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CP2 skyrmions and skyrmion crystals in
realistic quantum magnets

Hao Zhang 1,2,3 , Zhentao Wang 1,4,6, David Dahlbom 1, Kipton Barros3 &
Cristian D. Batista 1,5

Magnetic skyrmions are nanoscale topological textures that have been
recently observed in different families of quantummagnets. These objects are
called CP1 skyrmions because they are built from dipoles—the target manifold
is the 1D complex projective space, CP1≅ S2. Here we report the emergence of
magnetic CP2 skyrmions in a realistic spin-1 model, which includes both dipole
and quadrupole moments. Unlike CP1 skyrmions, CP2 skyrmions can also arise
as metastable textures of quantum paramagnets, opening a new road to dis-
cover emergent topological solitons in non-magnetic materials. The quantum
phase diagram of the spin-1 model also includes magnetic field-induced CP2

skyrmion crystals that can be detected with regular momentum- (diffraction)
and real-space (Lorentz transmission electron microscopy) experimental
techniques.

Lord Kelvin’s vision of the atom as a vortex in ether1 inspired Skyrme2,3

to explain the origin of nucleons as emergent topologically non-trivial
configurations of a pion field described by a 3 + 1 dimensional O(4)
non-linear σ-model. In the modern language, these “skyrmions” are
examples of topological solitons, and Skyrme’s model has become the
prototype of a classical theory that supports these solutions. Besides
its important role in high-energy physics and cosmology, Skyrme’s
model also led to important developments in other areas of physics.
For instance, the baby Skyrme model4–6 (planar reduction of the non-
linear σ-model), which is an extension of the Heisenbergmodel4,5,7, has
baby skyrmion solutions in the presenceof a chiral symmetry-breaking
Dzyaloshinskii–Moriya (DM) interaction8–11.

Periodic arrays of magnetic skyrmions and single skyrmion
metastable states were originally observed in chiral magnets, such as
MnSi, Fe1−xCoxSi, FeGe, and Cu2OSeO3

12–16. This discovery sparked the
interest of the community at large and spawned efforts in multiple
directions. Identifying realistic conditions for the emergence of novel
magnetic skyrmions is one of the main goals of modern condensed
matter physics. Novel mechanisms are usually accompanied by new
properties. For instance, while skyrmions of chiral magnets have a

fixed vector chirality, this is still a degree of freedom in centrosym-
metric materials, such as BaFe1−x−0.05ScxMg0.05O19, La2−2xSr1+2xMn2O7,
Gd2PdSi3, and Gd3Ru4Al12

17–23, where skyrmions arise from frustration,
i.e., from competing exchange or dipolar interactions24–30.

The target manifold of the above-mentioned planar baby sky-
rmions is S2≅CP1, i.e., the usual 2D sphere, corresponding to normal-
ized dipoles.Moregenerally, onemay consider the complex projective
space CPN−1 that represents the normalized N-component complex
vectors, up to an irrelevant complex phase. The topologically distinct,
smooth mappings from the base manifold S2 (2D sphere≅
compactified plane) to the target manifold CPN−1 can be labeled by the
integers: Π2ðCPN�1Þ=Z. This homotopy group suggests general-
izations of the planar Skyrme’s model to N > 2, such as the CP2 non-
linear σ-model31–33 and in the Faddeev-Skyrme type model34,35. In con-
densed matter physics, chiral CP2 skyrmion configurations induced by
fluctuations or quenching the system through a phase transition were
proposed in the context of three-band superconductors with broken
time-reversal symmetry36–38. In recent work, Akagi et al. considered the
SU(3) version of the Heisenberg model with a DM interaction, whose
continuum limit becomes a gauged CP2 nonlinear σ-model with a
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background uniform gauge field39. An attractive aspect of thismodel is
that it admits analytical solutions by the application of techniques
developed for the gauged non-linear σ-model. However, it may be
challenging to find materials described by this model because SU(3)
can only be an accidental symmetry of the spin–spin interactions of
real quantum magnets, and Hamiltonians that do exhibit SU(3)-invar-
iance contain unrealistically strong biquadratic terms. In insulating
magnets, biquadratic interactions are typically much smaller than
bilinear interactions because they are of higher order in the small
parameter that leads to the emergence of magnetic moments (loca-
lized electrons) in real materials (e.g., the ratio t/U between the typical
hopping amplitude, t, and the on-site Hubbard repulsion,U, in the case
of Mott insulators). Similar limitations apply to other works that study
skyrmion solutions of the bilinear-biquadratic spin one model40–43.

The main purpose of this work is to demonstrate that exotic CP2

skyrmions readily emerge in a simple and realistic spin-1 (N = 3) model
and its natural extensions. In other words, we propose that these
magnetic textures could likely be observed in real materials. Remark-
ably, isolated CP2 skyrmions can either be metastable states of a
quantum paramagnet (QPM) or a fully polarized (FP) ferromagnet.
Unlike the “usual” CP1 magnetic skyrmions, the dipolar field of the
metastable CP2 skyrmions of quantum paramagnets vanishes away
from the skyrmion core. Moreover, the application of an external
magnetic field to the QPM induces stable triangular crystals of CP2

skyrmions in the field interval that separates the QPM from the
FP state.

Model
To illustrate the basic ideas, we consider a minimal spin-1 model
defined on the triangular lattice (TL):

Ĥ=
X
hi,ji
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Ŝ
z
i +D

X
i

Ŝ
z
i

� �2
: ð1Þ

The first term includes an easy-axis ferromagnetic (FM) nearest-
neighbor exchange interaction J1 < 0 and a second-nearest-neighbor
antiferromagnetic (AFM) exchange J2 > 0. For simplicity, we assume
that the exchange anisotropy, defined by the dimensionless parameter
Δ > 1, is the same for both interactions. The second and third terms
represent the Zeeman coupling to an external field and an easy-plane
single-ion anisotropy (D >0). Ĥ is invariant under the space group of
the TL and the U(1) group of global spin rotations along the field axis.
We will adopt ∣J1∣ as the unit of energy (i.e. J1 = −1).

To study the properties of the skyrmion solutions of Eq. (1), it is
helpful to consider the classical limit first. In doing so, we follow the
existing literature on topological solitons, which are inherently clas-
sical objects. There is, moreover, good reason to expect that quantum
fluctuations are not relevant to the present study. Experimentally,
there is existing evidence of spin-1 triangular materials that exhibit
semi-classical spiral orderings due to competing ferromagnetic and
antiferromagnetic exchange interactions44. Some of these are dis-
cussed in Section “Disussion”. Furthermore, the results that will be
developed will remain unaltered for a simple 3D extension of the
current model, achieved by vertically stacking triangular layers with
ferromagnetic interlayer coupling. The larger coordination number of
the 3D model and the long wavelength nature of the ordered states
both act to reduce quantum fluctuations, further justifying the classi-
cal approximation.

It is important to note, however, that there are subtleties in for-
mulating the appropriate classical limit45,46. The traditional classical
limit is based on SU(2) coherent states, which retain only the spin
dipole expectation value and produces the Landau–Lifshitz spin
dynamics. This approach is adequate for modeling systems with weak
single-ion anisotropy D≪ ∣J1∣. To classically model systems in the
regime D ≳ ∣J1∣, however, it is necessary to retain more structure from

the quantum spin-1 states, which live in a local Hilbert space of
dimension N = 3. Specifically, our classical limit will assume that the
many-body quantum state is a direct product of SU(3) coherent
states45–52:

∣Zi=�j ∣Z j

�
with ∣Z j

�
=
X
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j ∣x
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j , ð2Þ

where Z j = ðZ 1
j ,Z

2
j ,Z

3
j Þ

T
is a complex vector of unit length and

f∣x1ij,∣x2ij ,∣x3ijg is an orthonormal basis for the local Hilbert state on-
site j.

Local physical operators are represented by Hermitian matrices
that act on SU(3) coherent states. The space of 3 × 3 traceless, Hermi-
tian matrices comprises the fundamental representation of the suð3Þ
Lie algebra. A basis T̂

μ
(μ = 1,…, 8) for this space is characterized by the

commutation relations,
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wherewe are using the convention of summation over repeated Greek
indices. We may additionally impose an orthonormality condition
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It is conventional to define the structure constants as f ημν =

� i
2 Tr ðλη½λμ,λν �Þ, where λμ are the Gell–Mann matrices.

The spin dipole operators Ŝj = ðŜ
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T
acting on site j are gen-

erators for a spin-1 representation of SU(2). It is possible to formulate
generators of SU(3) as polynomials of these spin operators,
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where T7,5,2
j are the dipolar components of the spin-1 degree of

freedom, while the other five generators are the quadrupolar
components. Here we have adopted the notation and conventions of
ref. 39 to make closer contact with the literature on high-energy
physics. (Our definitions for Ŝ

x
and Ŝ

z
differ from these two in ref. 39by

a minus sign).
Let ∣1ij, ∣0ij , and ∣�1

�
j denote the normalized eigenstates of Ŝ

z
j , with

eigenvalues, 1, 0 and −1, respectively. In the Cartesian basis,
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the SU(3) generators given in Eq. (5) are the Gell–Mann matrices:

xa
j

D
∣T̂

μ

j ∣x
b
j

E
= ðλμÞab μ= 1,2, . . . ,8: ð7Þ

The orbit of coherent states ∣Z ji is obtained by applying SU(3)
transformations to the highest weight state ∣1ij45: ∣Z ji= Ûj ∣1ij . Since the
global phase is a gauge degree of freedom, the orbit of physical SU(3)
coherent states is S5/S1≅CP2. The “SU(3) classical limit” of the spin
Hamiltonian (1) is obtained by replacing the Hamiltonian operator Ĥ
with its expectation value

H � Zh ∣Ĥ∣Zi, ð8Þ
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after rewriting Ĥ in terms of SU(3) spin components,

Ĥ=
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hi,ji
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where Iμij = JijðΔδμ,2 + δμ,5 + δμ,7Þ and Bμ = ð�hδμ,2 � Dδμ,8=
ffiffiffi
3

p
Þ. Because

the direct product form of Eq. (2),H can be expressed as a function of
the “color field”
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which satisfies the constraints

nμnμ =
4
3
, nμ =

3
2
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νnη, ð11Þ

where dμνη =
1
4 Tr ðλμfλν ,ληgÞ. This in turn leads to the Casimir identity:
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9 : In terms of this color field, we can express
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To avoid an explicit use of the structure constants ( fημν), we
introduce an equivalent formulationof theproblemusing the operator
field nj =n

μ
j λμ. Topological soliton solutions of the color field become

well-defined in the continuum (long wavelength) limit, where the
Hamiltonian can be approximated by

H ’
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where∇denotes the spatial gradient operator. The coupling constants
can be expressed in terms of the parameters of the lattice model (9):

Iμ
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Bμ = Bμ � 3ðΔ� 1Þð J1 + J2Þδμ,8:
ð14Þ

Eq. (13) corresponds to an anisotropic CP2 model. For skyrmion solu-
tions, the base plane R2 can be compactified to S2 because the color
field takes a constant value n∞ at spatial infinity. These spin textures
can then be characterized by the topological charge of the mapping
n : R2 ∼ S2 7!CP2:

C = � i
32π

Z
dxdyεjkTr n ∂jn,∂kn

h i� �
: ð15Þ

For the lattice systems of interest, the CP2 skyrmion charge can be
computed after interpolating the color fields on nearest-neighbor sites
nj and nk along the CP2 geodesic:

C =
X
4jkl

ρjkl =
1
2π

X
4jkl

γjl + γlk + γkj
� �

, ð16Þ

where △jkl denotes each oriented triangular plaquette of nearest-
neighbor sites j→ k→ l and γkj = arg½hZk ∣Z ji� is the Berry connection on
the bond j→ k (see Supplemental Material).

We emphasize that the color field formalism just discussed is fully
equivalent to the formalismbasedoncoherent states. In particular, it is
straightforward to show that the operator representation of the color
fieldmay be expressed as nj = ∣Z jihZ j ∣� 1=3, in which form it becomes
clear that both n and the coherent state ∣Z ji provide equivalent
representations of the same classical state53,54.

Results
Phase diagram
The T = 0 phase diagram (Fig. 1) is obtained by numericallyminimizing
the classical spin Hamiltonian H (12) in the 4L2-dimensional phase
space of a magnetic cell of L × L spins (see the “Methods” section). The
shape and size of this unit cell is dictated by the symmetry-related
magnetic orderingwavevectorsQν (ν = 1, 2, 3) (see Fig. 2a, b),whichare
determined by minimizing the exchange interaction in momentum
space: JðqÞ=Pjl Jjle

iq�ðrj�r l Þ: The ratio between both exchange interac-
tions, J2=∣ J1∣= 2=ð1 +

ffiffiffi
5

p
Þ is tuned to fix the magnitude of the ordering

wave vectors, ∣Qν∣ = ∣b1∣/527, corresponding to a magnetic unit cell of
linear size L = 5. As we will see later, the relevant qualitative aspects of
the phase diagram do not depend on the particular choice of the
model (see the section “Large-D limit”). The three ordering wave vec-
tors, which are related by the C6 symmetry of the TL, are parallel to the
Γ-Mν directions (denoted in Fig. 2).

The resulting phase diagram shown in Fig. 1 includes multiple
magnetically ordered phases between the FP phase and the QPM
phase, where every spin is in the ∣0i state. For D≫ ∣J1∣, these phases
include two field-induced CP2 skyrmion crystals (SkX-I and SkX-II),
separated by twomodulated vertical spiral phases (MVS-I and MVS-II),
where the polarization plane of the spiral is parallel to the c-axis and
themagnitudeof thedipolemoment is continuously suppressed as the
moment rotates from ẑ to �ẑ directions. The spiral phases have the
same symmetry and are separated by a first-order metamagnetic
transition. As shown in Fig. 2a, the CP2 skyrmions of the SkX-I crystal
have dipolemoments that evolve continuously into the purely nematic
state (∣0i) as theymove away from the core. Conversely, Fig. 2b shows
that the spins in the SkX-II phase have a strong quadrupolar character
(the small dipolar moment is completely suppressed in the large D/∣J1∣
limit) at the skyrmion core, and evolve continuously into themagnetic
state ∣1i as they move away from the core. The CP2 skyrmion density
distribution ρjkl is also indicated with colored triangular plaquettes in
Fig. 2a, b for SkX-I and SkX-II, respectively. As shown in the inset of
Fig. 1, phase SkX-II extends down to D/∣ J1∣ ≃ 5, while phase SkX-I dis-
appears near D/∣ J1∣ ≃ 8.

New competing orderings appear in the intermediateD/∣J1∣ region.
In particular, a significant fraction of the phase diagram is occupied by
the so-called canted spiral (CS) phase,

∣Z ji= cosθ∣0ij + eiQ�r j sinθ cosϕ∣1ij + e�iQ�rj sinθ sinϕ∣�1
�
j, ð17Þ

Fig. 1 | T =0 phase diagram of the classical HamiltonianH as a function of the
single-ion anisotropy D and the external field h, for J2=∣J1∣=2=ð1+

ffiffiffi
5

p
Þ and

Δ = 2.6. The two insets show the phases for small-D and large-D, respectively. The
solid (dashed) lines indicate 1st- (2nd-) order phase transitions.
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where θ and ϕ are variational parameters, and Q can take any values
among {Q1, Q2, Q3}. Upon increasing D, the magnitude of the dipole
moment of each spin, ∣hŜji∣, is continuously suppressed to zero at the
boundary,

Dc =h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4J2ðQÞ

h2 + 4J2ðQÞ

s
� 2JðQÞ 1� 2JðQÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 + 4J2ðQÞ
q

0
B@

1
CA, ð18Þ

that signals the second-order transition into the QPM phase. As shown
in Fig. 1, several competing phases appear above the CS phase upon
increasing h. These phases include three triple-Q spiral orderings
[3Q I–III] with dominant weight in one of three Q transverse
components and a staggered distribution of the CP2 skyrmion density
ρjkl [see Eq. (16)] and three different modulated double-Q orderings
(MDQ I–III) and two triple-Q orderings. All of these phases are
described in detail in the supplementary information. In the rest of the
paper, we will focus on the SkX phases and the single-skyrmion
metastable solutions that emerge in their proximity.

Large-D limit
Theorigin of theCP2 skyrmioncrystals canbe understoodby analyzing
the small ∣Jij∣/D regime, where Ĥ can be reduced via first-order
degenerate perturbation theory in Jij/D to an effective pseudo-spin-1/2

low-energy Hamiltonian,

Ĥeff =
X
hi,ji

~Jij ŝxi ŝ
x
j + ŝ

y
i ŝ

y
j +

~Δŝzi ŝ
z
j

� �
� ~h

X
i

ŝzi : ð19Þ

The pseudo-spin-1/2 operators are the projection of the original spin
operators into the low-energy subspace S0 generated by the quasi-
degenerate doublet f∣0ij,∣1ijg (see Fig. 3):

ŝzj =P0Ŝ
z
j P0 � 1

2
, ŝ ±j =

P0Ŝ
±
j P0ffiffiffi
2

p , ð20Þ

where P0 is the projection operator of the low-energy subspace.
Importantly, the first state of the doublet has a net quadrupolar
moment but no net dipole moment, 0h ∣Ŝj ∣0ij =0, while the second
state maximizes the dipole moment along the ẑ-direction 1h ∣Ŝj ∣1ij = ẑ.
This means that three pseudo-spin operators generate an SU(2)
subgroupof SU(3) different from the SU(2) subgroup of spin rotations.

Ĥeff represents an effective triangular easy-axis XXZ model with
effective exchange, anisotropy and field parameters ~Jij =2Jij , ~Δ= Δ

2 and
~h=h� D� 3ΔðJ1 + J2Þ, respectively. This model is known to exhibit a
field-induced CP1 SkX phase25, 27 on a lattice for fixed choice of J1 and J2.
Further study has demonstrated that the full field-anisotropy phase
diagram remains qualitatively the same upon approaching the long
wavelength limit of J2 ! 1

3 ∣J1∣, the Lifshitz point where the ordering
wave vectors go to zero26. It follows that lattice effects do not alter the
qualitative features of the phase diagram for wavelengths at least as
long as that set by the J1 and J2 examined here. In other words, these
results do not depend on a fine-tuning of exchange parameters.
Indeed, the continuum model for Eq. (20) matches the universal
Hamiltonian presented in26,

Heff ’
Z

dr2 �J η
1

2
ð∇~nηÞ2 + J η

2

2
∇2~nη

� �2
� ~B~nz + ~D~n2

z

� �
, ð21Þ

where η = x, y, z denotes the three components of the unit vector field
~n (∣~n∣= 1), and

J η
1 =

3s2

2
ð~J1 + 3~J2Þ½1 + ð~Δ� 1Þδηz �,

J η
2 =

3s2

32
ð~J1 + 9~J2Þ½1 + ð~Δ� 1Þδηz �

~B = s~h, ~D=3s2ð~Δ� 1Þð~J1 +~J2Þ,

ð22Þ

where s = 1/2. Although the target manifold of this theory is CP1 (orbit
of SU(2) coherent states that belong S0), we must keep in mind that
Ĥeff describes the large D/∣J1∣ limit where the CP2 skyrmions of the

Fig. 2 | The CP2 skyrmion crystal phases. a, b Real space distribution of the
dipolar sector of the CP2 skyrmion crystals SkX-I and SkX-II. The length of the arrow
represents the magnitude of the dipole moment of the color field
∣hŜji∣=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn7

j Þ
2 + ðn5

j Þ
2
+ ðn2

j Þ
2

q
. The color scale of the arrows indicates hŜzj i = � n2

j .
The insets display the static spin structure factors S?ðqÞ=n7

qn
7
�q +n

5
qn

5
�q and

Szz ðqÞ=n2
qn

2
�q , with nq =

P
je

iq�r jnj=L. The CP2 skyrmion density distribution ρjkl
[see Eq. (16)] is indicated by the color of the triangular plaquettes.

Fig. 3 | Spectrum of the single-ion model ĤSI =DðŜ
z Þ2 � hŜ

z
. The shaded region

denotes the effective regime with a quasi-degenerate doublet: f∣0i,∣1ig.
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original spin-1 model become asymptotically close to CP1 pseudo-spin
skyrmions. In other words, the SkXs include a finite ∣�1

�
component for

finite D/∣J1∣, which increases upon decreasing D. This component,
which only appears in the low-energy model when second-order
corrections in Jij are included, is responsible for the metamagnetic
transition between the MVS-I and MVS-II phases (the transition
disappears in the D→∞ limit).

Since ĤeffðhÞ and Ĥeff ð�hÞ are related by a pseudo-time-reversal
(PTR) transformation (ŝj ! �ŝj on the lattice and ~n ! �~n in the
continuum) their corresponding ground states are related by the same
transformation. In particular, the ground state ð~n= ẑÞ that is obtained
above the saturation field (~B > ~Bsat) corresponds to the FP state
(hŜji= ẑ) in the original spin-1 variables, while the ground state ð~n= �
ẑÞ below the negative saturation field (~B<� ~Bsat) corresponds to the
QPM phase (∣Z ji= ∣0ij). Correspondingly, the SkX induced by a posi-
tiveh haspseudo-spins polarized along the quadrupolar direction (∣0i)
near the core of the skyrmions and parallel to the dipolar one (∣1i) at
themidpoints between two cores. This explains the origin of the SkX-II
crystals depicted in Fig. 2b. The negative B counterpart of this phase,
which is obtained by applying the PTR transformation, corresponds to
the SkX-I crystal shown in Fig. 2a. In this case the skyrmion cores are
magnetic, while the midpoints are practically quadrupolar (they
become purely quadrupolar in the large D/∣J1∣ limit). This simple rea-
soning explains the origin of the novel SkXphases included in the T = 0
phase diagram of H shown in Fig. 1. The intermediate phase between
theSkX-I andSkX-II ground state ofH inducedbypositive andnegative
values of h is a single-Q spiral with a polarizationplane parallel to the c-
axis known as a vertical spiral (VS). This explains the originof theMVS-I
and MVS-II phases in between the two SkX phases (the first-order
transition between both phases disappears in the large-D limit25).

Single-skyrmion solutions
Besides the SkX phases shown in Fig. 4, the effective field theory (21) is
known to support metastable CP1 single-skyrmion solutions beyond
the saturation fields ∣~B∣> ~Bsat. The pseudo-spin variable is anti-parallel
to the external field at the core and it gradually rotates towards the
direction parallel to the field upon moving away from the center.
Interestingly, this pseudo-spin texture translates into metastable
single-skyrmion solutions of the QPMphase that have amagnetic core
and a nematic periphery, as it is shown in Fig. 4a andb fordifferent sets
of Hamiltonian parameters. The CP2 skyrmions are metastable

solutions in the QPM phase for D ≳ 14, implying that these exotic
magnetic-nematic textures should emerge in realmagnets under quite
general conditions.

Similarly, the metastable pseudo-spin single-skyrmion solutions
of the FP phase (~B > ~Bsat) lead to a spin texture with a nematic (non-
magnetic) core and a magnetic (FP) periphery, like the one shown in
Fig. 4c. Interestingly, this exotic CP2 skyrmion solution remains
metastable down to D≃ 4∣J1∣ and it coexists with regular (CP1) meta-
stable skyrmion solutions, like the one shown Fig. 4d, that emerge
below D≃ 4.25∣J1∣.

Discussion
We have demonstrated that CP2 skyrmion textures emerge in realistic
models of hexagonal magnets out of the combination of competing
exchange interactions and single-ion anisotropy. It is important to
note that the skyrmion crystals and metastable solutions reported in
this work survive in the long wavelength limit26, implying that the CP2

skyrmion phases described here should also exist in extensions of the
model to honeycomb and Kagome lattice geometries.

There are a number of candidatematerials that are well described
by the spin-1 model given in Eq. (1). In particular, one may point to the
series of triangular antiferromagnets of the form of ABX3, BX2, and
ABO2

44, 55,56, where A is an alkali metal, B is a transition metal, and X is a
halogen atom. Compounds, such as FeI2

57,58, are described by the
Hamiltonian of Eq. (1), but the sign of the single-ion and exchange
anisotropies is opposite to the case of interest in this work. Related
compounds, such as CsFeCl3, are known to be quantum paramagnets
described by the sameHamiltonian with a dominant easy-plane single-
ion anisotropyD/J1≃ 1059. An alternative route to finding realizations of
our spin-1 Hamiltonian is to consider hexagonal materials comprising
4f magnetic ions with a singlet single-ion ground state and an excited
Ising-like doublet (the effective easy-plane single-ion anisotropy D is
equal to the singlet-doublet gap). Ultracold atoms are also powerful
platforms to realize spin-1models with tunable single-ion anisotropy60.

While a full examination of the new response functions and
functionalities of the CP2 skyrmions must be left to future research, a
few remarks should be made here. It is clear that the intrinsically
inhomogeneous nature of the local order parameter, which evolves
from dipolar to quadrupolar upon moving toward or away from the
skyrmion core, can lead to newbehaviors. For instance,metastableCP2

skyrmions above the saturation field can become stable (ground state)
solutions by increasing theD term of a givenmagnetic ion. This can be
achievedwith the insertionof non-magnetic impurities thatmodify the
local crystal field. Correspondingly, it should be possible to induce
metastable CP2 skyrmions by dynamically varying the local crystal field
that determines the value of D. Furthermore, CP2 skyrmions can be
manipulated by applying a local strain due to the characteristically
non-uniform distribution of the magnitude of their quadrupolar
moment.

Before concluding, we remark on a subtle mathematical point. By
definition, CP2 skyrmions are distinguished from the more familiar CP1

skyrmions by their enlarged target manifold. This distinction can be
physically relevant: a CP2 skyrmion will typically have a combination of
dipolar and quadrupolar structures. The presence of quadrupole
degrees of freedom will bring additional dynamical modes and will
have entropic consequences. From a topological perspective, how-
ever, there is a certain sense in which CP1 and CP2 skyrmions are
equivalent. To elaborate on this point, we first remark that CP1 is a
submanifold of CP2. Further, any CP1 skyrmion can be faithfully
embedded in the space of CP2 skyrmions, and this embedding pre-
serves skyrmion winding number. Such an embedded spin texture can
be smoothly deformed to any other CP2 skyrmion with an equal
winding number, which establishes a topological equivalence.

In summary, this paper demonstrates that novel magnetic field-
induced CP2 skyrmion crystals should emerge in the presence of

Fig. 4 | Dipolar sector of CP2 skyrmions. The color scale indicates the value of n2
j

(hŜzj i). a, b Skyrmion excitation on top of a QPM background. c, d Skyrmion exci-
tation on top of a fully polarized background. J2=∣J1∣= 2=ð1 +

ffiffiffi
5

p
Þ and Δ = 2.6 in (a),

(c), and (d). J2=∣J1∣= 2=ð3+
ffiffiffi
5

p
Þ and Δ = 2.2 in b. In these panels, a D = 17.1∣J1∣,

H = 13∣J1∣. b D = 18.3∣J1∣, H = 14∣J1∣. c D = 7∣J1∣, H = 5∣J1∣. d D = 4∣J1∣, H = 2∣J1∣.
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competing ferromagnetic and antiferromagnetic exchange interac-
tions, amoderate easy-axis exchange anisotropy Δ > 2, and a dominant
single-ion easy-plane anisotropy D that is strong enough to stabilize a
QPMatT = 0. The field-induced quantumphase transition between the
uniformquadrupolar state inducedby the strong single-ion anisotropy
and the CP2 skyrmion crystal is presaged by the emergence of meta-
stable CP2 single-skyrmion solutions exhibiting a magnetic skyrmion
core that decays continuously into a quadrupolar periphery. These
novel skyrmions can be induced by applying a sufficiently large mag-
netic field to quantum paramagnets with competing exchange inter-
actions and they can be manipulated with local strain.

The general principles discussed in this work can be generalized
to N-level systems to obtain CPN−1 skyrmion crystals solutions from
realistic spin Hamiltonians, illustrating the rich diversity of topological
textures that can emerge in magnetic materials due to the quantum
mechanical nature of their magnetic moments.

Methods
The numerical minimization for the phase diagram Fig. 1 is done in a
cell of 10 × 10 spins containing four magnetic unit cells (L = 5). Two
crucial steps are useful to improve the efficiency of the local gradient-
based minimization algorithms61. In the first step, we set multiple
random initial conditions ∣Zi (~50 for our case),where ∣Z jionevery site
j is uniformly sampled on the CP2≃ S5/S1 manifold. After running the
minimization algorithm, we keep the solution with the lowest energy
for a given set of Hamiltonian parameters. In the next step, half of the
initial conditions are randomly generated, while the other half corre-
sponds to the lowest-energy solutions obtained in the first step within
a predefined neighborhood of the Hamiltonian parameters. This pro-
cedure is iterated until the phase diagram converges.

Data availability
All data presented in this study can be reproduced using the code
package described in the section “Code availability”.

Code availability
The algorithms used in our numerical simulations are described in the
“Methods” section. Thenumerical code is implemented in Julia and can
be found at https://github.com/Hao-Phys/CP2Skyrmions.jl.
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