)

It is instructive to consider the example in Sect. 3.2.2,

where |S| = 0.30 and ϕS = 20◦. Using the expressions given

above, we can convert the corresponding values of |P| =
0.89 and ϕP = 30◦ into

|x | = 0.89, � = −62◦, (87)

where we have assumed no NP in C10, so |C10| = 1 and

ϕ10 = 0◦. In Fig. 5, we give a flowchart for this strategy, and

show in Fig. 6 the situation corresponding to Eq. (87). Using

information on the sign of Cμμ, we would only be left with the

red contours. We observe that |x |ei� could be constrained in a

very non-trivial way. The resulting contours depend strongly

on the associated B0
s → μ+μ− decay observables.

In order to constrain the parameters more stringently, it

is useful to make assumptions about scenarios, as we will

illustrate in the next section. Following these lines, we may

rule out a given scenario or confirm it, allowing us then to

extract the corresponding parameters. By the time we may

have measurements of CP violation in B0
s → μ+μ− avail-

able, we should have a much better picture of the physics

beyond the SM, thanks to the interplay between model build-

ing and data coming both from the high-energy and the high-

precision frontiers. In particular, we should then also have
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Fig. 5 Flowchart to illustrate the use of the SMEFT relations in Sect. 4.1 for the analysis of the B0
s → μ+μ− observables as described in the text

Fig. 6 Implementation of Fig. 5 for the example in Sect. 3.2.2, corre-

sponding to Eq. (87), which is illustrated by the green dots. In the left

panel, we give the resulting dependence of |x | on ϕS , while in the right

panel, we show |x |ei� in the complex plane. The grey contours could

be excluded through sign information for the observable Cμμ

some preferred scenarios, including specific patterns for the

CP-violating phases, which could be confronted with exper-

imental data and the new strategies presented in this paper.

4.4 Illustration

As experimental data have already constrained the NP con-

tribution φNP
s to the B0

s –B̄0
s mixing phase to be tiny, as given

in Eq. (17), we may simplify the discussion by neglecting

this quantity. Moreover, for the decay B0
s → μ+μ−, we

have with excellent precision w = 1. Let us now illustrate

the formalism and strategy discussed above through vari-

ous examples. Here we shall choose values for the input

parameters to calculate the decay observables. Assuming

then that these quantities have been measured at the future

LHC upgrade(s), we discuss the pictures emerging from the

strategy discussed above. For simplicity, we do not consider

experimental aspects in this section but will illustrate scenar-

ios assuming uncertainties of future measurements in Sect. 5.

4.4.1 x = 0 and |x | → ∞

The case x = 0, which corresponds to C ′
S = C ′

P = 0,

is frequently considered in the literature for vanishing CP-

violating phases (see, for instance, Ref. [7]). It is interesting

to note that the relation in Eq. (69) gives

wP + S = w C10, (88)

which reduces to P + S = 1 for w = 1 and C10 = 1.

Allowing for possible CP violation, using the expressions in

the Appendix we obtain

r |x=0 = |C10|2 − 2 cos(ϕ10 − ϕS)|C10||S| + 2|S|2 (89)

as well as

A
μμ
�Ŵs

|x=0 =
|C10|2 cos 2ϕ10 − 2 cos(ϕ10 + ϕS)|C10||S|
|C10|2 − 2 cos(ϕ10 − ϕS)|C10||S| + 2|S|2

(90)

Sμμ|x=0 =
|C10|2 sin 2ϕ10 − 2 sin(ϕ10 + ϕS)|C10||S|
|C10|2 − 2 cos(ϕ10 − ϕS)|C10||S| + 2|S|2

(91)

123



Eur. Phys. J. C (2018) 78 :1 Page 11 of 23 1

Cμμ|x=0 =
2|S| [|C10| cos(ϕ10 − ϕS) − |S|]

|C10|2 − 2 cos(ϕ10 − ϕS)|C10||S| + 2|S|2
. (92)

Using Eq. (38), and substituting r and A
μμ
�Ŵs

according to

Eqs. (89) and (90), we may determine |S| as a function of

ϕ10 − ϕS from the measured value of R:

|S| =
|C10|

2

⎧

⎨

⎩

[cos(ϕ10 − ϕS) + ys cos(ϕ10 + ϕS)]

±

√

√

√

√[cos(ϕ10 − ϕS) + ys cos(ϕ10 + ϕS)]2 − 2

[

1 + ys cos 2ϕ10 −
R

|C10|2
(1 + ys)

]

⎫

⎬

⎭

. (93)

Note that the discriminant must have a value greater than or

equal to zero, which implies the following upper bound:

|C10| ≤

√

(

2

1 − ys

)

R. (94)

The current experimental value of R in Eq. (28) yields

|C10| ≤ 1.3 ± 0.1, (95)

which is obviously consistent with C10 = 1.

The number of allowed solutions for a given angle ϕS

depends on the value of the Wilson coefficient C10. In order

illustrate this feature, we consider two scenarios for C10.

Let us first assume that there is a vanishing NP contribution

CNP
10 = 0, which yields |C10| = 1, ϕ10 = 0◦. In this case,

Eq. (93) results in two solutions for |S| as a function of ϕS , as

can be seen in the top-left plot in Fig. 7. Using Eqs. (90), (91)

and (92), we can determine the observables A
μμ
�Ŵs

, Sμμ and

Cμμ as functions of ϕS , respectively, as shown in Fig. 7. In

Fig. 7 Functional dependences between |S|, A
μμ
�Ŵs

, Sμμ, Cμμ and the

CP-violating phase ϕS for |C10| = 1, ϕ10 = 0◦. The blue and red con-

tours correspond to the scenarios x = 0 and |x | → ∞, respectively.

The allowed regions are determined within the 1 σ range for R given

in Eq. (28), where the dashed curve is associated with the central value

for this observable. Notice that for each value of ϕS , we have in general

two possible solutions for the observables, leading to closed loops in

the parameter space. The black dot refers to the input parameters of the

scenario in Eq. (104), whereas the green line shows the value of the

observables in Eq. (107)
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Fig. 8 Functional dependences between |S|, A
μμ
�Ŵs

, Sμμ, Cμμ and the

CP-violating phase ϕS for |C10| = 0.84 and ϕ10 = 0◦. The blue and red

contours correspond to the scenarios x = 0 and |x | → ∞, respectively.

The allowed regions are determined within the 1 σ range for R given

in Eq. (28), where the dashed curve is associated with the central value

for this observable. The black dot refers to the input parameters of the

scenario in Eq. (108), whereas the green line shows the value of the

observables in Eq. (111)

particular, once A
μμ
�Ŵs

has been measured, the value of Sμμ

can be predicted. Should this CP asymmetry be measured

correspondingly, this scenario would be confirmed, allowing

us to determine the corresponding NP parameters. On the

other hand, should the measurement of Sμμ be in conflict

with the prediction, the NP scenario would be ruled out by

experimental data.

Let us now consider a scenario with NP contributions to

C10. If we follow the analysis of Ref. [28] and use the central

value of C10 in Eq. (76), we obtain the functional dependence

of |S| and the corresponding observables on ϕS shown Fig. 8.

Interestingly, for a given value of ϕS , Eq. (93) gives now a

single solution for |S|. Consequently, unlike their counter-

parts in Fig. 7, the contours no longer form closed loops,

thereby indicating that the degeneracy with respect to ϕS has

disappeared. In Fig. 9, we illustrate this strategy, which is

actually more general, i.e. does not only apply to the case of

x = 0.

A closer look at the expressions in the Appendix shows

that the case of x = 0 is connected with |x | → ∞, where

the scalar and pseudo-scalar coefficients CS and CP vanish

while C ′
P = C ′

S takes a non-vanishing value. The expression

in Eq. (69) takes then the form

wP − S = w C10, (96)

which reduces to P − S = 1 for w = 1 and C10 = 1. For

the observables r as well as A
μμ
�Ŵs

and Sμμ, we have the

symmetry relation

ϕS → π + ϕS, (97)

which is equivalent to |S| → −|S|, and yields

r ||x |→∞ = |C10|2 + 2 cos(ϕ10 − ϕS)|C10||S| + 2|S|2

(98)

A
μμ
�Ŵs

||x |→∞ =
|C10|2 cos 2ϕ10 + 2 cos(ϕ10 + ϕS)|C10||S|
|C10|2 + 2 cos(ϕ10 − ϕS)|C10||S| + 2|S|2

(99)

Sμμ||x |→∞ =
|C10|2 sin 2ϕ10 + 2 sin(ϕ10 + ϕS)|C10||S|
|C10|2 + 2 cos(ϕ10 − ϕS)|C10||S| + 2|S|2

.

(100)

In the case of Cμμ, the symmetry is broken by an overall

minus sign:

Cμμ||x |→∞ =
2|S| [|C10| cos(ϕ10 − ϕS) + |S|]

|C10|2 + 2 cos(ϕ10 − ϕS)|C10||S| + 2|S|2
.

(101)
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Fig. 9 Flowchart to illustrate the use of the relations in Sect. 4.1 with information on C10 to convert the measured value of R into predictions of

the B0
s → μ+μ− observables. Once these are measured in accordance with the pattern characterizing the NP scenario, |S| and ϕS can be extracted

from the data

More explicitly, we have

r |x=0(ϕS + π) = r ||x |→∞(ϕS)

A
μμ
�Ŵs

|x=0(ϕS + π) = A
μμ
�Ŵs

||x |→∞(ϕS) (102)

Sμμ|x=0(ϕS + π) = Sμμ||x |→∞(ϕS),

while

Cμμ|x=0(ϕS + π) = −Cμμ||x |→∞(ϕS). (103)

As we will see below, this feature has interesting phenomeno-

logical implications.

In order to illustrate the expressions given above, we con-

sider two examples with different values of the coefficient

C10:

Example (a)

We first assume a situation with vanishing NP contributions

CNP
10 = 0, and employ the following setup:

R = 0.84 ± 0.16, x = 0, ϕS = 54◦,

|C10| = 1, ϕ10 = 0◦. (104)

Using Eq. (93), we determine |S| as a function of ϕS . As

discussed above, for |C10| = 1, ϕ10 = 0◦ and the central

value of R in Eq. (104), we obtain a twofold solution. For

the sake of illustration, we consider only the solution with

the plus sign in front of the square root, yielding

|S| = 0.43. (105)

With the help of Eq. (66), we may now calculate

|P| = 0.82, ϕP = −25◦. (106)

The corresponding values for the observables read as follows:

A
μμ
�Ŵs

= 0.58, Sμμ = −0.80, Cμμ = 0.16. (107)

Let us now assume that these observables have been mea-

sured, and discuss how we may then – with the help of

the strategy discussed above – reveal the dynamics of the

B0
s → μ+μ− decay and distinguish between the x = 0 and

|x | → ∞ cases:

• It is plausible to expect that A
μμ
�Ŵs

is the next observable

to be measured. With the help of the top-right plot in

Fig. 7, we identify four possible values for ϕS which are

compatible with the “experimental” result of A
μμ
�Ŵs

=
0.58 in Eq. (107): ϕ

(1)
S = −126◦, ϕ

(2)
S = −54◦, ϕ

(3)
S =

54◦ and ϕ
(4)
S = 126◦.

• We may now predict the observable Sμμ. Using the

bottom-left plot in Fig. 7 or the expressions in Eqs. (91)

and (100), we obtain Sμμ = −0.80 for ϕ
(1)
S = −126◦

(branch |x | → ∞) and ϕ
(3)
S = 54◦ (branch x = 0).

Moreover, we find Sμμ = 0.80 for ϕ
(2)
S = −54◦ (branch

x = 0) and ϕ
(4)
S = 126◦ (branch |x | → ∞).

• The measurement Sμμ = −0.80 would then allow us

to narrow down the four solutions for ϕS to only two at

ϕ
(1)
S = −126◦ and ϕ

(3)
S = 54◦, corresponding to |x | →

∞ and x = 0, respectively. It should be emphasized that

both solutions would be valid at this stage of the analysis,

i.e. we would have confirmed a CP-violating NP scenario

with either |x | → ∞ or x = 0.

• This ambiguity can be resolved through information on

the sign of Cμμ, which is given by Cμμ = −0.16 and

Cμμ = +0.16 for |x | → ∞ and x = 0, respectively,

as can be seen in Fig. 7. Consequently, the fact that Cμμ

breaks the symmetry in Eq. (97) gives us a powerful tool

to distinguish between x = 0 and |x | → ∞.

Example (b)

Now we have a look at a scenario with NP contributions to

C10, which is characterized as follows:

R = 0.84 ± 0.16, x = 0, ϕS = −70◦,

|C10| = 0.84, ϕ10 = 0◦. (108)

Here the value of C10 follows from Eq. (76), and is discussed

in more detail in Sect. 4.2. In contrast to Example (a), we

obtain now a single solution for |S| from Eq. (93), which is
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given by

|S| = 0.46. (109)

Using Eq. (66), we find

|P| = 0.81, ϕP = 33◦, (110)

resulting in the following values of the observables:

A
μμ
�Ŵs

= 0.50, Sμμ = 0.84, Cμμ = −0.19. (111)

In analogy to Example (a), using the plots in Fig. 8, we may

again show the compatibility of the “measured” observables

with the scenario x = 0, and rule out the case of |x | → ∞
through the sign of the Cμμ asymmetry. For the convenience

of the reader, we summarize the main features of these exam-

ples in Table 1.

In Fig. 10, we show the correlation between A
μμ
�Ŵs

and

Sμμ through the CP-violating phase ϕS . It should be noted

that the corresponding regions for |C10| = 0.84, ϕ10 = 0◦

and |C10| = 1, ϕ10 = 0◦ do not differ substantially and are

included in a single plot. Due to the symmetry transformation

in Eq. (97), the scenarios x = 0 and |x | → ∞ cover the same

region once we make a scan over the full range of ϕS . The

allowed region in Fig. 10 exhibits the following interesting

features:

1. The currently available measurement of R implies a

remarkably constrained circular region in the A
μμ
�Ŵs

–Sμμ

plane for CP-violating NP scenarios characterized by

x = 0 and |x | → ∞.

2. A future measurement of the observable combination

A
μμ
�Ŵs

and Sμμ lying outside the allowed region would

rule out the x = 0 and |x | → ∞ scenarios.

3. The allowed region in the A
μμ
�Ŵs

–Sμμ plane is close to the

unit circle. Consequently, due to Eq. (1), the observable

Cμμ is constrained to take a smallish value.

4. The allowed region is similar to the one arising for the

scenario described in Sect. 4.2. While here ϕ10 = 0◦

would imply the SM results A
μμ
�Ŵs

= 1 and Sμμ = 0, in

the case of x = 0 or |x | → ∞ we may still deviate sub-

stantially from the SM even in spite of having a vanishing

phase ϕ10.

In a complementary way, if we can obtain the value of the

phase ϕS from external information or theoretical consider-

ations, we will be able to predict the observables A
μμ
�Ŵs

and

Sμμ compatible with vanishing short distance contributions

CP,S or C ′
P,S . Strong deviations from these determinations

will indicate that the corresponding scenarios are not realized

in Nature. A discussion of NP scenarios characterized by the

relations P ± S = 1 (see Eqs. (88) and (96)) can be found in

Ref. [6].

4.4.2 � = 0◦

Another interesting case arises if C ′
S and CS have the same

CP-violating phases, i.e. � = 0◦, which yields

r |�=0◦ = |C10|2 − 2

(

1 + |x |
1 − |x |

)

cos(ϕ10 − ϕS)|C10||S| + 2

[

1 + |x |2

(1 − |x |)2

]

|S|2 (112)

A
μμ
�Ŵs

|�=0◦ =
(1 − |x |)2|C10|2 cos 2ϕ10 − 2

(

1 − |x |2
)

cos(ϕ10 + ϕS)|C10||S| + 4|x ||S|2 cos 2ϕS

(1 − |x |)2|C10|2 − 2
(

1 − |x |2
)

cos(ϕ10 − ϕS)|C10||S| + 2(1 + |x |2)|S|2
(113)

Sμμ|�=0◦ =
(1 − |x |)2|C10|2 sin 2ϕ10 − 2

(

1 − |x |2
)

sin(ϕ10 + ϕS)|C10||S| + 4|x ||S|2 sin 2ϕS

(1 − |x |)2|C10|2 − 2
(

1 − |x |2
)

cos(ϕ10 − ϕS)|C10||S| + 2(1 + |x |2)|S|2
(114)

Cμμ|�=0◦ =
2|S|

[

(1 − |x |)2|C10| cos(ϕ10 − ϕS) − (1 − |x |2)|S|
]

(1 − |x |)2|C10|2 − 2
(

1 − |x |2
)

cos(ϕ10 − ϕS)|C10||S| + 2(1 + |x |2)|S|2
. (115)

In analogy to the scenarios x = 0 and |x | → ∞ discussed in

Sect. 4.4.1, the expressions in Eqs. (112)–(114) are invariant

under the symmetry transformation

|x | → 1/|x |, ϕS → ϕS + π, (116)

leading to

r |�=0◦(|x |, ϕS) = r |�=0◦(1/|x |, ϕS + π)

A
μμ
�Ŵs

|�=0◦(|x |, ϕS) = A
μμ
�Ŵs

|�=0◦(1/|x |, ϕS + π)

Sμμ|�=0◦(|x |, ϕS) = Sμμ|�=0◦(1/|x |, ϕS + π), (117)

while the symmetry is again broken by the observable Cμμ

through an overall sign change:

Cμμ|�=0◦(|x |, ϕS) = −Cμμ|�=0◦(1/|x |, ϕS + π). (118)

The three observables r , A
μμ
�Ŵs

and Sμμ in Eqs. (112)–

(114) depend on the three unknowns x , |S| and ϕS . Conse-

quently, if the observables are measured, we may determine
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Table 1 Summary of the

strategy followed in Examples

(a) and (b) to disentangle the

scenario x = 0 from |x | → ∞
and determine the value of ϕS

Observables Solutions Scenario

Example (a)

|C10| = 1, ϕ10 = 0◦

R = 0.84 ± 0.16, A
μμ
�Ŵs

= 0.58, Sμμ = −0.80, Cμμ = 0.16

A
μμ
�Ŵs

ϕ
(1)
S = −126◦, ϕ

(4)
S = 126◦ |x | → ∞ (CS = CP = 0)

ϕ
(2)
S = −54◦, ϕ

(3)
S = 54◦ x = 0 (C ′

S = C ′
P = 0)

A
μμ
�Ŵs

, Sμμ ϕ
(1)
S = −126◦ |x | → ∞ (CS = CP = 0)

ϕ
(3)
S = 54◦ x = 0 (C ′

S = C ′
P = 0)

A
μμ
�Ŵs

, Sμμ, Cμμ ϕ
(3)
S = 54◦ x = 0 (C ′

S = C ′
P = 0)

Example (b)

|C10| = 0.84, ϕ10 = 0◦

R = 0.84 ± 0.16, A
μμ
�Ŵs

= 0.50, Sμμ = 0.84, Cμμ = −0.19

A
μμ
�Ŵs

ϕ
(1)
S = −110◦, ϕ

(4)
S = 110◦ |x | → ∞ (CS = CP = 0)

ϕ
(2)
S = −70◦, ϕ

(3)
S = 70◦ x = 0 (C ′

S = C ′
P = 0)

A
μμ
�Ŵs

, Sμμ ϕ
(4)
S = 110◦ |x | → ∞ (CS = CP = 0)

ϕ
(2)
S = −70◦ x = 0 (C ′

S = C ′
P = 0)

A
μμ
�Ŵs

, Sμμ, Cμμ ϕ
(2)
S = −70◦ x = 0 (C ′

S = C ′
P = 0)

–1.0 –0.5 0.0 0.5 1.0

–1.0

–0.5

0.0

0.5

1.0

Fig. 10 Allowed region in the A
μμ
�Ŵs

–Sμμ plane following from the

current experimental value of R for x = 0; the same correlation is

obtained for |x | → ∞. The circular region corresponds to the 1σ

uncertainty of R in Eq. (28). The black star indicates the SM point

these parameters. The twofold ambiguity following from

the symmetry transformation in Eq. (116) can be resolved

through the measurement of the sign of Cμμ. Unfortunately,

in view of the highly non-linear structure of the equations, we

cannot give simple analytic solutions. However, the parame-

ters can be determined numerically. In Sect. 5, we will illus-

trate this determination through fits to scenarios of future

measurements.

Alternatively, we can apply the strategy depicted in the

flowchart in Fig. 9. We start with the experimental value of

R given in Eq. (28). Furthermore, we assume that |x | = 0.5

and |C10| = 1, ϕ10 = 0◦. This allows us to solve for |S| as

a function of ϕS , and to subsequently determine A
μμ
�Ŵs

, Sμμ

and Cμμ as functions of ϕS . The results are shown as the blue

contours in Fig. 11. Here, also the symmetric situation with

|x | = 2 is shown in red, illustrating nicely how Cμμ breaks

the symmetry.

Finally, in Fig. 12, we show the correlation between A
μμ
�Ŵs

and Sμμ for |x | = 0.5 and |x | = 3. Contrary to the situation

for x = 0, |x | → ∞, we are not constrained to a contour

close to the unit circle, but can also obtain values in the inte-

rior region. For the scenario |x | = 3, the relations |S|, Aμμ
�Ŵs

,

Sμμ and Cμμ as functions of ϕS are similar to the ones shown

in Fig. 11.

In the expression for r given in Eq. (112), a pole seems to

arise for |x | = 1, which corresponds to

CS = C ′
S . (119)

However, this is a spurious divergence, which is cancelled by

the CS −C ′
S term in the expression for S in Eq. (6), implying

S||x |=1, �=0◦ = 0. (120)

Using the relations in Eqs. (63) and (64), we obtain

C ′
P = C ′

S = CS = −CP . (121)

Consequently, Eq. (5) yields
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Fig. 11 Functional dependences between |S|, A
μμ
�Ŵs

, Sμμ, Cμμ and

the CP-violating phase ϕS for |C10| = 1, ϕ10 = 0◦ and � = 0◦. The

blue and red contours correspond to the scenarios |x | = 0.5 and the

associated value |x | = 2, respectively. The allowed regions are deter-

mined within the 1 σ range for R given in Eq. (28), where the dashed

curve corresponds to the central value for this observable. Notice that

for each value of ϕS we have in general two possible solutions for the

observables, leading to closed loops in the parameter space

Fig. 12 Correlations between A
μμ
�Ŵs

and Sμμ in the case of � = 0◦ for |x | = 0.5 and |x | = 3 in the left and right panels, respectively. The region

corresponds to the 1σ uncertainty of R in Eq. (28). The black star indicates the SM point
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|P|eiϕP ||x |=1, �=0◦ = C10 −
M2

Bs

mμ

( mb

mb + ms

) CS

CSM
10

= |C10|eiϕ10 −
M2

Bs

mμ

( mb

mb + ms

) |CS|
CSM

10

ei ϕ̃S

(122)

and shows that also the divergence in Eq. (66) for |x | =
1, � = 0◦ is spurious. If we neglect, for simplicity, again

the tiny NP contribution φNP
s to the B0

s –B̄0
s mixing phase, we

obtain

r ||x |=1, �=0◦ = |P|2 (123)

A
μμ
�Ŵs

||x |=1, �=0◦ = cos(2ϕP ) (124)

Sμμ||x |=1, �=0◦ = sin(2ϕP ) (125)

Cμμ||x |=1, �=0◦ = 0. (126)

For a discussion of NP models describing this situation, see

Ref. [6]. Obviously, also extensions of the SM with scalars,

which couple in a left-right-symmetric way to quarks (see

the operators in Eq. (3) and the relations in Eq. (119)), fall

into this category.

As in the case given by Eq. (79), the correlation between

the observables A
μμ
�Ŵs

and Sμμ describes a circle with radius

one. The overall phase ϕP includes effects from the, in gen-

eral, complex quantities C10 and CS . This is particularly inter-

esting if future measurements reveal (A
μμ
�Ŵs

)2 +(Sμμ)2 com-

patible with the unit circle and if we have bounds available

on the phase ϕ10 from other processes. Then, results incom-

patible with Eq. (79) will indicate the potential presence of

a scalar or pseudo-scalar contribution.

4.4.3 � = 180◦

In the case of � = 180◦, we obtain the following expressions

for the B0
s → μ+μ− observables:

r |�=180◦ = |C10|2 − 2

(

1 − |x |
1 + |x |

)

cos(ϕ10 − ϕS)|C10||S| + 2

[

1 + |x |2

(1 + |x |)2

]

|S|2 (127)

A
μμ
�Ŵs

|�=180◦ =
(1 + |x |)2|C10|2 cos 2ϕ10 − 2

(

1 − |x |2
)

cos(ϕ10 + ϕS)|C10||S| − 4|x ||S|2 cos 2ϕS

(1 + |x |)2|C10|2 − 2
(

1 − |x |2
)

cos(ϕ10 − ϕS)|C10||S| + 2(1 + |x |2)|S|2
(128)

Sμμ|�=180◦ =
(1 + |x |)2|C10|2 sin 2ϕ10 − 2

(

1 − |x |2
)

sin(ϕ10 + ϕS)|C10||S| − 4|x ||S|2 sin 2ϕS

(1 + |x |)2|C10|2 − 2
(

1 − |x |2
)

cos(ϕ10 − ϕS)|C10||S| + 2(1 + |x |2)|S|2
(129)

Cμμ|�=180◦ =
2|S|

[

(1 + |x |)2|C10| cos(ϕ10 − ϕS) − (1 − |x |2)|S|
]

(1 + |x |)2|C10|2 − 2
(

1 − |x |2
)

cos(ϕ10 − ϕS)|C10||S| + 2(1 + |x |2)|S|2
. (130)

These equations could be solved numerically to determine

|x |, |S| and ϕS , in analogy to the discussion of � = 0◦.

It is interesting to have a closer look at x = −1, i.e. |x | = 1

and � = 180◦. In terms of the short-distance coefficients,

this case corresponds to

CS = −C ′
S . (131)

Using the relations in Eqs. (63) and (64), we obtain further-

more

CP = C ′
P , (132)

implying

P = C10. (133)

Using Eqs. (26) and (27), we obtain

|S|2 =

(

1 + ys

)

R −
[

1 + ys cos(2ϕ10)

]

|C10|2

1 − ys cos(2ϕS)
. (134)

Special care should be paid when using Eq. (134), since the

expression on the right-hand side has to be greater than or

equal to zero. This feature implies the following upper bound:

|C10| ≤

√

(

1 + ys

1 − ys

)

R, (135)

where we have used that 1 + ys cos(2ϕ10) ≥ 1 − ys , with ys

given in Eq. (12). With the current experimental value of R

in Eq. (28), the corresponding bound is given by

|C10| ≤ 0.98 ± 0.09. (136)

The different scenarios described in the previous sec-

tions are presented in Table 2, where we show the con-

nection between the standard parametrization used for the

short distance contributions and the SMEFT one introduced

in Sec. 4.1.

5 Experimental aspects

Up to now we have not considered experimental uncertainties

in the observables A
μμ
�Ŵs

, Sμμ and Cμμ when studying the dif-

123



1 Page 18 of 23 Eur. Phys. J. C (2018) 78 :1

Table 2 Summary of the

scenarios described in Sect. 4.4.

In all the cases we have assumed

ϕ10 = 0◦

Sections SMEFT Standard Extra

parameterization parameterization assumptions

4.4.1 x = 0 C ′
S = C ′

P = 0 |C10| = 1, |C10| = 0.84

|x | → ∞ CS = −CP = 0

4.4.2 � = 0◦, |x | = 0.5 ϕ̃S = ϕ̃′
S, |CS | = 2|C ′

S | |C10| = 1

� = 0◦, |x | = 2 ϕ̃S = ϕ̃′
S, |CS | = 0.5|C ′

S |
4.4.3 � = 180◦, |x | = 1 CS = −C ′

S , CP = C ′
P

ferent scenarios. Nevertheless, we would like to demonstrate

the potential for the determination of the underlying param-

eters at future experiments. Since the asymmetries are not

independent, due to the relation in Eq. (1), it is not possible

to determine all four parameters |S|, ϕS , |x | and �. How-

ever, as discussed in Sect. 4.3, we expect to have a better

picture of physics beyond the SM by the time the CP asym-

metries of B0
s → μ+μ− have been measured. Therefore,

we consider some of the examples discussed in Sect. 4.4,

which correspond to specific values of |x | or �. We assume

uncertainties for the observables, allowing us to extract the

NP parameters through fits.

Unless specified otherwise, within this section we use a

future measurement of

R = 0.84 ± 0.09, (137)

where we have assumed a relative uncertainty of 10% for

B(Bs → μ+μ−), which is achievable at the LHCb upgrade

[33], while keeping the current central value fixed. Notice

that the relative uncertainty in our “measurement” for R̄ in

Eq. (137) leads to a 2σ tension with the SM. Thus the sta-

tistical significance will not be high enough to claim for the

discovery of NP effects. The major limiting factor of the pre-

cision is the ratio fd/ fs of the fragmentation functions of the

B0
d and B0

s mesons [34], which is required for normalization

purposes. To the best of our knowledge, no information about

the expected precision of future measurements of A
μμ
�Ŵs

, Sμμ

and Cμμ is available. The key question we want to address is

the precision of the measurement of these observables that is

required to establish in particular new (pseudo)-scalar con-

tributions at the 5 σ confidence level.

5.1 x = 0 and |x | → ∞

To begin with, we evaluate the impact of experimental errors

for the observables in Example (a) of Sect. 4.4.1, correspond-

ing to a scenario where x = 0. An absolute uncertainty

of ± 0.2 for the asymmetries leads to the following set of

observables:

A
μμ
�Ŵs

= 0.58 ± 0.20, Sμμ = −0.80 ± 0.20,

Cμμ = 0.16 ± 0.20. (138)

In such a situation, Sμμ would indicate CP-violating NP

effects at the 4σ level, while A
μμ
�Ŵs

and Cμμ would deviate

from the SM picture at the 2σ and 1σ levels, respectively.

Let us assume that the values above have been measured at a

future experiment, and that there are strong reasons to con-

sider models characterized by x = 0. We will now illustrate

through a χ2 fit how well we can reveal the underlying decay

dynamics.

Let us first obtain the regions allowed for |S| and ϕS if

we only include R and A
μμ
�Ŵs

in the statistical analysis. Thus,

using the expression in Eqs. (89) and (90) with the “data”

in Eqs. (137) and (138), we perform a χ2 fit to these two

observables and obtain the blue contours in the left panel of

Fig. 13, which correspond to 1σ allowed regions. We indicate

the input parameters used to determine our observables in

Eq. (138) with the green dot. This plot allows us to establish

a non-zero value for |S| at the 3σ level. If we include also the

“measurement” for Sμμ indicated in Eq. (138), along with

Eq. (91), and repeat the χ2 fit, we can eliminate the dashed

contour in the left panel and obtain the right plot of Fig. 13.

As we have pointed out in Sect. 4.4.1, there is a symmetry

between x = 0 and |x | → ∞, implying the same values of

A
μμ
�Ŵs

and Sμμ for these two cases. Conversely, we could not

distinguish x = 0 and |x | → ∞ at the phenomenological

level having only measurements of these observables avail-

able. Indeed, repeating the χ2 fits assuming |x | → ∞ for

the same set of input observables leads to the red contours

in Fig. 13. Although we use x = 0 as our favoured model

in this illustration, it would certainly be desirable to rule out

the degenerate |x | → ∞ scenario. As Cμμ breaks the sym-

metry by an overall minus sign, we could actually exclude

the |x | → ∞ case through experimental information on the

sign on this CP asymmetry. If we add Cμμ to the analysis, a

solution only arises in case of the x = 0 scenario, thereby

singling out the blue contour. We would then find

|S| = 0.43+0.07
−0.08, ϕS = (54+6

−7)
◦, (139)

where Cμμ has a minor impact on the numerical values them-

selves, apart from excluding |x | → ∞. In this scenario, the

assumed experimental uncertainties in Eq. (138) would allow

us to establish non-zero values of |S| and ϕS at the 5σ and 7σ
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Fig. 13 Illustration of the determination of |S| and ϕS from the observ-

ables in Eq. (138) for a scenario with x = 0, which is degenerate with

|x | → ∞. The contours correspond to the 1σ allowed regions obtained

from χ2 fits. In the left panel, we show the result of the fit to only R

and A
μμ
�Ŵs

, while in the right panel we have also included Sμμ. The blue

contours were obtained by assuming x = 0, whereas the red contours

follow for |x | → ∞. A measurement of the sign of Cμμ would allow

us to distinguish these cases, excluding the |x | → ∞ scenario

levels, respectively, which would provide highly non-trivial

insights into the underlying dynamics.

5.2 � = 0◦

Let us now have a closer look at another interesting sce-

nario: � = 0◦, where C ′
S and CS have the same CP-violating

phases. The expressions in Eqs. (112)–(115) form a system

of three independent equations which allows us to determine

|S|, ϕS and |x |. Due to the highly non-linear structure of the

mathematical expressions, we cannot provide analytical solu-

tions in general. Instead we give an example of how to solve

the system through a χ2 fit. We consider the input parameters

|x | = 0.5, ϕS = 20◦, |C10| = 1, ϕ10 = 0◦, (140)

allowing us to determine the following solution for |S|, which

is consistent with the current central value for R shown in

Eq. (28):

|S| = 0.55. (141)

If we use the previous numerical values in Eqs. (113)–(115),

our observables are

A
μμ
�Ŵs

= −0.27 ± 0.20, Sμμ = 0.46 ± 0.20,

Cμμ = −0.85 ± 0.20, (142)

where we have considered the same absolute uncertainties as

in Sect. 5.1. Assuming that these observables have been mea-

sured correspondingly at a future experiment, A
μμ
�Ŵs

would

indicate NP at the 6σ level, while Sμμ and Cμμ would dif-

fer from the SM at the 2σ and 4σ levels, respectively. The

latter observable would require a non-vanishing scalar con-

tribution S. Performing a χ2 fit to these quantities, we can

determine the underlying decay parameters |x |, |S| and ϕS

simultaneously from the best fit point.

We start our statistical analysis by considering only R,

A
μμ
�Ŵs

and Sμμ. In the left and right panels of Fig. 14, we

show the corresponding 1 σ confidence regions in the ϕS–

|S| and ϕS–|x | planes, respectively. We obtain two solutions,

given by the blue and red contours, as we expect based on

the symmetry relations in Eq. (117). Our input parameters are

indicated by the green dot. Consequently, non-zero values of

|S| and |x | at the 4σ and 6σ levels, respectively, could then

be established.

If we include also Cμμ in the analysis, we can eliminate the

solution corresponding to the red contours, since Cμμ breaks

the symmetry relation in Eq. (116) by an overall minus sign.

The resulting 1σ regions are shown in Fig. 15, corresponding

to the results

|S| = 0.55+0.08
−0.10, ϕS = (20+5

−5)
◦, |x | = 0.50+0.07

−0.07. (143)

As a matter of fact, non-zero values of these parameters could

be pinned down at the 5σ , 4σ and 7σ levels, respectively.

In general, the precision for the CP asymmetries required

to determine |S|, ϕS and |x | with a given confidence level

depends on the situation in parameter space. Moreover, we

may end up with an ambiguity even after including Cμμ in

the χ2 fit. Nevertheless, this example nicely complements

the one in Sect. 5.1 and shows the potential of the CP asym-

metries to determine the (pseudo)-scalar contributions, and

even to discriminate between the corresponding primed and

unprimed Wilson coefficients.
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Fig. 14 Illustration of the determination of |S|, |x | and ϕS in the sce-

nario where we assume � = 0◦. The contours correspond to the 1σ

allowed regions obtained by performing a χ2 fit to R, A
μμ
�Ŵs

and Sμμ

given in Eq. (142). We obtain two solutions, indicated in blue and red,

as expected from the symmetry relations in Eq. (117). The green dot

marks the input parameters given in Eqs. (140) and (141)
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Fig. 15 Illustration of the determination of |S|, |x | and ϕS in a scenario where we assume � = 0◦. The contours correspond to the 1σ allowed regions

obtained by performing a χ2 fit to R, A
μμ
�Ŵs

, Sμμ and Cμμ given in Eq. (142). The green dot marks the input parameters given in Eqs. (140) and (141)

6 Conclusions and outlook

The rare decay B0
s → μ+μ− has been in the focus of particle

physics for decades, offering one of the theoretically clean-

est probes for physics beyond the SM, in particular for new

(pseudo)-scalar contributions, which are still largely uncon-

strained. Finally, this channel could be observed by the CMS

and LHCb collaborations and is now an experimentally well

established process, exhibiting a branching ratio encoded in

R in the ballpark of the SM. The observable A
μμ
�Ŵs

, which

is accessible thanks to the decay width difference �Ŵs and

requires an untagged – but time-dependent – analysis, will

play an important role to shed light on possible NP contribu-

tions to B0
s → μ+μ−. In general, these effects involve also

CP-violating phases, which are usually neglected in theoret-

ical analyses for simplicity.

In this paper, we have presented a comprehensive strat-

egy for the future LHC upgrade(s), allowing us to reveal the

presence of new sources of CP violation. The key role in this

endeavour is played by the mixing-induced CP asymmetry

Sμμ, which requires – in contrast to A
μμ
�Ŵs

– also tagging

information for the experimental analysis. Another observ-

able, Cμμ, would become accessible if the helicity of the final-

state muons could be determined; already sign information

for this CP asymmetry would be very valuable information.

These three observables do not depend on the decay constant

fBs and are not affected by theoretical uncertainties.

Interestingly, the interplay of R with A
μμ
�Ŵs

and Sμμ allows

us to establish new (pseudo)-scalar contributions and new

sources of CP violation. In general, we can only obtain con-

straints as we do not have sufficient independent observables

to determine the short-distance coefficients |S|, |P| and their

phases ϕS , ϕP . To obtain further insights, additional informa-

tion is required. This could either be obtained by assuming

specific NP models, or in a model-independent way through

relations between the short-distance coefficients C
(′)
P , C

(′)
S ,
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which can be derived within the SMEFT approach. We have

followed the latter avenue, discussing a variety of scenarios

to illustrate how the corresponding parameters can be deter-

mined from the measured observables.

Since the pseudo-scalar coefficient P involves C10, we

need information on this quantity. By the time precise mea-

surements of the observables A
μμ
�Ŵs

and Sμμ are available,

we expect to have a detailed picture of C10, following from

analyses of semileptonic rare B → K (∗)μ+μ− and Bs →
φμ+μ− decays. Current anomalies in the data for the former

and B → K (∗)e+e− decays indicate NP effects in C10, which

we have also considered in our explorations. It will be impor-

tant to utilize CP violation in the corresponding observables

in the future.

To the best of our knowledge, experimental feasibility

studies for the measurement of Sμμ at the LHC upgrade(s)

are not yet available. Performing fits to the observables for

given future scenarios, we find that an absolute precision at

the 0.2 level for A
μμ
�Ŵs

and Sμμ could have a dramatic impact

on our search for new (pseudo)-scalar contributions in lep-

tonic rare Bs decays, allowing us to reveal the underlying

dynamics. We urge the LHC collaborations to add studies

of CP violation in rare B0
s → ℓ+ℓ− decays to their physics

agenda for the long-term future and super-high-precision era

of B physics.
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Appendix

In this appendix, we collect formulae which are useful for

the analysis of B0
s → μ+μ− within the SMEFT framework

introduced in Sect. 4.1. These expressions can be applied to

any SMEFT scenario. In order to obtain the relevant observ-

ables in terms of the parameters |S|, ϕS , |x | and �, we write

Eq. (66) as

|P| cos ϕP = |C10| cos ϕ10

−
1

w

[

(

1 − |x |2
)

cos ϕS − 2|x | sin � sin ϕS

1 − 2|x | cos � + |x |2

]

|S|

(144)

|P| sin ϕP = |C10| sin ϕ10

−
1

w

[

(

1 − |x |2
)

sin ϕS + 2|x | sin � cos ϕS

1 − 2|x | cos � + |x |2

]

|S|,

(145)

yielding

tan ϕP

=
|C10| sin ϕ10 −

[(

1 − |x |2
)

sin ϕS + 2|x | sin � cos ϕS

]

G

|C10| cos ϕ10 −
[(

1 − |x |2
)

cos ϕS − 2|x | sin � sin ϕS

]

G

(146)

with

G ≡
|S|

w
(

1 − 2|x | cos � + |x |2
) . (147)

The scalar coefficient function is given as,

S ≡ |S|eiϕS = w
M2

Bs

2mμ

(

mb

mb + ms

)

(

|CS|
CSM

10

)

×
(

1 − |x |ei�
)

ei ϕ̃S (148)

with

tan ϕS = (1 − |x | cos �) sin ϕ̃S − |x | sin � cos ϕ̃S

(1 − |x | cos �) cos ϕ̃S + |x | sin � sin ϕ̃S

. (149)

As we noted in Eq. (10), CSM
10 is negative. We may also con-

vert ϕS into ϕ̃S :

cos ϕ̃S ∝ |x | cos(ϕS − �) − cos ϕS,

sin ϕ̃S ∝ |x | sin(ϕS − �) − sin ϕS, (150)

which yields

tan ϕ̃S =
(1 − |x | cos �) sin ϕS + |x | sin � cos ϕS

(1 − |x | cos �) cos ϕS − |x | sin � sin ϕS

. (151)

Moreover, we have

|CS| =
1

w

2mμ

M2
Bs

(

mb + ms

mb

) |CSM
10 |

√

1 − 2|x | cos � + |x |2
|S|.

(152)

The observables in Eqs. (13), and (36) and (38) require
the quantities

|P|2 = |C10|2 − 2
[

(1 − |x |2) cos(ϕ10 − ϕS)

+ 2|x | sin � sin(ϕ10 − ϕS)

]

|C10|G

+
[

(

1 − |x |2
)2

+ (2|x | sin �)2

]

G2, (153)
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|P|2 cos 2ϕP = |P|2
(

cos2 ϕP − sin2 ϕP

)

= |C10|2 cos 2ϕ10 − 2
[(

1 − |x |2
)

cos(ϕ10 + ϕS)

−2|x | sin � sin(ϕ10 + ϕS)] |C10|G

+
[{

(

1 − |x |2
)2

− (2|x | sin �)2

}

cos 2ϕS

− 4|x |
(

1 − |x |2
)

sin � sin 2ϕs

]

G2, (154)

|P|2 sin 2ϕP = 2|P| sin ϕP |P| cos ϕP

= |C10|2 sin 2ϕ10 − 2
[(

1 − |x |2
)

sin(ϕ10 + ϕS)

+2|x | sin � cos(ϕ10 + ϕS)] |C10|G

+
[{

(

1 − |x |2
)2

− (2|x | sin �)2

}

sin 2ϕS

+ 4|x |
(

1 − |x |2
)

sin � cos 2ϕs

]

G2, (155)

while the CP asymmetry in Eq. (35) involves

|P||S| cos(ϕP − ϕS) = |S|
[

|C10| cos(ϕ10 − ϕS)

−
(

1 − |x |2

1 − 2|x | cos � + |x |2

)

|S|
w

]

.

(156)

In view of the complexity of the resulting general expres-

sions, we refrain from listing them for the observables r ,

A
μμ
�Ŵs

, Sμμ and Cμμ. However, we have given formulae for

specific examples discussed in Sect. 4.4.
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