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ABSTRACT

With advances in next-generation sequencing tech-

nologies, numerous novel transcripts in a large num-

ber of organisms have been identified. With the

goal of fast, accurate assessment of the coding

ability of RNA transcripts, we upgraded the cod-

ing potential calculator CPC1 to CPC2. CPC2 runs

∼1000 times faster than CPC1 and exhibits supe-

rior accuracy compared with CPC1, especially for

long non-coding transcripts. Moreover, the model

of CPC2 is species-neutral, making it feasible for

ever-growing non-model organism transcriptomes.

A mobile-friendly web server, as well as a down-

loadable standalone package, is freely available at

http://cpc2.cbi.pku.edu.cn.

INTRODUCTION

Recent studies have well demonstrated that non-coding
RNAs (ncRNAs) are pervasively transcribed from plant to
animal genomes (1–4). Increasing evidences indicate that
these ncRNAs play critical roles in numbers of important
cellular processes, including transcriptional inhibition me-
diated by microRNAs (5), epigenetic inheritance by Piwi-
interacting RNAs (6), cell-cycle regulation (7) or even act-
ing as structural components in ribosomes (8).

With advances in next-generation sequencing technolo-
gies, numerous novel transcripts in a large number of diverse
organisms, including several non-model ones, have been dis-
covered in rapidly increasing RNA-seq data (9–12). Effec-
tive and ef�cient identi�cation of ncRNAs in the massive
dataset is an essential step for following-up function and
evolution studies, and demands a fast, accurate and species-
neutral assessment tool (13–19).
As a response to the challenge, we updated our Cod-

ing Potential Calculator (CPC) algorithm (20) to version 2.
Employing a novel discriminative model based on four se-
quence intrinsic features, CPC2 not only runs ∼1000 times
faster than CPC1 but is also more accurate. In addition,
CPC2 is species-neutral, making it more useful for the

ever-growing non-model organism transcriptomes. CPC2 is
available freely at http://cpc2.cbi.pku.edu.cn as both a web
server and a downloadable standalone package.

MATERIALS AND METHODS

To identify discriminative features, we �rst compiled a can-
didate list of sequence intrinsic features (i.e. features can be
derived from transcript sequence directly) based on litera-
ture survey (see Supplementary Table S1). A hierarchical
feature selection procedure was employed to identify effec-
tive features with recursive feature eliminationmethod (ran-
dom forest functions with 10-fold cross-validation, imple-
mentedwith the caret R package (21)) adopted in each stage
(see Supplementary Figure S1 for details). We identi�ed a
�nal set of four intrinsic features as Fickett TESTCODE
score, open reading frame (ORF) length, ORF integrity and
isoelectric point (pI). While the Fickett TESTCODE score
is derived from the weighted nucleotide frequency of the
inputted full length transcript (22), the rest of three fea-
tures (ORF length, ORF integrity and isoelectric point) are
calculated based on the longest putative ORF identi�ed in
silico (see http://cpc2.cbi.pku.edu.cn/help/feature selection.
php for the full candidate list as well as the script).
We then trained a support vector machine (SVM) model

using these four intrinsic features. The LIBSVM (23) pack-
age was employed to train an SVM model using the stan-
dard radial basis function kernel (RBF kernel) with the
training dataset containing 17 984 high-con�dent human
protein-coding transcripts and 10 452 non-coding tran-
scripts (18).
To evaluate the performance of CPC2 across species, we

further built an independent testing set for human, mouse,
zebra�sh, �y, worm and themodel plantArabidopsis.We se-
lected protein-coding and non-coding transcripts that met
rigorous criteria to obtain a testing set of high quality:
for the protein-coding testing set, we obtained all non-
predicted mRNAs from the RefSeq database (24) with pro-
tein sequences annotated by Swiss-Prot (25) and redun-
dant sequences (i.e identity ≥ 0.9) removed using CD-hit
with default parameters. Non-coding transcripts were ob-
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tained from the Ensembl (v87) (26) and EnsemblPlants
(v32) (26) databases with transcript status as ‘KNOWN’.
All sequences in training set were further excluded (Table 1).
The full training set and testing set are available for down-
loading as FASTA �les at http://cpc2.cbi.pku.edu.cn/help/
data set.php.
We employed standard performance measurements in-

cluding sensitivity, speci�city and accuracy, with protein-
coding calls de�ned as ‘positive’ and non-coding calls as
‘negative’. The abbreviations in the equations below are as
follows: FN, false negative; FP, false positive; TN, true neg-
ative; and TP, true positive.

Sensitivity =
TP

TP + FN
; Speci�city =

TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

Back-end of the CPC2 web server is implemented in
PHP running on Apache web server. The front-end in-
terface is powered by JavaScript libraries Bootstrap (http:
//getbootstrap.com/), JQuery (http://jquery.com/), Table-
cloth (http://cssglobe.com/lab/tablecloth/) as well as High-
charts (http://www.highcharts.com/).

RESULTS

CPC2 is fast, accurate and species-neutral

Given the large volume of transcriptome data generated by
next generation sequencing, the ef�ciency is becoming vital
for a useful tool in the real world. To measure the compu-
tational speed, we �rst randomly selected a sample of 200
sequences that consisted of 100 mRNAs and 100 lncRNAs
from the human testing dataset. CPC2 completed its anal-
ysis in 1.8 s, whereas CPC1 required >1000-fold time (2815
s) on Intel Xeon E7-8830 2.13GHz CPU in single thread
mode. To further evaluate the real world ef�ciency, we then
measured the computational speed on all the coding and
non-coding transcripts in Ensembl v87 (26) with gene and
transcript status annotated as ‘KNOWN’. This dataset con-
sists of 597 996 protein-coding transcripts and 55 277 non-
coding transcripts from 69 organisms, which is more simi-
lar to the circumstances of users’ input. Similar to previous
result, CPC2 showed a signi�cant speedup (42 min) than
CPC1 (4783 min).
In addition to being ef�cient, a sensible tool should pose

high accuracy in a robust and species-neutral fashion across
different organisms. Designed to use rather stringent crite-
ria for non-coding calls, the CPC1 exhibits high sensitivity
and relative poor speci�city. As many important biological
roles of long ncRNAs (lncRNAs) have been revealed by re-
cent studies performed in this decade (7), CPC2 adopted
a more balanced calling of protein-coding and non-coding
transcripts, which ismore suitable for current transcriptome
studies. To evaluate the performance across various species,
we ran both CPC1 and CPC2 against human, mouse, ze-
bra�sh, �y, worm and plant (Arabidopsis) testing set. The
CPC2 showed better overall accuracy (0.961) than of CPC1
(0.932) with amuchmore improved speci�city (0.970 versus
0.873) and a slightly lower sensitivity (0.952 versus 0.995).

A

B

 
 Dataset Size CPC2 CPC1 

Noncoding RNAs 
Small ncRNAs 20,649 20,649(100%) 20,457(99.1%) 

Long ncRNAs  22,028 20,754(94.2%) 16,793(76.2%) 

Coding RNAs mRNAs 40,341 38,400(95.2%) 40,150(99.5%) 

Overall 83,018 79,803(96.1%) 77,400(93.2%) 

Figure 1. Evaluation on accuracy of CPC1 and CPC2 in six species. (A)
The overall accuracy (B) the detailed accuracy in six organisms. The Long
ncRNAs were de�ned as non-coding RNAs longer than 200 nt.

In particular, the CPC2 exhibited superior accuracy (0.942)
for long non-coding transcripts, a newly discovered key reg-
ulators in several physiological and pathological processes
(27–30), than of CPC1 (0.762, Figure 1A). Further com-
parison with other popular tools (14,17,19) also con�rmed
CPC2′s superior performance (Supplementary Figure S2).

Even the underlying model in CPC2 was trained based
on transcript sequences from human only (the training set
used in CPC1 is consist of sequences from multiple organ-
isms), the CPC2 showed a more robust performance across
species, with accuracy varied from 0.937 to 0.991 (from
0.826 to 0.997 for CPC1, Figure 1B), which may partly due
to the fact that only sequence intrinsic features were em-
ployed in CPC2. In particular, while CPC1 shows higher
accuracy than CPC2 in Arabidopsis, the inter-species vari-
ance of accuracy of CPC2 (0.04%) is one order of magni-
tude lower than CPC1 (0.4%) (Figure 1B), a property that
we considered ‘species neutral’ (also see http://cpc2.cbi.pku.
edu.cn/help/species neutral.php for more details).

The web server of CPC2

For users to access CPC2 conveniently, we established a new
web portal at http://cpc2.cbi.pku.edu.cn/. Brie�y, the CPC2
web server accepts RNA transcripts as input and outputs
its coding probability with detailed supporting features for
the coding/non-coding call (Figure 2).

CPC2 web server currently supports both ‘interactive
mode’, in which the nucleotide sequences in FASTA format
can be directly copied and pasted into the input box at the
home page, and ‘batch mode’ in which users can upload a
local �le in either FASTA format or BED/GTF/GFF for-
mat. When a new analysis task is submitted, a unique ‘Task
ID’ (TID) will be assigned for tracking the analysis progress
and retrieving results later.
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Table 1. The independent testing set in human, mouse, zebra�sh, �y, worm and the model plant Arabidopsis thaliana

Dataset type Human Mouse Zebra�sh Fly Worm Arabidopsis

Coding 6142 10 638 2344 3680 3551 13 986
Non-coding 12 019 12 251 1528 3556 9470 3853

All testing sets are available for downloading as FASTA �le at http://cpc2.cbi.pku.edu.cn/help/data set.php.

Figure 2. Work�ow of the CPC2 web server.

As in CPC1, the results will be presented as an intu-
itive table online which can also be downloaded as a tab-
ular �le for further analysis (Figure 3A). In addition, de-
tailed information of each transcript is provided in a sep-
arated ‘detailed’ page, including a summary paragraph, a
graphic view of features’ distribution in known protein-
coding and non-coding transcripts and additional functions
(Figure 3B). More analysis such as querying against known
databases, re-analyzing in alternative methods and annotat-
ing functions can also be run performed for given transcript
(Figure 3C and D).
The CPC2 web server implemented a responsive layout,

enabling the optimal view for both desktop PCs and mobile
devices. A standalone package of CPC2 can also be freely
downloaded at http://cpc2.cbi.pku.edu.cn/download.php.

Example

We utilized online CPC2 on a human lncRNAMEG3 as an
example. After inputting its sequence, CPC2 predicted it as
a non-coding transcript (Figure 3A). By clicking the ‘View’
on the last column, more detailed information is shown.
The details page is divided into three parts. A description

of MEG3 summarizing its coding probability and feature
values is presented at the top (Figure 3B). In the middle
of this page, an interactive visualization of three support-
ing features including Fickett score, peptide length (synony-
mous with ORF length) and pI are provided. Taking the
graph of peptide length as an example, the black box in-
dicates that MEG3 has a peptide length of 106 aa and was

classi�ed as non-coding. In addition, the position ofMEG3
is noted in the background (Figure 3B). The blue area shows
the feature’s distribution in non-coding transcripts, whereas
the orange one represents protein coding transcripts. Pass-
ing the mouse over the distribution curve, the feature value
and transcripts frequency of the interval are displayed in a
textbox. The static visualizations can be easily downloaded
(Figure 3B).
At the bottom, CPC2 also provides additional func-

tions to facilitate the coding/non-coding classi�cation of
input sequences (Figure 3C). The �rst function is query-
ing the transcript against well-annotated databases, includ-
ing Swiss-Prot (24), RNAdb (31) and lncRNAdb (32) by
BLAST (33), to identify more evidence. By placing the
mouse over the results, users can view details of predicted
ORF and BLAST hits of MEG3 (Figure 3D). Moreover,
the user can also send sequences to alternative tools like
CPC1, CPAT and PORTRAIT for re-analysis through the
‘Re-analyze’ button.

SUMMARY

Employing a novel discriminative model, we upgraded our
CPC to version 2. CPC2 runs ∼1000 times faster than
CPC1. In addition, the CPC2 model is species-neutral,
making it useful for ever-growing non-model organism
transcriptomes and even transcriptomes of organisms that
are poorly annotated or lack genome assembly. CPC2 is
more accurate than CPC1, especially for long non-coding
transcripts. In addition, the online CPC2 provides an in-
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Figure 3. Screenshot of the CPC2 web server. (A) Summary tabular output with coding probability; (B) graphical view of features’ distribution in the
‘Details’ page; (C) more analysis for querying against known databases, re-analyzing in alternative methods and annotating functions; (D) the rendered
BLAST output including both ORF position and BLAST hits in queried databases.

formative graphic view of results and more integrated func-
tions. The web server is mobile-friendly andmore accessible
on mobile devices such as the iPad.
Independent of external resources, CPC2 adopted four

sequence intrinsic features that are easily comprehensible
and biologically meaningful. At the DNA level, the Fick-
ett score captures the position of each base favored in the
sequence (18). At the RNA level, ORF length and integrity
are powerful because the protein-coding transcript is more
likely to have a long and high-quality ORF. Moreover,
based on the assumption that the hypothetical peptide iden-
ti�ed in a non-coding transcript should have different chem-
ical properties than these real ones encoded by bona �de
coding sequences, we also added several peptide level fea-
tures into the candidate list, and eventually adopted pI in
the �nal SVM model.
Since the �rst release of CPC1 at 2007, number of

statistic-based tools have been developed to distinguish
non-coding and protein-coding transcripts based on mul-
tiple lines of evidences. Many of them show high levels
of accuracy (13–20). We hereby argue that the community
should, in the coming years, shift from continuous improve-

ment of discriminative performance to biological insights
revealed by their statisticalmodels whichmight further shed
light onto the ultimate discriminative mechanism used by
the Mother Nature.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors thankDrsChengLi, ZeminZhang and JianLu
at PekingUniversity for their helpful comments and sugges-
tions during the study.

FUNDING

National Key Research and Development Program
[2016YFC0901603]; China 863 Program [2015AA020108];
State Key Laboratory of Protein and Plant Gene Research;
National Program for Support of Top-notch Young Pro-
fessionals (to G.G.) (in part). Part of the analysis was

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
5
/W

1
/W

1
2
/3

8
3
1
0
9
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



W16 Nucleic Acids Research, 2017, Vol. 45, Web Server issue

performed on the Computing Platform of the Center for
Life Sciences of Peking University. Funding for open access
charge: National Key Research and Development Program
[2016YFC0901603].
Con�ict of interest statement.None declared.

REFERENCES

1. Eddy,S.R. (2001) Non-coding RNA genes and the modern RNA
world. Nat. Rev. Genet., 2, 919–929.

2. Fu,X.D. (2014) Non-coding RNA: a new frontier in regulatory
biology. Natl. Sci. Rev., 1, 190–204.

3. He,S., Liu,C., Skogerbo,G., Zhao,H., Wang,J., Liu,T., Bai,B.,
Zhao,Y. and Chen,R. (2008) NONCODE v2.0: decoding the
non-coding. Nucleic Acids Res., 36, D170–D172.

4. Mattick,J.S. and Makunin,I.V. (2006) Non-coding RNA. Hum. Mol.
Genet., 15, R17–R29.

5. Ambros,V. (2001) microRNAs: tiny regulators with great potential.
Cell, 107, 823–826.

6. Brennecke,J., Malone,C.D., Aravin,A.A., Sachidanandam,R.,
Stark,A. and Hannon,G.J. (2008) An epigenetic role for maternally
inherited piRNAs in transposon silencing. Science, 322, 1387–1392.

7. Rinn,J.L. and Chang,H.Y. (2012) Genome regulation by long
noncoding RNAs. Annu. Rev. Biochem., 81, 145–166.

8. Cole,J.R., Chai,B., Marsh,T.L., Farris,R.J., Wang,Q., Kulam,S.A.,
Chandra,S., McGarrell,D.M., Schmidt,T.M., Garrity,G.M. et al.
(2003) The Ribosomal Database Project (RDP-II): previewing a new
autoaligner that allows regular updates and the new prokaryotic
taxonomy. Nucleic Acids Res., 31, 442–443.

9. Cahais,V., Gayral,P., Tsagkogeorga,G., Melo-Ferreira,J.,
Ballenghien,M., Weinert,L., Chiari,Y., Belkhir,K., Ranwez,V. and
Galtier,N. (2012) Reference-free transcriptome assembly in
non-model animals from next-generation sequencing data.Mol. Ecol.
Resour., 12, 834–845.

10. Ellegren,H. and Galtier,N. (2016) Determinants of genetic diversity.
Nat. Rev. Genet., 17, 422–433.

11. Junttila,S. and Rudd,S. (2012) Characterization of a transcriptome
from a non-model organism, Cladonia rangiferina, the grey reindeer
lichen, using high-throughput next generation sequencing and EST
sequence data. BMC Genomics, 13, 575–584.

12. Schunter,C., Vollmer,S.V., Macpherson,E. and Pascual,M. (2014)
Transcriptome analyses and differential gene expression in a
non-model �sh species with alternative mating tactics. BMC
Genomics, 15, 167–179.

13. Arrial,R.T., Togawa,R.C. and Brigido,M.M. (2009) Screening
non-coding RNAs in transcriptomes from neglected species using
PORTRAIT: case study of the pathogenic fungus Paracoccidioides
brasiliensis. BMC Bioinformatics, 10, 239–247.

14. Hu,L., Xu,Z., Hu,B. and Lu,Z.J. (2017) COME: a robust coding
potential calculation tool for lncRNA identi�cation and
characterization based on multiple features.Nucleic Acids Res., 45, e2.

15. Li,A., Zhang,J. and Zhou,Z. (2014) PLEK: a tool for predicting long
non-coding RNAs and messenger RNAs based on an improved
k-mer scheme. BMC Bioinformatics, 15, 311–320.

16. Lin,M.F., Jungreis,I. and Kellis,M. (2011) PhyloCSF: a comparative
genomics method to distinguish protein coding and non-coding
regions. Bioinformatics, 27, i275–i282.

17. Sun,L., Luo,H., Bu,D., Zhao,G., Yu,K., Zhang,C., Liu,Y., Chen,R.
and Zhao,Y. (2013) Utilizing sequence intrinsic composition to
classify protein-coding and long non-coding transcripts. Nucleic
Acids Res., 41, e166.

18. Wang,L., Park,H.J., Dasari,S., Wang,S., Kocher,J.-P. and Li,W.
(2013) CPAT: Coding-Potential Assessment Tool using an
alignment-free logistic regression model. Nucleic Acids Res., 41, e74.

19. Washietl,S., Findeiss,S., Muller,S.A., Kalkhof,S., von Bergen,M.,
Hofacker,I.L., Stadler,P.F. and Goldman,N. (2011) RNAcode: robust
discrimination of coding and noncoding regions in comparative
sequence data. RNA, 17, 578–594.

20. Kong,L., Zhang,Y., Ye,Z.-Q., Liu,X.-Q., Zhao,S.-Q., Wei,L. and
Gao,G. (2007) CPC: assess the protein-coding potential of transcripts
using sequence features and support vector machine. Nucleic Acids
Res., 35, W345–W349.

21. Kuhn,M. (2008) Building Predictive Models in R Using the caret
Package. Journal of Statistical Software, 28,
https://www.jstatsoft.org/article/view/v028i05.

22. Fickett,J.W. (1982) Recognition of protein coding regions in DNA
sequences. Nucleic Acids Res., 10, 5303–5318.

23. Chang,C.-C. and Lin,C.-J. (2011) LIBSVM : a library for support
vector machines. ACM Trans. Intell. Syst. Technol., 2, 27.

24. O’Leary,N.A., Wright,M.W., Brister,J.R., Ciufo,S., Haddad,D.,
McVeigh,R., Rajput,B., Robbertse,B., Smith-White,B., Ako-Adjei,D.
et al. (2016) Reference sequence (RefSeq) database at NCBI: current
status, taxonomic expansion, and functional annotation. Nucleic
Acids Res., 44, D733–D745.

25. Boutet,E., Lieberherr,D., Tognolli,M., Schneider,M., Bansal,P.,
Bridge,A.J., Poux,S., Bougueleret,L. and Xenarios,I. (2016)
UniProtKB/Swiss-Prot, the Manually Annotated Section of the
UniProt KnowledgeBase: how to Use the Entry View.Methods Mol.
Biol., 1374, 23–54.

26. Yates,A., Akanni,W., Amode,M.R., Barrell,D., Billis,K.,
Carvalho-Silva,D., Cummins,C., Clapham,P., Fitzgerald,S., Gil,L.
et al. (2016) Ensembl 2016. Nucleic Acids Res., 44, D710–D716.

27. Kitagawa,M., Kitagawa,K., Kotake,Y., Niida,H. and Ohhata,T.
(2013) Cell cycle regulation by long non-coding RNAs. Cell Mol. Life
Sci., 70, 4785–4794.

28. Lee,J.T. and Bartolomei,M.S. (2013) X-inactivation, imprinting, and
long noncoding RNAs in health and disease. Cell, 152, 1308–1323.

29. Ng,S.Y., Johnson,R. and Stanton,L.W. (2012) Human long
non-coding RNAs promote pluripotency and neuronal
differentiation by association with chromatin modi�ers and
transcription factors. EMBO J., 31, 522–533.

30. Park,J.Y., Lee,J.E., Park,J.B., Yoo,H., Lee,S.H. and Kim,J.H. (2014)
Roles of long non-coding RNAs on tumorigenesis and glioma
development. Brain Tumor Res. Treat., 2, 1–6.

31. Pang,K.C., Stephen,S., Dinger,M.E., Engstrom,P.G., Lenhard,B. and
Mattick,J.S. (2007) RNAdb 2.0–an expanded database of mammalian
non-coding RNAs. Nucleic Acids Res., 35, D178–D182.

32. Quek,X.C., Thomson,D.W., Maag,J.L., Bartonicek,N., Signal,B.,
Clark,M.B., Gloss,B.S. and Dinger,M.E. (2015) lncRNAdb v2.0:
expanding the reference database for functional long noncoding
RNAs. Nucleic Acids Res., 43, D168–D173.

33. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs. Nucleic Acids
Res., 25, 3389–3402.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
5
/W

1
/W

1
2
/3

8
3
1
0
9
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://www.jstatsoft.org/article/view/v028i05

