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Abstract

Summary: The development of the Infinium HumanMethylation450 BeadChip enables epigenome-

wide association studies at a reduced cost. One observation of the 450K data is that many CpG

sites the beadchip interrogates have very large measurement errors. Including these noisy CpGs

will decrease the statistical power of detecting relevant associations due to multiple testing correc-

tion. We propose to use intra-class correlation coefficient (ICC), which characterizes the relative

contribution of the biological variability to the total variability, to filter CpGs when technical repli-

cates are available. We estimate the ICC based on a linear mixed effects model by pooling all the

samples instead of using the technical replicates only. An ultra-fast algorithm has been developed

to address the computational complexity and CpG filtering can be completed in minutes on a

desktop computer for a 450K data set of over 1000 samples. Our method is very flexible and can ac-

commodate any replicate design. Simulations and a real data application demonstrate that our

whole-sample ICC method performs better than replicate-sample ICC or variance-based method.

Availability and implementation: CpGFilter is implemented in R and publicly available under

CRAN via the R package ‘CpGFilter’.

Contact: chen.jun2@mayo.edu or xlin@hsph.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in genomic technologies have enabled researchers to

conduct large-scale studies of human disease-associated epigenetic vari-

ation, specifically variation in DNA methylation. Such epigenome-wide

association studies (EWAS) have helped elucidate the non-genetic

determinants of human disease (Rakyan et al., 2011). The Illumina

Infinium HumanMethylation450 Beadchip, which interrogates the

methylation level of more than 450K CpG sites throughout the human

genome, has been increasingly popular in large-scale EWAS due to its

good genome coverage, high reproducibility and lower cost (Sandoval
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et al., 2011). One observation of the 450K data is that many CpGs have

relatively larger technical variability compared with their biological vari-

ability, which are results of either large absolute technical variability (the

methylation level cannot be measured accurately) or lower biological

variability (many CpGs are constitutively methylated or unmethylated).

These CpGs are less informative and including these CpGs will reduce

the statistical power to discover relevant CpG sites by unnecessarily

increasing the number of statistical tests. Hence, CpG filtering could po-

tentially boost statistical power for underpowered studies. Traditional

variance-based CpG filter is based on the total variability, which is the

sum of the biological variability (signal) and technical variability (noise).

However, we are more interested in retaining CpGs with relatively large

biological variability instead of total variability. As with any hybridiza-

tion-based array technology, CpG probes differ in their technical vari-

ability, possibly due to inexact probe sequence match, cross-

hybridization and local secondary structures (Price et al., 2013).

Therefore, large total variability does not necessarily reflect large biolo-

gical variability. Without technical replicates, the assessment of technical

variability is difficult and we can only rely on the total variability to filter

CpGs. Fortunately, most EWAS have included some technical replicates

to assess various sources of batch effects. We can therefore use these rep-

licates to assess technical variability. We propose to use intra-class correl-

ation coefficient (ICC), which is defined as the ratio of biological

variability to total variability, to filter CpG probes (Donner et al., 1980).

We extend technical replicate-based method by Meng et al. (2010) and

Bose et al. (2014) and estimate ICC using a linear mixed effects model

(LMM) by pooling all samples including the unreplicated ones.

Compared with the method using technical replicates only, our method

can result in more efficient ICC estimate since the unreplicated samples

provide significant amount of information about the biological variabil-

ity. Our method can accommodate any type of replicate design including

unbalanced design. We have implemented an ultra-fast algorithm to fit

LMM in linear computational time and the algorithm is highly scalable.

2 Model

Suppose we have m independent biological samples measuring

the methylation of p CpGs. Assume each biological sample repli-

cates niði ¼ 1; . . . ;mÞ times, totaling n ¼
Xm

i¼1
ni samples. Note in

most studies, the majority of the samples are not replicated and the

majority of ni ¼ 1. Before ICC estimation, we recommend that data

normalization and batch correction be performed to remove system-

atic technical variability. Denote yij as the methylation M-value of a

given CpG for ith biological sample and its jth technical replicate.

We model yij using an LMM

yij ¼ lþ ni þ eij i ¼ 1; . . . ;m and j ¼ 1; . . . ;ni (1)

where �ij � Nð0;r2� Þ and ni � Nð0;r2nÞ represent technical and bio-

logical variability respectively. Denote yi ¼ ðyi1; . . . ; yini Þ and

Y ¼ ðy1; y2; . . . ; ymÞ
T , we then have

Y � MVN l;VÞ;ð

with the mean l ¼ ðl; l; � � � ; lÞT and the covariance matrix V

V ¼ r2
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where r2 ¼ r2� þ r2n is the total variance and q ¼ r2n=ðr
2
� þ r2nÞ is the

ICC. When r2� is the same for all CpGs, the filtering procedure based

on the total variance is the same as that based on ICC. However, as

in all array-based technologies, different probes have different meas-

urement error levels, and ICC is generally a more appropriate meas-

ure than total variance. Fitting a mixed effects model with existing

general-purpose algorithms is computationally intensive and is not

scalable with the ever increasing sample size and CpG sites for gen-

ome-wide association studies. The major contribution of this paper

is therefore the development of an ultra-fast algorithm based on

maximum likelihood estimation, utilizing the special structure of the

covariance matrix (block-diagonality and compound symmetry

structure). The computational complexity is O(np) and scalable

with the sample size and CpG number. The detailed algorithm is

included in the Supplementary Note S1.

3 Results

We compare our whole-sample ICC method to the replicate-sample

ICC method by Bose et al. (2014) as well as the total variance-based

method using simulations. We simulate 1000 CpGs and 1000 inde-

pendent samples, among which 10 samples are replicated twice. Let

rn � Uniformð0:5; 8:0Þ and r� � Uniformð0:25; 2:0Þ. We then simu-

late the methylation M-values based on the model (1) and rank these

CpGs based on ICC or variance after applying the three alternatives.

We calculate the Spearman correlation between the resulted ranking

and the ranking based on the simulated true q’s, which is assumed

to be the best. Simulations are repeated 100 times. Figure 1A shows

our whole-sample ICC method produces invariably better ranking

than the other two methods (median correlation 0.80 vs. 0.70 and

0.58). We next study the effects of ICC-based CpG filtering on the

type I error and power of association tests using realistic simulations

(Supplementary Note S2). CpGs with small ICCs will have no or lit-

tle chance of showing significance, and removing these CpGs will

enrich signals against a background of noise. As expected, using

Bonferroni correction and false discovery rate control for multiple

comparison correction, the proposed method has achieved better

power than the replicate-sample ICC method, while controlling the

type I error at the desired level. Simulation also suggests at least six

technical replicate pairs to achieve good results.

We apply our method to a cleaned 450K dataset of 482985

methylation sites from buffy coat leukocytes of 559 males and 10

technical replicate pairs from the Normative Aging Study (Marioni

et al., 2015). We conduct an epigenome-wide cross-sectional ana-

lysis of age (median 72, range 55–100 years) based on a linear

model, adjusting for subject characteristics, estimated cell type pro-

portions and technical covariates. Strict Bonferroni correction is
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Fig. 1. Performance of whole-sample ICC method. (A) Comparison of CpG

ranking performance of three competing methods based on simulated data.

(B) The distribution of whole-sample ICCs for (Bonferroni) significant and

non-significant CpGs based on real data
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used to select ‘significant’ CpG sites. Clearly, these sites are dramat-

ically enriched in large ICC values (Fig. 1B). We see that 96.7% of

the sites associated with age come from those with an ICC greater

than the median (0.55). We also see 138 562 sites with an estimated

ICC of zero, indicating much larger technical variability (measure-

ment error) compared with their biological variability. In compari-

son with the ICC method, if we had only used the sites with total

variance above the median, we would have captured only 93% of

the sites associated with age in the full analysis (Supplementary Fig.

S1). In general, an ICC cutoff of around 0.5 provides a good trade-

off between loss of potential significant CpG sites due to filtering

and gain of power due to reduction of multiple testing burden

(Supplementary Fig. S1).
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