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Abstract

The coronavirus disease 2019 (COVID-19) global pandemic poses the threat of over-

whelming healthcare systems with unprecedented demands for intensive care resources. 

Managing these demands cannot be effectively conducted without a nationwide collective 

effort that relies on data to forecast hospital demands on the national, regional, hospital 

and individual levels. To this end, we developed the COVID-19 Capacity Planning and 

Analysis System (CPAS)—a machine learning-based system for hospital resource planning 

that we have successfully deployed at individual hospitals and across regions in the UK in 

coordination with NHS Digital. In this paper, we discuss the main challenges of deploying 

a machine learning-based decision support system at national scale, and explain how CPAS 

addresses these challenges by (1) defining the appropriate learning problem, (2) combining 

bottom-up and top-down analytical approaches, (3) using state-of-the-art machine learn-

ing algorithms, (4) integrating heterogeneous data sources, and (5) presenting the result 

with an interactive and transparent interface. CPAS is one of the first machine learning-

based systems to be deployed in hospitals on a national scale to address the COVID-

19 pandemic—we conclude the paper with a summary of the lessons learned from this 

experience.
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1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic poses immense challenges to health-

care systems across the globe—a major issue faced by both policy makers and front-line 

clinicians is the planning and allocation of scarce medical resources such as Intensive Care 

Unit (ICU) beds (Bedford et al. 2020). In order to manage the unprecedented ICU demands 

caused by the pandemic, we need nationwide collective efforts that hinge on data to fore-

cast hospital demands across various levels of regional resolution. To this end, we devel-

oped the COVID-19 Capacity Planning and Analysis System (CPAS), a machine learning-

based tool that has been deployed to hospitals across the UK to assist the planning of ICU 

beds, equipment and staff (NHS 2020d). CPAS is designed to provide actionable insights 

into the multifaceted problem of ICU capacity planning for various groups of stakeholders; 

it fulfills this goal by issuing accurate forecast for ICU demand over various time horizons 

and resolutions. It makes use of the state-of-the-art machine learning techniques to draw 

inference from a diverse repository of heterogeneous data sources. CPAS presents its pre-

dictions and insights via an intuitive and interactive interface and allows the user to explore 

scenarios under different assumptions.

Critical care resources—such as ICU beds, invasive mechanical ventilation and medi-

cal personnel—are scarce, with much of the available resources being already occupied 

by severely-ill patients diagnosed with other diseases (NHS 2020a, b). CPAS is meant to 

ensure a smooth operation of ICU by anticipating the required resources at multiple loca-

tions beforehand, enabling a timely management of these resources. While capacity plan-

ning has the greatest value at the peak of the pandemic, it also has important utility even 

after the peak because it can help the hospitals to manage the transition from the COVID-

19 emergency back to the normal business. During the pandemic, the vast majority of the 

healthcare resources were devoted to treating COVID-19 patients, so the capacity for treat-

ing other diseases was much reduced. It is therefore necessary to review and re-assign the 

resources after the COVID-19 trend starts to decline. CPAS is one of the first machine 

learning decision support systems deployed nationwide to manage ICU resources at differ-

ent stages of the pandemic.

CPAS is designed to serve the needs of various groups of  stakeholders  involved in 

capacity planning at different levels of geographical and administrative resolution. More 

specifically, as illustrated in Fig. 1, CPAS models ICU demands on the (a) patient, (b) hos-

pital, (c) regional and (d) national levels. On the highest  level,  the system helps the pol-

icy-makers to make informed decisions by forecasting the national trends for ICU demand 

under different scenarios. Secondly, regional healthcare leadership can use CPAS as a 

“load balancing” tool as some hospitals may experience higher demand than others. Trans-

feral of patients and resources can then be arranged accordingly. Next, hospital managers 

can use CPAS to plan ahead the local ICU space, equipment and staff. Lastly, the front-line 

clinicians can make use of the tool to understand the risk profile of individual patients. 

Importantly, these four groups of stakeholders require insights on different time horizons 

and levels of aggregation. CPAS addresses this challenge by combining the top-down 

projections from an “aggregated trend forecaster” and the bottom-up predictions from an 

“individualized risk predictor”. Using agent-based simulation, CPAS is able to provide 

multi-resolution scenario analysis for individual, local, regional and national ICU demand.

As illustrated in Fig. 1, CPAS comprises an aggregated trend forecaster (top right) 

that issues overall projections of hospital admission trend. The projections are made 

on the hospital level over a time horizon of thirty days, and they are further aggregated 
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to form the regional and national forecasts. CPAS also makes use of an individualized 

risk predictor (bottom right) that contains a suite of machine learning pipelines predict-

ing the patient-level risk profiles of ICU admission, ventilator usage, mortality and dis-

charge in the thirty-day period after hospital admission. The patient level risk profiles 

can be directly used by the clinicians to monitor patient status and make a treatment 

plan. They can also be combined with the hospital admission forecast in the agent-based 

simulator (middle right) to perform scenario analysis for ICU capacity. CPAS casts the 

complex practical problem of ICU capacity planning into a set of sub-problems, each of 

which can be addressed by machine learning. This divide-and-conquer approach makes 

CPAS a transparent solution rather than a monolithic black-box. The machine learning 

models underlying CPAS are trained using data that reflects the entire patient journey: 

from hospital admission, to ICU admission, to ventilation treatment, and finally to dis-

charge or death. We will discuss the problem formulation in detail in Sect. 2.1.

The CPAS machine learning model

ICU planning for COVID-19 is a novel problem with few examples to learn from. 

The spread of COVID-19 is modulated by the intrinsic characteristics of the novel virus 

as well as the unprecedented intervention policies by the government. The need for 

deploying the system rapidly also means we cannot wait longer to collect more obser-

vations. As a result, the aggregated trend forecaster (Fig.  1 top right) needs to learn 

the disease’s transmission and progression characteristics from very limited data. To 

address this issue, we use a compartmental epidemiological model as a strong domain-

specific prior to drive the trend forecast. We integrated the prior in the proven frame-

work of Bayesian hierarchical modelling and Gaussian processes to model the complex 

disease dynamics from few observations (Rasmussen 2003). We explain the aggregated 

trend forecaster in detail in Sect. 2.3.

National Level
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Fig. 1  Illustration of how the different components in CPAS address the diverse needs of stakeholders on 

various levels. On the regional level, “hospital trusts” refers to the NHS foundation trusts, organizations that 

manage several hospitals in a region
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The individualized risk predictor (Fig.  1 bottom right) is a production-level machine 

learning pipeline tasked to predict four distinct outcomes. For each outcome, it needs to 

address all stages of predictive modelling: missing data imputation, feature processing, 

prediction, and calibration. For every stage, there are many machine learning algorithms to 

choose from, and for each algorithm there are multiple hyperparameters to tune. However, 

using a naive approach such as grid search to select algorithms and hyperparameters is 

very time-consuming, and it would hamper the rapid deployment of the system (Kotthoff 

et al. 2017). Since the pipeline configuration significantly affects the system’s overall per-

formance (Hutter et al. 2019), we use a state-of-the-art AutoML tool designed for medical 

applications, AutoPrognosis (Alaa and van der Schaar 2018), to address the algorithm and 

hyperparameter selection challenge for the individualized risk predictor (see Sect. 2.2).

It is inherently hard for a data-driven forecasting tool to accurately factor in the impact 

of unseen events (e.g. new social distancing policies). CPAS uses the agent-based simula-

tor (Fig. 1 middle right) to allow the users to explore scenarios under different assumptions 

about the policy impact. The simulator first constructs a patient cohort that matches the 

feature distribution in the region of interest. It then uses the aggregated trend forecaster to 

determine the number of patients admitted to the hospital on each day based on the user’s 

assumption about policy impact. As is standard in agent-based simulation (Railsback et al. 

2006), each patient’s outcomes are then simulated based on the risk profiles given by the 

individualized risk predictor. Finally, the simulated outcomes are aggregated to the desired 

level to form the scenario analysis. We introduce the details of the agent-based simulator in 

Sect. 2.4

Challenges associated with building practical machine learning-based decision 

support systems

Data integration poses a practical challenge for implementing a large-scale machine 

learning system. As illustrated in Fig. 1, CPAS uses both patient records and the aggre-

gated trends. Typically, the patient level information is collected and stored by various 

hospital trusts in isolated databases with inconsistent storage formats and information 

schema. It is a labour-intensive and time-consuming task to link and harmonize these data 

sources. Furthermore, historical data that contains valuable information about the patients’ 

pre-existing morbidities and medications, are archived on separated databases. Accessing, 

processing and linking such historical data also proves to be challenging. CPAS is trained 

using a data set constructed from four data sources. By breaking the data silos and link-

ing the data, we draw diverse information covering the full spectrum of the patient health 

condition, which leads to informed and accurate prediction. We introduce the details of the 

datasets in Sect. 3.1.

Presenting the insights in a user-friendly way is often neglected but vital to a machine-

learning tool’s successful adoption. Ideally, the user interface should not only present the 

final conclusion but also the intermediate steps to reach the conclusion. The transparency 

of the system’s internal working makes the system more trustworthy. CPAS contains well-

designed dashboards to display the outputs of the aggregated trend forecaster and the indi-

vidualized risk predictors. Thanks to the agent-based simulator, CPAS also allows the users 

to interactively explore the future scenarios by changing the underlying assumptions rather 

than presenting the forecast as the only possible truth. We present an illustrative use case 

in Sect. 5.

The rest of the article is organized as follows: After formulating the ICU planning prob-

lem into a set of learning tasks in Sect. 2.1, we introduce the individualized risk predictor 

in Sect. 2.2, the aggregated trend forecaster in Sect. 2.3, and the agent-based simulator in 

Sect. 2.4. We proceed to describe the data sources used in CPAS and the training procedure 
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in Sect.  3. After that, we present the offline evaluation results and discuss the need for 

online performance monitoring in Sect. 4. In Sect. 5, we demonstrate how CPAS works in 

action by going through an illustrative use case. We conclude with the lessons learned in 

Sect. 6.

2  CPAS: a system for ICU capacity planning

2.1  Problem formulation

To formulate the ICU capacity planning problem, we start by modelling the patients’ 

arrival at each hospital. Let A
h
(t) ∈ ℕ be the number of COVID-19 patients admitted 

to a given hospital h ∈ {1,… , N} on the t th day since the beginning of the outbreak. Since 

not all hospitalized patients will require ICU treatment, we need to model the patient-level 

ICU admission risk to translate hospital admissions into ICU demand. Let X
i
∈ ℝ

D be the 

D-dimensional feature vector for a patient i. We use one-hot encoding to convert categori-

cal variables into a real vector. Binary variables are encoded as 0 or 1. Further denote the 

event of ICU admission on the � th days after hospital admission as Y
i
(�) ∈ {0, 1} . Note 

that Y
i
(�) will not be available for some � due to insufficient follow-up time, e.g. we don’t 

observe the outcome at 10 days after admission if the patient was only admitted 7 days ago. 

Formally speaking, We only observe Y
i
(�) for � ∈ (0, �∗

i
] , where �∗

i
 is the censoring time for 

patient i. The ICU admission event Y
i
(�) directly translates into the ICU demand. To see 

this, consider a cohort of A
h
(t) patients admitted to hospital h at time t. On a future date 

t
′
> t , the new ICU admission contributed by this cohort is given as:

where we explicitly use t → t
′ to emphasize the date of hospital admission t and the date of 

ICU demand t′ . We can obtain the total ICU inflow on day t′ by summing over all historical 

patient cohorts with different hospital admission dates:

It is apparent from the equation above that the ICU demand depends on two quantities: (1) 

the patient ICU risk profile Y
i
(�) and (2) the number of hospital admissions A

h
(t) in the 

range of summation. Therefore, CPAS uses the individualized risk predictor to model 

Y
i
(�) and the aggregated trend forecaster to model A

h
(t) . In addition to the ICU admis-

sion event, CPAS also contain models for three other clinical events: ventilator usage, mor-

tality and discharge. We use Y
i
(�) to conceptually represent any outcome of interest when 

the context is clear.

To build the CPAS individualized risk predictor, we consider a patient-level data set 

D
P

N,t
 consisting patients from N hospitals over a period of t days, i.e.,

(1)ICU-inflow(t → t
�) =

A
h
(t)

∑

i=1

Y
i
(t� − t),

(2)ICU-inflow(t�) =
∑

t<t�

ICU-inflow(t → t
�) =

∑

t<t�

A
h
(t)

∑

i=1

Y
i
(t� − t).

(3)D
P

N,t
∶=

{

Xi, Yi[1 ∶ �
∗

i
]
}Np

i=1
,
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where we use the square brackets to denote a sequence over a period of time i.e. 

Y
i
[1 ∶ �

∗
i
] ∶=

{

Y
i
(1),… , Y

i
(�∗

i
)
}

 , and Np ∶=
∑N

h=1

∑t

j=1
Ah(j) . CPAS learns the hazard 

function for any patient with feature X over a time horizon of � ∈ (0, H]:

Conceptually, the hazard function ĥ(�) represents the likelihood of ICU admission on day � 

given the patient has not been admitted to the ICU in the first � − 1 days. Therefore, for any 

patient who is already admitted to the hospital and registered in the system, CPAS is able 

to issue individual-level risk prediction based on the observed patient features X
i
 . Those 

individualized predictions can directly help the clinicians to monitor the patient status and 

design personalized treatment plan. The predicted risk profiles can also be aggregated to 

the hospital level to measure the ICU demand driven by the existing patients.

To build the CPAS aggregated trend forecaster, we consider a hospital-level dataset DA

N,t
 for 

N hospitals covering a period of t days, i.e.,

where the square brackets denote a sequence over time as before. The dataset contains 

the number of hospital admissions A
h
(t) , which we have defined previously, and the 

community mobility M
h
[1 ∶ t] ∶= {m

h
(1)…m

h
(t)} in the catchment of hospital h. The 

m
h
(t) ∈ ℝ

K is a K-dimensional real vector, with each dimension k = 1…K reflecting the 

relative decrease of mobility in one category of places (e.g. workplaces, parks, etc) due to 

the COVID-19 containment and social distancing measures. We used data for N = 94 hos-

pitals, each with K = 6 categories of places. The details of the community mobility dataset 

is described in Sect. 3.1.4. For each hospital h, CPAS probabilistically forecasts the trajec-

tory of the number of COVID-19 admissions within a future time horizon of T days with a 

given community mobility, i.e.,

The future mobility M
h
[t ∶ t + T] depends on the intervention policies to be implemented 

in the future (e.g. schools to be closed in a week’s time) and therefore may not be learnable 

from the historical data. For this reason, CPAS only models the conditional distribution 

as in Eq. 6 and it allows the users to supply their own forecast of M
h
[t ∶ t + T] based on 

their knowledge and expectation of the future policies. By supplying different values of 

M
h
[t ∶ t + T] , CPAS is able to project the hospital admission trend under these different 

scenarios. By default, CPAS extrapolates the community mobility using the average value 

of the last seven days i.e. Mh(j) = Avg(Mh[t − 8 ∶ t − 1]) for j ∈ [t, t + T] . In the follow-

ing three sub-sections, we will introduce the individualized risk predictor, the aggregated 

trend forecaster, and the agent-based simulator. When multiple modelling approaches are 

possible, we will discuss their pros and cons and the reason why we choose a particular one 

in CPAS.

(4)ĥ(�) = ℙ(Y(�) = 1 | X, D
P

N,t
, Y(��) = 0,∀�� < �)

(5)D
A

N,t
∶=

{

A
h
[1 ∶ t], M

h
[1 ∶ t]

}N

h=1
,

(6)
Â

h
[t ∶ t + T] = ℙ

[
A

h
[t ∶ t + T]

|
|
|

m
h
(t), m

h
(t + 1),… , m

h
(t + T)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
������ �������� M

h
[t∶t+T]

, D
A

N,t

]
.
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2.2  Individualized risk prediction using automated machine learning

In order to learn the hazard function defined over a period of � ∈ (0, H] days (Eq. 4), the indi-

vidualized risk predictor contains H calibrated binary classification pipelines, trained inde-

pendently and each focusing on a single time step, as illustrated in Fig. 2. We will discuss the 

concept of pipelines later in this section. For now, the readers can assume P�

�
(X) to be a binary 

classifier with hyperparameters � . By training separate pipelines for each time step, we do not 

assume that the hazard function follows any specific functional form, which adds to the flex-

ibility to model complex disease progression. The training data for each time step � , denoted 

as DP

N,t
(�) is derived from the full patient-level dataset DP

N,t
 as follows:

The first condition (X
i
, Y

i
[1 ∶ �

∗
i
]) ∈ D

P

N,t
 simply states that the patient i is in the full data-

set. The second condition �∗
i
≥ � ensures that the Y

i
(�) is observed. In other words, the sta-

tus of patient i at time � is not censored. The last condition Y
i
(��) = 0,∀�� < � arises from 

the definition of the hazard function in Eq. 4. Jointly these three conditions ensure that the 

binary classifier trained on DP

N,t
(�) predicts the hazard function ĥ(�) at time �.

A machine learning pipeline consists of multiple stages of predictive modelling. Let 

Fd, Ff , Fp, Fc be the sets of all missing data imputation, feature processing, prediction, and 

calibration algorithms we consider (Table 1) respectively. A pipeline P is a tuple of the form:

where F
i
∈ F

i
 , ∀i ∈ {d, f , p, c} . The space of all possible pipelines is given by 

P = Fd × Ff × Fp × Fc . Thus, a pipeline consists of a selection of algorithms from each 

column of Table 1. For example, P = (MICE, PCA, Random Forest, Platt scaling). The 

total number of pipelines we consider is |P| = 192 . While P specifies the “skeleton” of 

the pipeline, we also need to decide the hyperparameter configuration of its constituent 

algorithms. Let � = �d × �f × �p × �c be the space of all hyperparameter configurations. 

Here �
v
=

⋃

a
�

a

v
 for v ∈ {d, f , p, c} with �a

v
 being the space of hyperparameters associated 

with the ath algorithm in F
v
 . Therefore, a fully specified pipeline configuration P

�
∈ P

�
 

determines the selection of algorithms P ∈ P and their corresponding hyperparameters 

� ∈ �.

(7)D
P

N,t
(�) = {(X

i
, Y

i
(�)) | (X

i
, Y

i
[1 ∶ �

∗
i
]) ∈ D

P

N,t
, �

∗
i
≥ �, Y

i
(��) = 0,∀�� < �}

(8)P = (Fd, Ff , Fp, Fc),

Table 1  The algorithms considered in each stage of the pipeline, which includes MICE (Buuren and 

Groothuis-Oudshoorn 2010), MissForest (Stekhoven and Bühlmann 2012), GAIN (Yoon et al. 2018), PCA, 

Fast ICA (Hyvarinen 1999), Recursive elimination (Guyon et al. 2002), Elastic net (Zou and Hastie 2005), 

Random forest (Liaw and Wiener 2002), Xgboost (Chen and Guestrin 2016), Multi-layer Perceptron (MLP) 

(Hinton 1990), Isotonic regression (De Leeuw 1977), Bootstrap (Chernick et al. 2011), Platt scaling (Platt 

et al. 1999)

Algorithms in bold are the most frequently selected in each stage

Imputation Feature selection Prediction Calibration

Median No selection Elastic net Isotonic regression

MICE PCA Random forest Bootstrap

MissForest Fast ICA Xgboost Platt scaling

GAIN Recursive elimination MLP
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Why not use survival analysis? Some readers might have noticed that our problem 

formalism is similar to survival analysis, which also deals with time-varying outcome 

(survival) and considers censored data. When developing CPAS, we have considered 

this class of models. In fact, we have used the Cox proportional hazard model as a base-

line benchmark (see Sect. 4). However, two factors discouraged us from further pursu-

ing survival models. Firstly, the available implementations of survival models are not 

as abundant as classifiers and they are often immature for industrial scale applications. 

Secondly, many modern machine-learning powered survival models do not make the 

proportional hazards assumption (Pölsterl et  al. 2016; Van Belle et  al. 2011; Hothorn 

et al. 2006). The expense of relaxing assumption is that these models are often not able 

to estimate the full survival function and measure the absolute risk at a given time. 

There are recent works in survival analysis trying to address this issue (Lee et al. 2019), 

but it is still an open research area.

Training the individualized risk predictor In training, we need to find the best pipeline 

configuration P∗

�∗
∈ P

�
 that empirically minimizes the J-fold cross-validation loss:

where L is the loss function (e.g. Brier score), and DP

N,t
[Train(j)] and DP

N,t
[Val(j)] are the 

training and validation splits of the patient-level dataset DP

N,t
 . Note that this is a very hard 

optimization problem due to three facts (1) the space of all pipeline configurations P
�
 has 

very high dimension, (2) the pipeline stages interact with each other and prevents the prob-

lem from being easily decomposable, and (3) evaluating the loss function via cross valida-

tion is a time-consuming operation.

(9)P∗

�∗
= argminP

�
∈P

�

J
∑

j=1

L
(

P
�
, D

P

N,t
[Train(j)], D

P

N,t
[Val(j)]

)

,

Predicted Hazard Function

 days after admission

Iterative
Imputer

No
Preprocess.

XGB
Classifier

Isotonic
Regression

Max itr: 10 N trees: 250
Learning rate: 0.1
Max depth: 3AutoPrognosis

Pipeline for 

Patient
Features

Pipeline for 

Fig. 2  Schematic depiction for the individualized risk predictor. A patient’s features are fed into multiple 

pipelines in parallel. Each pipeline estimates the hazard function ĥ(�) at a different time step � ∈ [1, H] . 

The pipeline for � = 14 is illustrated in more details in the figure. The pipeline configuration specifies the 

algorithms and the associated hyperparameters. The configurations are determined by AutoPrognosis using 

Eq. 9 and may vary across �
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Instead of relying on heuristics, we apply the state-of-the-art automated machine learning 

tool AutoPrognosis to configure all stages of the pipeline jointly (Alaa and van der Schaar 

2018). AutoPrognosis is based on Bayesian optimization (BO), an optimization framework 

that has achieved remarkable success in optimizing black-box functions with costly evalua-

tions as compared to simpler approaches such as grid and random search (Snoek et al. 2012). 

The BO algorithm used by AutoPrognosis implements a sequential exploration-exploitation 

scheme in which balance is achieved between exploring the predictive power of new pipelines 

and re-examining the utility of previously explored ones. To deal with high-dimensionality, 

AutoPrognosis models the “similarities” between the pipelines’ constituent algorithms via a 

sparse additive kernel with a Dirichlet prior. When applied to related prediction tasks, Auto-

Prognosis can also be warm-started by calibrating the priors using an meta-learning algorithm 

that mimics the empirical Bayes method, further improving the speed. For more technical 

details, we refer the readers to Alaa and van der Schaar (2018).

The AutoPrognosis framework has been successfully applied to building prognostic mod-

els for Cystic Fibrosis and Cardiovascular Disease (Alaa and van der Schaar 2018; Alaa et al. 

2019). Implemented as a Python module, it supports 7 imputation algorithms, 14 feature pro-

cessing algorithms, 20 classification algorithms, and 3 calibration methods; a design space 

which corresponds to a total of 5,880 pipelines. We selected a subset of most commonly used 

and well-understood algorithms for CPAS (Table 1), all of which have achieved considerable 

success in machine learning applications.

2.3  Trend forecast using hierarchical Gaussian process with compartmental prior

CPAS uses a hierarchical Gaussian process with compartmental prior (HGPCP) to forecast 

the trend of hospital admission. HGPCP is a Bayesian model that combines the data-driven 

Gaussian processes (GP) and the domain-specific compartmental models (Li and Muldowney 

1995; Rasmussen 2003).

The compartmental model is a family of time-honoured mathematical models designed 

by domain experts to model epidemics (Kermack and McKendrick 1927). We use a specific 

version to model hospital admission (Hethcote 2000; Osemwinyen and Diakhaby 2015). 

As illustrated in Fig.  3, the compartmental model partitions the whole population contain-

ing C
h
 individuals into disjoint compartments: Susceptible S

h
(t) , Exposed E

h
(t) , Infec-

tious I
h
(t) , Hospitalized H

h
(t) , and Recovered or died outside hospital R

h
(t) , for ∀h ≤ N . At 

any moment in time, the sum of all compartments is equal to the size of the population i.e. 

S
h
(t) + E

h
(t) + I

h
(t) + H

h
(t) + R

h
(t) = C

h
 for ∀t > 0 . As the pandemic unfolds, the sizes of 

the compartments change according to the following differential equations:

where �
h
 , �

h
 , �

h
 are hospital-specific parameters describing various aspects of the pan-

demic, and �
h
(t) is the contact rate parameter that varies across hospitals and time. Among 

all the parameters, the contact rate �
h
(t) is of special importance for two reasons: (1) �

h
(t) 

is the coefficient of the only non-linear term in the equation: S
h
⋅ I

h
 . Therefore the nonlinear 

dynamics of the system heavily depends on �
h
(t) . (2) The contact rate changes over time 

according to how much people travel and communicate. It is therefore heavily influenced 

by the various intervention policies.
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To model the time-varying contact rate, the upper layer of HGPCP utilizes a function 

f drawn from a GP prior with mean � and covariance kernel K
�
(⋅, ⋅) . The function f maps 

community mobility M
h
(t) to the time-varying contact rate �

h
(t) as follows:

where � and � are hyperparameters of the GP. It is worth noticing that the upper layer of 

HGPCP is shared across hospitals. With the contact rate given by Eq.  11, the differen-

tial Eq. (10) can be solved to obtain the trajectory of all compartments. We used Euler’s 

method (Hutzenthaler et al. 2011) to solve these equations but other solvers are possible. 

The lower layer of HGPCP consists of N independent GPs that use the hospitalized com-

partment H
h
(t) as a prior mean function and predicts hospital admissions over time:

where �′ denotes the kernel hyperparameters. We use the radial basis function as the kernel 

for both upper and lower layers. Combining Eqs. 10, 11, and 12, the prediction problem (6) 

can be formulated in the following posterior predictive distribution:

where H
h
∶= {H

h
(1),… , H

h
(t + T)} , �

h
∶= {�

h
(1),… , �

h
(t + T)} , and �

h
= (�

h
, �

h
, �

h
,��

h
) . 

In this equation, the GP posterior terms can be computed analytically (Rasmussen 2003) 

while the compartmental model term has no closed form solution due to its nonlinearity. 

Therefore, we evaluate the integral via Monte Carlo approximation and derive the mean 

and quantiles from the Monte Carlo samples.

(11)f ∼ GP(�, K�(⋅, ⋅)), �h(t) = f (Mh(t)),

(12)gh ∼ GP(Hh(t), K
�
�
h
(⋅, ⋅)), Ah(t) = gh(t), ∀h ≤ N

(13)

Â
h
[t ∶ t + T] = ∫ ℙ
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A

h
[t ∶ t + T] ||Ah

[1 ∶ t], H
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Fig. 3  Pictorial illustration of HGPCP. Left to right: The upper-layer GP f (⋅) models the contact rate �
h
(t) 

based on community mobility M
h
(t) . The compartmental model gives the deterministic trajectory of the 

five compartments based on �
h
(t) . The lower layer GP uses the hospitalized compartment H

h
(t) as prior and 

predicts the hospital admission
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What is the advantage over a standard GP? Compared with a standard zero-mean GP, 

HGPCP is able to use the domain knowledge encoded in the compartmental models to 

inform the prediction. Since the spread of a pandemic is a highly non-stationary process — 

after the initial phase of exponential growth, the trend flattens and gradually reaches satura-

tion, extrapolating observed data without considering the dynamics of the pandemic spread 

is likely to be misleading. The injection of domain knowledge is especially helpful at the 

early stage of the pandemic where little data are available.

What is the advantage over a compartmental model? Compared with the compartmen-

tal models, HGPCP uses the GP posterior to make prediction in a data-driven way. Since 

HGPCP only uses the compartmental trajectories as a prior, it is less prone to model mis-

specifications. Moreover, HGPCP is able to quantify prediction uncertainties in a princi-

pled way by computing the predictive posterior, whereas the compartmental models can 

only produce trajectories following deterministic equations. In capacity planning applica-

tions, the ability to quantify uncertainty is especially important.

Training HGPCP So far, we have assumed that the hyperparameters � = (�,�) of the 

upper layer GP are given. In practice, we optimize these hyperparameters by maximizing 

the log-likelihood function on the training data DA

N,t
:

and �∗ = argmax
�
L(DA

N,t
| �) . Since the integral in (14) is intractable, we resort to a vari-

ational inference approach for optimizing the model’s likelihood (Ranganath et al. 2014; 

Wingate and Weber 2013). That is, we maximize the evidence lower bound (ELBO) on 

(14) given by:

where ℚ(.) is the variational distribution parameterized by � with conditioning on 

M
h
[1 ∶ t] omitted for notational brevity. We choose a Gaussian distribution for ℚ(.) , which 

simplifies the evaluation the ELBO objective and its gradients. We use stochastic gradient 

descent via the ADAM algorithm to optimize the ELBO objective (Kingma and Ba 2014).

The trained HGPCP model can issue forecasts on hospital level. To obtain regional 

or national level forecast, denote the set of hospitals in the region r as H
r
 , and the 

regional forecast is obtained by taking summation of the constituent hospitals i.e. 

Â
r
(t) =

∑

h∈H
r

Â
h
(t) for ∀t ∈ (0, T].
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2.4  Agent-based simulation

The individualized risk predictor can be used to predict the ICU demand caused by the 

patients who are currently staying in the hospital and whose features X
i
 are known. How-

ever, the total ICU demand is also driven by the patients arriving at the hospital in the 

future whose features are currently unknown. From discussions with the stakeholders, we 

understand that the ICU demands from future patients are especially important for setting 

up new hospital wards. CPAS uses agent-based simulation (Railsback et al. 2006) to per-

form scenario analysis for future patients.

To estimate the ICU demand caused by future patients, we need to answer two ques-

tions: (1) how many new patients will be admitted to the hospital in the future? and (2) 

what will be the risk profile of these patients? The aggregated trend forecaster is precisely 

designed to answer the first question whereas the individualized risk predictor can answer 

the second question if the patient features were known. We can use the empirical joint 

feature distribution of the existing patients to approximate the distribution of the future 

patients. The empirical feature distribution is defined as p̂(X) =
∑NP

j=1
I(Xj = X)∕NP , where 

I(⋅) is the indicator function, Xj ∈ ℝ
D are the observed feature vectors and Np is the num-

ber of patients in the region of interest.

The algorithm is detailed in Algorithm 1. The simulator takes two sets of user inputs. 

The user first specifies the level of resolution (hospital, regional, or national) and chooses 

what hospital or region to examine from a drop down list. Next, the user specifies the 

future community mobility trend M(t) to reflect the government plan to maintain or easy 

social distancing. The default value of M(t) is a constant value given by the average over 

the last seven days.

In the simulation the aggregated trend forecaster first generates a forecast of daily hospi-

tal admissions A(t). It then generates a patient cohort with A(t) patients arriving at the hos-

pital on day t, whose features are sampled from distribution p̂(X) . Next, the individualized 

risk predictor P�

�
 obtains the calibrated ICU admission risk on the �-th day after hospital 

admission. Based on the risk scores, we take a Monte Carlo sample to decided when each 

patient will be admitted to ICU and update the total ICU inflow accordingly. The above 

procedure can be repeated many times to obtain the Monte Carlo estimate of variation in 
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ICU inflow. The ICU outflow due to discharge or death as well as ventilator usage can be 

derived in a similar fashion, and is omitted for brevity.

3  Training and deploying CPAS

3.1  Dataset

CPAS relies on three distinct sources of patient-level data, each covering a unique aspect of 

patient health condition (Fig. 4). CPAS also makes use of community mobility trend data 

to issue aggregated trend forecast. The details of these data sources are described in the 

following sub-sections. The summary statistics of the data sets as of May 20
th are shown in 

Fig. 4.

3.1.1  COVID-19 hospitalizations in England surveillance system (CHESS)

COVID-19 Hospitalizations in England surveillance system (CHESS) is a surveillance 

scheme for monitoring hospitalized COVID-19 patients. The scheme has been created in 

response to the rapidly evolving COVID-19 outbreak and has been developed by Public 

Health England (PHE). It has been designed to monitor and estimate the impact of COVID-

19 on the population in a timely fashion, to identify those who are most at risk and evaluate 

the effectiveness of countermeasures.

(a)

(b) (c)

Fig. 4  Illustration of the CPAS datasets and the training set up. a CHESS and ICNARC data are joined 

and linked to HES to form the hospital patient data (18,101 cases) and the ICU patient data (10,868 cases). 

AutoPrognosis uses these two patient level datasets to train the various predictive pipelines in the indi-

vidualized risk predictor. The aggregated hospital admission data together with the community mobility 

data empowers HGPCP to forecast the trend of admission. b The daily hospital admission, ICU admission, 

fatalities and discharges as recorded in the CPAS data set. c The prevalence of comorbidities and complica-

tions of hospitalized COVID-19 patients
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CPAS uses the de-identified CHESS data updated daily from 8th February (data collec-

tion start), which records COVID-19 related hospital and ICU admissions from 94 NHS 

trusts across England. The data set features comprehensive information on patients’ general 

health condition, COVID-19 specific risk factors (e.g. comorbidities), basic demographic 

information (age, sex, etc.), and tracks the entire patient treatment journey: when each 

patient was hospitalized, whether they were admitted to the ICU, what treatment (e.g. ven-

tilation) they received, and their mortality or discharge outcome.

3.1.2  Intensive care national audit and research centre database (ICNARC)

Intensive care national audit & research centre (ICNARC) maintains a database on patients 

critically ill with confirmed COVID-19. The data are collected from ICUs participating in 

the ICNARC Case Mix Programme (covering all NHS adult, general intensive care and 

combined intensive care/high dependency units in England, Wales and Northern Ireland, 

plus some additional specialist and non-NHS critical care units). CPAS uses the de-iden-

tified ICNARC data which contains detailed measurements of ICU patients’ physiological 

status (PaO2/FiO2 ratio, blood pH, vital signals, etc.) in the first 24 hours of ICU admis-

sion. It also records each patient’s organ support status (respiratory support, etc). ICNARC 

therefore provides valuable information about the severity of patient condition.

3.1.3  Hospital episode statistics (HES)

Hospital Episode Statistics (HES) is a database containing details of all admissions, A and 

E attendances and outpatient appointments at NHS hospitals in England. We retrieve HES 

records for patients admitted to hospital due to COVID-19. While the HES record contains 

a wide range of information about an individual patient, CPAS only makes use of the clini-

cal information about disease diagnosis. All other information is discarded during the data 

linking process to maximally protect privacy. HES is a valuable data source because it pro-

vides comprehensive and accurate information about patients’ pre-existing medical condi-

tions, which are known to influence COVID-19 mortality risk.

3.1.4  Community mobility reports

In addition to the above patient-level data, we also used the COVID-19 Community Mobil-

ity Reports produced by Google (Google 2020). The dataset tracks the movement trends 

over time by geography, across six different categories of places including (1) retail and 

recreation, (2) groceries and pharmacies, (3) parks, (4) transit stations, (5) workplaces, and 

(6) residential areas, resulting in a K = 6 dimensional time series of community mobility. 

It reflects the change in people’s behaviour in response to the social distancing policies. We 

use this dataset to inform the prediction of contact rates over time. The dataset is updated 

daily starting from the onset of the pandemic.

3.2  Training procedure

By linking the three patient-level data sources described in the last section, we create 

two data sets containing hospitalized and ICU patients respectively (Fig. 4). For the ICU 

patients, we use AutoPrognosis to train three sets of models for mortality prediction, dis-

charge prediction and ventilation prediction over a maximum time horizon of 30 days. For 
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hospitalized patients, we carry out a similar routine to train predictors for ICU admission. 

All the AutoPrognosis pipelines are then deployed to form the individualized risk predictor 

in CPAS. Furthermore, we aggregate the patient-level data to get the daily hospital admis-

sion on hospital level. The data set is then combined with the community mobility report 

data to train the aggregated trend forecaster.

To make sure CPAS uses the most up-to-date information, we retrain all models in 

CPAS daily. The re-training process is automatically triggered whenever a new daily batch 

of CHESS or ICNARC arrives. Data linking and pre-processing is carried out on a Spark 

cluster with 64 nodes, and usually takes less than an hour to complete. After that, model 

training is performed on a HPC cluster with 116 CPU cores and 348 GB memory, and typi-

cally finishes within three hours. Finally, the trained models are deployed to the production 

server and the older model files are archived.

4  Evaluation and performance monitoring

4.1  Offline evaluation

In the offline evaluation, we first validated two hypothesis about the individualized risk pre-

dictor: (1) using additional patient features improves risk prediction and (2) the AutoProg-

nosis pipeline significantly outperforms the baseline algorithms. We performed 10-fold 

cross validation on the data available as of March 30 (with 1200 patients in total) and eval-

uated the AUC-ROC score on the � = 7 day risk prediction. We compared AutoPrognosis 

to two benchmarks that are widely used in clinical research and Epidemiology: the Cox 

proportional hazard model (Cox 1972) and the Charlson comorbidity index (Charlson et al. 

1994). The results are shown in Table 2. We can clearly see that there is a consistent gain in 

predictive performance when more features are included in the AutoPrognosis model and 

AutoPrognosis significantly outperforms the two benchmarks.

Next, we turned to the aggregated trend forecaster and validated the following two 

hypothesis: (1) HGPCP outperforms the zero-mean GP due to a more sensible prior (the 

compartmental model), and (2) HGPCP outperforms the compartmental model because 

GP reduces the risk of model mis-specification. We evaluate the accuracy of the 7-day pro-

jections issued at three stages of the pandemic: before the peak of infections (March 23), in 

the midst of the peak (March 30), and in the “plateauing” stage (April 23). Accuracy was 

evaluated by computing the mean absolute error between true and predicted daily hospital 

admission throughout the forecasting horizon, i.e., 
∑7

t=1
�A

h
(t) − Â

h
(t)�∕7 . In Table 3 we 

Table 2  Performance in forecasting individualized risk profile using different feature sets and algorithms 

measured by AUC-ROC

The results in bold are significantly better than the rest

Model Feature ICU admission Mortality Ventilation

AutoPrognosis All features 0.835 ± 0.001 0.871 ± 0.002 0.771 ± 0.002

AutoPrognosis CHESS only 0.781 ± 0.002 0.836 ± 0.002 0.754 ± 0.003

AutoPrognosis Demographics 0.770 ± 0.002 0.799 ± 0.003 0.702 ± 0.003

Cox PH Model All features 0.771 ± 0.002 0.773 ± 0.003 0.690 ± 0.003

Charlson index – 0.556 ± 0.013 0.596 ± 0.002 0.530 ± 0.006



30 Machine Learning (2021) 110:15–35

1 3

report the performance for the five hospitals with most COVID-19 patients as well as the 

national level projection produced by aggregating all hospital level forecasts. We observe 

that HGPCP consistently outperforms the benchmarks on the national level across different 

stages of the pandemic. HGPCP also performs well on hospital level where the day-to-day 

fluctuation of ICU admission is bigger.

4.2  Online monitoring

It is vital to continuously monitor the performance after a machine-learning system is 

deployed. This is to prevent two possible scenarios (1) the gradual change in feature dis-

tribution worsens the predictive performance and (2) the breaking change in the upstream 

data pipelines causes data quality issues. Therefore, we always validate the model using 

a held-out set and record the performance whenever a model is re-trained. We have auto-

mated this process as part of the training procedure and developed a dashboard to visually 

track the performance over time.

5  Illustrative use case

Here we present an illustrative use case to demonstrate how CPAS works in real life. In this 

example, we show how the management of a particular hospital located in central London 

can use CPAS to plan ICU surge capacity for future patients before the peak of COVID-19. 

On March 23th, the hospital’s ICU capacity had almost been fully utilized, but the pan-

demic had not yet reached the peak (refer to Fig. 4). The hospital management was desper-

ate to know how many more patients would be admitted to the hospital and to the ICU in 

the coming weeks. They were planning to convert some of the existing general wards into 

ICU wards and, if necessary, to send some of the patients to the Nightingale hospital, a 

hospital specially constructed to support all NHS London hospitals in the surge of COVID-

19 (NHS 2020c). CPAS could help the management to estimate how many general wards 

to convert and how many patients to transfer.

Table 3  Performance in forecasting hospital admission

The candidate models are CPAS (HGPCP), GP (zero-mean GP) and CM (compartmental models). The first 

five rows refer to the performance in the five hospitals with most admitted patients. The last row refers to 

the national total admission. The lowest error for each task is bolded

Mar. 23 before peak Mar. 30 at peak Apr. 23 after peak

CPAS GP CM CPAS GP CM CPAS GP CM

STH 3.01 5.32 7.39 11.49 13.79 14.72 3.18 6.45 6.71

SGH 1.37 1.60 2.46  6.41 11.11 16.33 4.05 5.58 3.20

NPH 3.90 5.62 8.62 5.37 4.00 3.97 1.40 1.22 2.15

KCH 5.03 4.68 3.84 1.74 3.59 7.64 2.31 3.21 3.91

RLH 3.24 4.88 7.43 2.59 5.29 8.86 1.39 1.06 1.36

National 14.35 43.51 63.25 46.47 120.59 324.59 25.19 39.35 123.57
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Figure 5 presents the input interface of CPAS1. The user first informed the system that 

the simulation should be performed on hospital level. Since the peak of the pandemic had 

not occurred yet on March 23th, it is reasonable to assume that the lockdown would con-

tinue and the community mobility would maintain at the lockdown level. Therefore, the 

user selected the Extrapolation - Constant option for the community mobility trend. Alter-

natively, the user can specify their own community mobility projections by selecting User-

defined in the drop down and upload a file with the forecast numbers. CPAS displays the 

estimated feature distribution in the region of interest in the “Patient Cohort” section for 

reference.

The result of the simulation is shown in Fig. 6. The panel on the top projects that the 

ICU demand in the hospital would increase over the next two weeks as the pandemic pro-

gresses. The ICU capacity for thirty-five additional patients will be needed by mid April 

with the best scenario of 20 patients and the worst scenario of 50 patients. In reality, the 

hospital admitted 42 patients to the ICU in this period, which falls within the 95% confi-

dence region given by CPAS. With this estimation, the management decided that the hos-

pital could cope with the surge by converting existing general wards into ICU wards, and 

there was probably no need to transfer patients to the Nightingale hospital. This also turned 

out to be the case in reality.

The ICU demand projection above is driven by the aggregated hospital admission fore-

cast (Fig. 6 bottom left), which predicts a steady increase of hospital admissions (around 

50 per day) until early April when the trend starts to decline. The decline in admissions 

is caused by the social distancing policy and the lowered community mobility, which are 

assumed to persist throughout the simulation. The projection is also driven by the predic-

tions of individual risk profiles. The plot on bottom right shows the average risk profile of 

the patient cohort. There is significant risk for ICU admission from the first day of hos-

pitalization, whereas the risk for death and discharge increases over time starting from a 

small value. By presenting these intermediate results, CPAS shows more transparency in 

the overall ICU demand projection.

Fig. 5  The configuration interface of CPAS. The user enters the desired level of resolution and the region of 

interest. The user then inputs the assumed trend for future community mobility. The empirical feature distri-

bution in the region of interest is displayed below for reference

1 All figures presented in this section are based on developmental versions of CPAS. They are for illustra-

tive purposes only and do not represent the actual “look-and-feel” of CPAS in production.
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6  Lessons learned

AI and machine learning have certainly not moved slowly in bringing seismic change to 

countless areas including retail, logistics, advertising, and software development. But in 

healthcare, there is still great unexploited potential for systematic change and fundamen-

tal innovation. As in the CPAS project, we can use AI and machine learning to empower 

medical professionals by enhancing the guidance and information available to them.

Collaboration is one of the most important aspects of straddling the divide between 

machine learning research and healthcare applications. In the CPAS project, we work 

closely with clinicians and stakeholders because they bring in domain expertise to inform 

the formulation of the problem and the design of the system. Effective collaboration is a 

challenge as we are all highly specialized in our respective areas, with different ways of 

thinking and different professional languages and approaches. As a result, we must each 

make extra effort to reach the middle ground. But it’s a fascinating and invigorating way 

to work. Listening to clinicians and stakeholders can guide us to where problems and chal-

lenges actually lie, and then we can start being creative in trying to solve them. We found it 

is particularly helpful to build prototypes rapidly and get timely feedback from the collabo-

rators. Each prototype should clearly demonstrate what can be achieved and what assump-

tions are made. We can then iteratively find out what functionalities we should focus on 

most and what we can assume about the problem.

Linking and accessing data is another challenge in healthcare applications. In the CPAS 

project, we first surveyed the potential data sources and understand the associated cost, 

which includes the financial cost, the waiting time for approval, the engineering cost, and 

Fig. 6  The output interface of CPAS. CPAS displays the projected ICU demand with confidence intervals 

on the top. It then shows the intermediate prediction that leads to the projections. On the bottom-left, it 

shows the output of the aggregated trend forecaster. On the bottom-right, it shows the average risk profile 

for various outcomes given by the individualized risk predictor
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so on. After a thorough discussion with the collaborators, we prioritized what data to 

acquire first. It is often practical to start out with a single easy-to-access data source, and 

then expand the data sources as the system gets more adoption. The success of CPAS is 

greatly facilitated by the solid data infrastructure in the UK’s healthcare system. Initiatives 

such as CHESS play a vital role in the data-driven response to the pandemic.

Transparency and interpretability are crucial for high-stake machine learning applica-

tions. The reality is that most machine learning models can’t be used as-is by medical pro-

fessionals because, on their own, they are black boxes that are hard for the intended users 

to apply, understand, and trust. While interpretable machine learning (Ahmad et al. 2018) 

is still an open research area, CPAS explored two practical approaches to make a machine 

learning system more interpretable. The first approach is to break down the problem into a 

set of sub-problems. This divide-and-conquer approach allows the users to understand how 

the final answer is derived from the smaller problems. The second approach is to let the 

users autonomously explore different scenarios using simulation rather than presenting the 

results as the only possible answer. Scenario analysis also allows the uses to understand the 

level of uncertainty and sensitivity of the machine learning predictions.

Last but equally importantly, automated machine learning is a powerful tool for build-

ing large and complex machine learning systems. Most machine learning models cannot 

be easily used off-the-shelf with the default hyperparameters. Moreover, there are many 

machine learning algorithms to choose from, and selecting which one is best in a particu-

lar setting is non-trivial – the results depend on the characteristics of the data, including 

number of samples, interactions among features and among features and outcomes, as well 

as performance metrics used. In addition, in any practical application, we need entire pro-

cessing pipelines which involve imputation, feature selection, prediction, and calibration. 

AutoML is essential in order to enable machine learning to be applied effectively and at 

scale given the complexities stated above. In CPAS, we used AutoML to generate a large 

number of machine learning models with minimum manual tweaking. AutoML not only 

helps the CPAS models to issue more accurate predictions but also saves the developers 

manual work so that we can focus on the design and modelling aspects. In the future, we 

will also explore the usage of AutoML to address the temporal shift in the feature distribu-

tion (Zhang et al. 2019), and to model time series collected in the clinical setting (van der 

Schaar et al. 2020).
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