
CPI2: CPU performance isolation for shared compute clusters

Xiao Zhang Eric Tune Robert Hagmann Rohit Jnagal Vrigo Gokhale John Wilkes
Google, Inc.

{xiaozhang, etune, rhagmann, jnagal, vrigo, johnwilkes}@google.com

Abstract
Performance isolation is a key challenge in cloud computing.
Unfortunately, Linux has few defenses against performance
interference in shared resources such as processor caches
and memory buses, so applications in a cloud can experi-
ence unpredictable performance caused by other programs’
behavior.

Our solution, CPI2, uses cycles-per-instruction (CPI) data
obtained by hardware performance counters to identify prob-
lems, select the likely perpetrators, and then optionally throt-
tle them so that the victims can return to their expected be-
havior. It automatically learns normal and anomalous behav-
iors by aggregating data from multiple tasks in the same job.

We have rolled out CPI2 to all of Google’s shared com-
pute clusters. The paper presents the analysis that lead us to
that outcome, including both case studies and a large-scale
evaluation of its ability to solve real production issues.

1. Introduction
Google’s compute clusters share machines between appli-
cations to increase the utilization of our hardware. We pro-
vision user-facing, latency-sensitive applications to handle
their peak load demands, but since it is rare for all the ap-
plications to experience peak load simultaneously, most ma-
chines have unused capacity, and we use this capacity to run
batch jobs on the same machines. As a result, the vast major-
ity of our machines run multiple tasks (Figure 1). The num-
ber of tasks per machine is likely to increase as the number
of CPU cores per machine grows.

Unfortunately, interference can occur in any processor re-
source that is shared between threads of different jobs, such
as processor caches and memory access-paths. This inter-
ference can negatively affect the performance of latency-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c© 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

0 10 20 30 40 50 60 70 80 90 100
0%

20%

40%

60%

80%

100%

Number of tasks per machine

C
D

F

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0%

20%

40%

60%

80%

100%

Number of threads per machine

C
D

F
(b)

Figure 1: The number of tasks and threads running on a
machine, as cumulative distribution functions (CDFs).

sensitive applications: an internal survey elicited examples
such as “latency for one task skyrocketed for the period dur-
ing which a batch job was running on the machine” and
“1/66 of user traffic for an application in a cluster had a la-
tency of more than 200 ms rather than 40ms for more than
1 hr”. Predictable, low latency is key to end-user satisfac-
tion, so this is a real problem: engineers are paged when an
important task or job becomes a victim of such interference.

The current state of performance isolation in commodity
Linux operating system kernels gives us limited options:
we can tolerate the poor performance (undesirable), grant
additional resources to the victim applications (wasteful, and
since most Linux kernels do not manage shared processor
resources like caches and memory controllers, it might not
fix the problem), or grant the victims dedicated, unshared
resources (even more wasteful). None of these choices are
attractive.

Fortunately, applications designed for large-scale com-
pute clusters often have hundreds to thousands of similar
tasks, so it is possible to use a statistical approach to find per-
formance outliers (which we call victims), and address them
by reducing interference from other tasks (we call such tasks

379

antagonists even though the interference may be accidental).
Finding such outliers requires a metric that is relatively sta-
ble across well-behaved executions of applications, and is
well-correlated with the bad behavior caused by antagonists.
An application’s cycles per instruction (CPI) is such a met-
ric: most latency-sensitive applications in our compute clus-
ters have fairly consistent CPIs across tasks and time, pro-
vided the CPI is averaged over a period that is much longer
than the time to perform a single user-facing transaction or
query, and the CPI calculations are done separately for each
processor type.

This paper describes CPI2, a system that builds on the
useful properties of CPI measures to automate all of the
following:

1. observe the run-time performance of hundreds to thou-
sands of tasks belonging to the same job, and learn to
distinguish normal performance from outliers;

2. identify performance interference within a few minutes
by detecting such outliers;

3. determine which antagonist applications are the likely
cause with an online cross-correlation analysis;

4. (if desired) ameliorate the bad behavior by throttling or
migrating the antagonists.

The result is that troublesome performance interference
can be detected and acted on, which makes it possible to
continue to share resources between applications, and main-
tain high utilization levels. A prototype of CPI2 has already
been deployed in Google’s compute clusters.

The contributions of this paper are to demonstrate the via-
bility of CPI as an appropriate measure in this environment;
describe the structure of the CPI2 system; and show that it
works by studies from production systems.

2. Background
In Google’s cluster management system, both latency-sensitive
and batch jobs are comprised of multiple tasks, each of
which is mapped to a Linux process tree on a machine.
All the threads of a task run inside the same resource-
management container (a cgroup [27]), which provides lim-
its on the amount of CPU and memory the task can use. Jobs
with many tasks are the norm: 96% of the tasks we run are
part of a job with at least 10 tasks, and 87% of the tasks are
part of a job with 100 or more tasks. Tasks in the same job
are similar: they run the same binary, and typically process
similar data.

A typical web-search query involves thousands of ma-
chines working in parallel [6, 19, 29, 25], each one contribut-
ing some portion of the final result. An end-user response
time beyond a couple of hundred milliseconds can adversely
affect user experience [33], so replies from leaves that take
too long to arrive are simply discarded, lowering the quality
of the search result and wasting the resources spent to gen-

erate them. Reducing the performance variation that results
from imperfect isolation is one way to minimize this prob-
lem.

Even MapReduce [12, 18] applications can benefit: a
typical MapReduce job doesn’t finish until all its processing
has been completed, so slow shards will delay the delivery
of results. Although identifying laggards and starting up
replacements for them in a timely fashion [39, 3] often
improves performance, it typically does so at the cost of
additional resources. And it doesn’t always help: consider
the case of a slow storage server, where adding another map
task that reads from it will make things worse. Better would
be to eliminate the original slowdown.

Each of our clusters runs a central scheduler and admis-
sion controller that ensures that resources are not oversub-
scribed among the latency-sensitive jobs, although it spec-
ulatively over-commits resources allocated to batch ones.
Overcommitting resources is a form of statistical multiplex-
ing, and works because most jobs do not use their maxi-
mum required resources all the time. If the scheduler guesses
wrong, it may need to preempt a batch task and move it to
another machine; this is not a big deal – it’s simply another
source of the failures that need to be handled anyway for
correct, reliable operation.

Jobs are classified and prioritized into “production” and
“non-production” by users or the framework that runs them
(e.g., MapReduce jobs are batch by default). In one typical
cluster, 7% of jobs run at production priority and use about
30% of the available CPUs, while non-production priority
jobs consume about another 10% CPU [30].

Although severe resource interference between tasks is
relatively rare, the scale of the compute load at Google
means that it does happen, and sometimes causes bad per-
formance. Tracking down the root cause of such problems
consumes a great deal of effort, since poor performance iso-
lation is just one possible cause amongst many.

CPI2 improves behavior of latency-sensitive jobs when
they experience interference by: detecting CPU performance
isolation incidents, automatically identifying which jobs are
causing the problem, and (optionally) shielding victim jobs
by throttling the antagonists. CPI2 is one of many techniques
to reduce or compensate for variability in response time,
which becomes increasingly important at scale [11].

Our goal is to identify inter-job CPU interference so that
it can be addressed by throttling. We do not attempt to deter-
mine which processor resources or features are the point of
contention; that typically requires low-level hardware event
profiling as well as human analysis, and is beyond the scope
of this work. Nor do we attempt to address interference on
other shared resources such as network and disk. We fo-
cus on CPU interference because we find enough examples
where this is a problem to make it worthwhile.

The remainder of the paper is structured as follows. It
starts by showing that CPI is a well-behaved metric with

380

0 20 40 60 80 100 120
1X

1.2X

1.4X

1.6X

1.8X

2X

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

Time (minutes)

IPS

TPS

1X 1.2X 1.4X 1.6X 1.8X
1X

1.2X

1.4X

1.6X

1.8X

2X

N
o
rm

a
liz

e
d
 T

P
S

Normalized IPS

Figure 2: Normalized application transactions per second
(TPS) and instructions per second (IPS) for a representa-
tive batch job: (a) normalized rates against running time;
(b) scatter plot of the two rates, which have a correlation
coefficient of 0.97. Each data point is the mean across a
few thousand machines over a 10 minute window. The data
is normalized to the minimum value observed in the 2-hour
collection period.

good predictive powers (section 3) and that it is useful for
finding antagonists (section 4) before describing how we
handle those antagonists (section 5). Section 6 describes
our experience of deploying CPI2 in Google’s production
clusters and section 7 evaluates its effectiveness via a large-
scale experiment. We discuss related work (section 8) and
future work (section 9 before summarizing our conclusions
in section 10.

3. CPI as a metric
Our system relies on cycles per instruction (CPI) measures
as a performance indicator for detecting interference. In this
section, we explain that choice, and argue that CPI correlates
well with observed application behavior.

CPI can be measured easily and cheaply on existing hard-
ware and doesn’t require application-level input. But is it
useful for performance-interference detection with the kinds
of applications that run in cloud computing clusters? There
are a few potential concerns:

• CPI might not be well correlated with application-level
behavior. We show that it is.

• The number and mix of instructions required to accom-
plish a fixed amount of work may vary between tasks of
the same job, or over time in one task (e.g. due to just-in-
time compilation or synchronization overheads). In prac-
tice, we have not found this to be an issue.

0 4 8 12 16 20 24
1X

1.2X

1.4X

1.6X

1.8X

2X

N
o
rm

a
liz

e
d
 S

lo
w

d
o
w

n

Time in hour

CPI

Latency

1X 1.2X 1.4X 1.6X 1.8X 2X
1X

1.1X

1.2X

1.3X

1.4X

1.5X

Normalized Latency

N
o
rm

a
liz

e
d
 C

P
I

Figure 3: Normalized application request latency and CPI
for a leaf node in a user-facing web-search job: (a) request
latency and CPI versus time; (b) request latency versus CPI;
the correlation coefficient is 0.97. The latency is reported by
the search job; the CPI is measured by CPI2. The results are
normalized to the minimum value observed in the 24-hour
sample period.

• CPI only shows a symptom, not the root cause. Yes, but
it doesn’t really matter: treating the symptom can restore
good performance.

• CPI doesn’t measure network or disk interference effects.
True. Other techniques are needed to detect and handle
I/O-interference. But there are enough examples of CPU
interference to make it worth addressing.

In support of the first point, consider Figure 2, which
compares an application-specific measure of throughput
(transactions per second, TPS) and CPU instructions per
second (IPS) for a 2600-task batch job. The transaction rate
is reported by the job; the CPU instruction rate is calculated
by dividing the observed CPU cycle speed by the observed
CPI. The rates track one another well, with a coefficient of
correlation of 0.97.

Figure 3 shows data for average CPI and request latency
in a latency-sensitive application (a web-search leaf node),
with similar results. Again, we see a coefficient of correla-
tion of 0.97.

The CPI is a function of the hardware platform (CPU
type). Figure 4 shows data for CPI and request-latency of in-
dividual tasks in three web-search jobs on two different plat-
forms; the CPU clock speed was not changed in these exper-
iments. Two of the jobs are fairly computation-intensive and
show high correlation coefficients (0.68–0.75), but the third
job exhibits poor correlation because CPI does not capture
I/O behavior: it is a web-search root node, whose request
latency is largely determined by the response time of other
nodes, not the root node itself.

381

1.0 1.1 1.2 1.3
1

1.2

1.4

1.6

1.8

N
o

rm
a

liz
e

d
 L

a
te

n
c
y

Normalized CPI

(a)

1.0 1.2 1.4 1.6
1

1.2

1.4

1.6

1.8

N
o

rm
a

liz
e

d
 L

a
te

n
c
y

Normalized CPI

(b)

1.0 1.15 1.3 1.45
1

1.5

2

2.5

N
o

rm
a

liz
e

d
 L

a
te

n
c
y

Normalized CPI

(c)

Figure 4: Normalized request latency and CPI of tasks in
three web-search jobs: (a) a leaf node; (b) an intermediate
node; (c) a root node. Each point represents a 5-minute sam-
ple of a task’s execution. Different colors indicate different
hardware platforms.

6am 6pm 6am 6pm 6am 6pm 6am 6pm 6am 6pm
1

1.2

1.4

1.6

1.8

2

Tue. Wed. Thu. Fri. Sat.

Time of day

A
v
g
 C

P
I

Figure 5: Average CPI across thousands of web-search leaf
tasks over time. The first day is 2011.11.01.

CPI changes slowly over time as the instruction mix that
gets executed changes. Figure 5 plots the mean CPI of the
tasks of a web-search job over 5 days. It demonstrates a
diurnal pattern, with about a 4% coefficient of variation
(standard deviation divided by mean). Similar effects have
been observed before (e.g., [25]).

We conclude that there is a positive correlation between
changes in CPI and changes in compute-intensive applica-
tion behavior, and that CPI is a reasonably stable measure
over time.

3.1 Collecting CPI data
In order to use CPI as a predictive metric, we need to collect
it from all the machines in a cluster. This section describes
how we do that.

Figure 6 shows our CPI pipeline: CPI data is gathered
for every task on a machine, then sent off-machine to a ser-
vice where data from related tasks is aggregated. The per-
job, per-platform aggregated CPI values are then sent back

agent
task
task
task

agent
task
task
task

agent
task
task

agent
task
task
task

agent
task
task
task

CPI sample-
aggregator

cluster
scheduler

victim

CPI samples

smoothed,
averaged,
CPI specs

machines

Figure 6: The CPI2 data pipeline.

to each machine that is running a task from that job. Anoma-
lies are detected locally, which enables rapid responses and
increases scalability.

CPI sampling CPI data is derived from hardware counters,
and is defined as the value of the CPU CLK UNHALTED.REF

counter divided by the INSTRUCTIONS RETIRED counter.
These are counted simultaneously, and collected on a per-
cgroup basis. (Per-CPU counting wouldn’t work because
several unrelated tasks frequently timeshare a single CPU
(hardware context). Per-thread counting would require too
much memory: running thousands of threads on a machine
is not uncommon (figure 1b).)

The CPI data is sampled periodically by a system daemon
using the perf event tool [13] in counting mode (rather
than sampling mode) to keep overhead to a minimum. We
gather CPI data for a 10 second period once a minute; we
picked this fraction to give other measurement tools time
to use the counters. The counters are saved/restored when
a context switch changes to a thread from a different cgroup,
which costs a couple of microseconds. Total CPU overhead
is less than 0.1% and incurs no visible latency impact to our
users.

A cluster typically contains several thousand machines;
the CPI samples are collected from all the machines by a per-
cluster data-gathering system, and sent back to a centralized
component for further data aggregation. The data gathered
for each task consists of the following fields:

string jobname;

string platforminfo; // e.g., CPU type

int64 timestamp; // microsec since epoch

float cpu_usage; // CPU-sec/sec

float cpi;

CPI data aggregation Most jobs are structured as a set
of identical tasks, and their CPIs are similar (see Table 1
for some examples). Although individual latency-sensitive
requests may have noticeably different CPIs, these variations
are smoothed out over the 10s sample period.

Many of our clusters contain multiple different hardware
platforms (CPU types) which will typically have different

382

Job CPI tasks
Job A 0.88 ± 0.09 312
Job B 1.36 ± 0.26 1040
Job C 2.03 ± 0.20 1250

Table 1: CPI values (mean and standard deviation) of a
few representative latency-sensitive jobs, and the number of
tasks they contain.

CPIs for the same workload, so CPI2 does separate CPI
calculations for each platform a job runs on.

Many production jobs run for a long time, so it is straight-
forward to acquire CPI samples from them to build a model
of their behavior. Other jobs run repeatedly, and have sim-
ilar behavior on each invocation, so historical CPI data has
significant value: if we have seen a previous run of a job, we
don’t have to build a new model of its CPI behavior from
scratch.

The data aggregation component of CPI2 calculates the
mean and standard deviation of CPI for each job, which is
called its CPI spec. This information is updated every 24
hours (we plan to increase the frequency to hourly). The
result is the following data for each job/hardware-platform
combination:

string jobname;

string platforminfo; // e.g., CPU type

int64 num_samples;

float cpu_usage_mean; // CPU-sec/sec

float cpi_mean;

float cpi_stddev;

Since the CPI changes only slowly with time (see Fig-
ure 5), the CPI spec also acts as a predicted CPI for the nor-
mal behavior of a job. Significant deviations from that be-
havior suggest an outlier, which may be worth investigating.

Because the important latency-sensitive applications typ-
ically have hundreds to thousands of tasks and run for many
days or weeks, it is easy to generate tens of thousands of
samples within a few hours, which helps make the CPI spec
statistically robust. Historical data about prior runs is incor-
porated using age-weighting, by multiplying the CPI value
from the previous day by about 0.9 before averaging it with
the most recent day’s data. We do not perform CPI manage-
ment for applications with fewer than 5 tasks or fewer than
100 CPI samples per task.

4. Identifying antagonists
The process of determining the likely cause of a performance
problem proceeds in stages. CPI data for every task in a job
is gathered once a minute and compared against the job’s
predicted CPI. If the observed CPI is significantly larger than
the prediction, it is flagged; if this happens often enough for
a task, we look for possible correlations with an antagonist.
If that succeeds we report an incident and initiate actions to

1 1.5 2 2.5 3
0%

1%

2%

3%

4%

5%

6%

7%

 <−− Fitted GEV function

S
a

m
p

le
 P

e
rc

e
n

ta
g

e

CPI

 <−− µ

 <−− µ+σ

 <−− µ+2σ

 <−− µ+3σ

Figure 7: CPI distribution for a web-search job in a cluster
running on thousands of machines of the same type over a 2-
day period. The graph includes more than 450k CPI samples
and has mean µ = 1.8 and standard deviation σ = 0.16.
We also show the best-fit generalized extreme value curve
GEV (1.73,0.133,−0.0534).

address the situation. The rest of this section describes the
details of this process.

4.1 Detecting performance anomalies
To avoid a central bottleneck, CPI values are measured and
analyzed locally by a management agent that runs in every
machine. We send this agent a predicted CPI distribution
for all jobs it is running tasks for, as soon as a robust CPI
prediction is available, and update it as needed.

Figure 7 shows a measured CPI distribution from a web-
search job. The shape has a skewed distribution: the right-
most tail is longer than the leftmost one since bad perfor-
mance is relatively more common than exceptionally good
performance. We fitted the data against normal, log-normal,
Gamma, and generalized extreme value (GEV [15]) distri-
butions; the last one fit the best.

A CPI measurement is flagged as an outlier if it is larger
than the 2σ point on the predicted CPI distribution; this
corresponds to about 5% of the measurements. We ignore
CPI measurements from tasks that use less than 0.25 CPU-
sec/sec since CPI sometimes increases significantly if CPU
usage drops to near zero (see case 3 in section 6.1).

To reduce occasional false alarms from noisy data, a task
is considered to be suffering anomalous behavior only if it
is flagged as an outlier at least 3 times in a 5 minute window.

4.2 Identifying antagonists
Once an anomaly is detected on a machine, an attempt is
made to identify an antagonist that is causing the perfor-
mance problem. To prevent the analysis itself from disturb-
ing the system, at most one of these attempts is performed
each second.

383

An active scheme might rank-order a list of suspects
based on heuristics like CPU usage and cache miss rate,
and temporarily throttle them back one by one to see if
the CPI of the victim task improves. Unfortunately, this
simple approach may disrupt many innocent tasks. (We’d
rather the antagonist-detection system were not the worst
antagonist in the system!) Instead, we use a passive method
to identify likely culprits by looking for correlations between
the victim’s CPI values and the CPU usage of the suspects;
a good correlation means the suspect is highly likely to be a
real antagonist rather than an innocent bystander.

The antagonist correlation is calculated as follows. Sup-
pose we have a time window [T1,Tn] (we typically use a
10-minute window). Let {c1,c2, ...,cn} be CPI samples for
the victim V and cthreshold be the abnormal CPI thresh-
old for V. Let {u1,u2, ...,un} be the CPU usage for a sus-
pected antagonist A, normalized such that ∑

n
1 ui = 1. Set

correlation(V,A) = 0 and then, for each time-aligned pair of
samples ui and ci:

if (ci > cthreshold) then

correlation(V,A) += ui ∗ (1−
cthreshold

ci
)

else if (ci < cthreshold) then

correlation(V,A) += ui ∗ (
ci

cthreshold
−1).

The final correlation value will be in the range [-1, 1]. In-
tuitively, correlation increases if a spike of the antagonist’s
CPU usage coincides with high victim CPI, and decreases if
high CPU usage by the antagonist coincides with low vic-
tim CPI. A single correlation-analysis typically takes about
100µs to perform.

The higher the correlation value, the greater the accuracy
in identifying an antagonist (section 7). In practice, requiring
a correlation value of at least 0.35 works well.

This algorithm is deliberately simple. It would fare less
well if faced with a group of antagonists that together cause
significant performance interference, but which individually
did not have much effect (e.g., a set of tasks that took turns
filling the cache). In future work, we hope to explore other
ways of decreasing the number of indeterminate cases, such
as by looking at groups of antagonists as a unit, or by com-
bining active measures with passive ones.

5. Dealing with antagonists
What should we do once we have identified one or more
antagonists for a victim task? The first thing to note is that
the antagonist’s performance may also be impacted – i.e., it
probably experiences interference from the “victim”, which
could itself be classified as an antagonist. Our policy is
simple: we give preference to latency-sensitive jobs over
batch ones.

If the suspected antagonist is a batch job and the victim is
a latency-sensitive one, then we forcibly reduce the antago-
nist’s CPU usage by applying CPU hard-capping [37]. This
bounds the amount of CPU a task can use over a short pe-
riod of time (e.g., 25 ms in each 250 ms window, which cor-
responds to a cap of 0.1 CPU-sec/sec). Performance caps are
currently applied for 5 minutes at a time, and we limit the an-
tagonist to 0.01 CPU-sec/sec for low-importance (“best ef-
fort”) batch jobs and 0.1 CPU-sec/sec for other job types.
Google’s batch frameworks (e.g., MapReduce) have built-
in mechanisms to handle stragglers, so they are already de-
signed to handle this case. The values chosen for the caps
and the duration are easily-changed parameters.

CPI2 will do hard-capping automatically if it is confident
in its antagonist selection and the victim job is eligible for
protection (e.g., because it is latency-sensitive, or because
it is explicitly marked as eligible). When this happens, we
expect the victim’s performance to improve (i.e., see a lower
CPI), but if the victim’s CPI remains high, then we return for
another round of analysis – presumably we picked poorly the
first time. Since throttling the antagonist’s CPU reduces it’s
correlation with the victim’s CPI, it is not likely to get picked
in a later round of antagonist-identification.

We provide an interface to system operators so they can
hard-cap suspects, and turn CPI protection on or off for an
entire cluster. Since our applications are written to tolerate
failures, an operator may choose to kill an antagonist task
and restart it somewhere else if it is a persistent offender
– our version of task migration. We don’t automatically do
this because it would cause additional work (the moved task
would have to recompute data since its last checkpoint), and
it can take tens of seconds to load a task’s binary onto a new
machine.

To allow offline analysis, we log and store data about
CPIs and suspected antagonists. Job owners and adminis-
trators can issue SQL-like queries against this data using
Dremel [26] to conduct performance forensics, e.g., to find
the most aggressive antagonists for a job in a particular time
window. They can use this information to ask the cluster
scheduler to avoid co-locating their job and these antagonists
in the future. Although we don’t do this today, the data could
be used to reschedule antagonists to different machines, con-
fine the most offensive ones to a subset of machines, and
automatically populate the scheduler’s list of cross-job in-
terference patterns.

Table 2 summarizes the parameters of our system. Some
are chosen for design convenience (e.g., hard-capping pa-
rameters) or because they represent a deliberately conser-
vative policy (e.g., the values we picked for the sampling
rates), others (e.g., the antagonist correlation threshold) are
based on the experimental evaluation described in section 7.

384

Parameter Value
Collection granularity task
Sampling duration 10 seconds
Sampling frequency every 1 minute
Aggregation granularity job × CPU type
Predicted CPI recalculated every 24 hours (goal: 1 hour)
Required CPU usage ≥ 0.25 CPU-sec/sec
Outlier threshold 1 2σ (σ : standard deviation)
Outlier threshold 2 3 violations in 5 minutes
Antagonist correlation threshold 0.35
Hard-capping quota 0.1 CPU-sec/sec
Hard-capping duration 5 mins

Table 2: CPI2 parameters and their default values.

6. Case studies
Because of the way our cluster scheduler places tasks onto
machines, each machine is likely to be running a different
mix of jobs. This created a natural testbed when we deployed
CPI2 in Google’s production clusters. In this section, we
present some case studies of the results. At the time of
these experiments, most throttling was done manually by our
system operators in response to outputs from CPI2.

6.1 Effectiveness of the antagonist identification
algorithm

We present four representative case studies to demonstrate
the effectiveness of our antagonist identification algorithm.

Case 1 On 16 May 2011 it was reported that the perfor-
mance of a latency-sensitive task on a machine was signif-
icantly worse than that of 37 other similar tasks on other
machines with the same platform type (outlier CPI threshold
2.0). Meanwhile, our system detected a CPI increase for that
particular job that began at 2am on the same day, reaching
5.0 at 2:30am. The affected machine had 57 tenants running
on it; our antagonist-selection algorithm identified the 5 sus-
pects shown in figure 8(a).

In this example, CPI2 identified the video-processing an-
tagonist as the one to suppress, because it has the highest
correlation and is the only non-latency-sensitive task among
the top 5 suspects. In support of this analysis, figure 8(b)
shows the CPI of the victim task and the CPU usage of the
video-processing task. The two curves match well. In this
case, we were early in the deployment of CPI2, and a system
administrator took its advice and killed the video-processing
task, after which the victim’s performance returned to nor-
mal.

Case 2 On 26 Sep 2011 our system detected that the CPI of
one of 354 latency-sensitive tasks in a job was consistently
exceeding its CPI-outlier threshold (1.7). The victim task
was running on a machine with 42 other tenants; the top 5
suspects had CPI correlations of 0.31–0.34, and CPI2 again
picked a best-effort batch job as the one to throttle.

Job Type Correlation
video processing batch 0.46
content digitizing latency-sensitive 0.44
image front-end latency-sensitive 0.43
BigTable tablet latency-sensitive 0.39
storage server latency-sensitive 0.39

0

1.2

2.4

3.6

4.8

6

C
P

I
o

f
v
ic

ti
m

2:00 2:05 2:10 2:15 2:20 2:25 2:30
0

1.4

2.8

4.2

5.6

7

C
P

U
 u

s
a

g
e

 o
f

a
n

ta
g

o
n

is
t

Figure 8: Case 1: (a) The top 5 antagonist suspects. (b) The
CPI of the victim and the CPU usage of the top antagonist.

0

0.6

1.2

1.8

2.4

3
C

P
I
o
f
v
ic

ti
m

14:3014:4515:0015:1515:3015:4516:0016:1516:30
0

1

2

3

4

5

C
P

U
 u

s
a
g
e
 o

f
a
n
ta

g
o
n
is

t

Figure 9: Case 2: CPI of the victim and CPU usage of
the prime suspect antagonist (a best-effort batch job). CPU
hard-capping was applied from 15:35 to 15:49 (indicated by
the shaded area).

This time we applied CPU hard-capping to the antagonist
for about 15 minutes. As shown in figure 9, the CPU usage
of the antagonist was drastically reduced while it was hard-
capped, and the victim’s CPI improved from about 2.0 to
about 1.0. Once the hard-capping stopped and the antagonist
was allowed to run normally, the victim’s CPI rose again.
We conclude that hard-capping is a useful tool, and that CPI2

had correctly identified the problem’s cause.

Case 3 On 26 May 2011 our system detected that the CPI
of a front-end web service task was fluctuating from about
3 to about 10. It was running on a machine with 28 other
tenants, but the highest correlation value produced by our
algorithm was only 0.07, so CPI2 took no action.

385

Further investigation revealed that the varying CPI was
due to a bimodal CPU usage by the “victim”. Figure 10
shows that high CPI corresponds to periods of low CPU
usage, and vice versa. This pattern turns out to be normal
for this application. The minimum CPU usage threshold
described in section 4.1 was developed to filter out this kind
of false alarm.

0

3

6

9

12

C
P

I

14:00 14:10 14:20 14:30 14:40 14:50 15:00
0

0.1

0.2

0.3

0.4

C
P

U
 u

s
a
g
e

Figure 10: Case 3: the CPI and CPU usage of the “victim”:
the CPI changes are self-inflicted.

Case 4 On 4 Aug 2011 CPI2 spotted a user-facing service
task that consistently crossed its CPI threshold of 1.05 and
identified the 9 suspected antagonists shown in figure 11(a).

In this case, only one antagonist was eligible for throttling
(scientific simulation), since it was the only non-latency-
sensitive task. As shown in figure 11(b), our first attempt to
throttle the batch job had barely any effect on the victim’s
CPI. A second try produced a modest improvement: the
victim’s CPI dropped from 1.6 to 1.3. The correct response
in a case like this would be to migrate the victim to another
machine.

In summary, we believe that our correlation technique
is a good way to quantify the likelihood of a suspected
antagonist being the real culprit, and that hard-capping is an
effective way of addressing the underlying problem.

6.2 Antagonists’ tolerance to CPU hard-capping
Many best-effort jobs are quite robust when their tasks ex-
perience CPU hard-capping: the tasks enter a “lame-duck”
mode and offload work to others. Once hard-capping ex-
pires, they resume normal execution. Figure 12(a) shows the
victim’s CPI dropping while the antagonist is throttled, and
for a while afterwards; in this case we throttled the antag-
onist twice. Figure 12(b) shows the behavior of the antago-
nist. During normal execution, it has about 8 active threads.
When it is hard-capped, the number of threads rapidly grows
to around 80. After the hard-capping stops, the thread count
drops to 2 (a self-induced “lame-duck mode”) for tens of
minutes before reverting to its normal 8 threads.

On the other hand, some tasks don’t tolerate CPU hard-
capping, preferring to terminate themselves if their perfor-

Job Type Correlation
a production service latency-sensitive 0.66
compilation latency-sensitive 0.63
security service latency-sensitive 0.58
statistics latency-sensitive 0.53
data query/analysis latency-sensitive 0.53
maps service latency-sensitive 0.43
image render latency-sensitive 0.37
ads serving latency-sensitive 0.37
scientific simulation batch 0.36

0

0.5

1

1.5

2

C
P

I
o

f
v
ic

ti
m

16:15 16:30 16:45 17:00 17:15 17:30 17:45
0

0.5

1

1.5

2

C
P

U
 u

s
a

g
e

 o
f

a
n

ta
g

o
n

is
t

Figure 11: Case 4: (a) The top 9 antagonist suspects. (b)
CPI of the victim and CPU usage of the throttled suspect
antagonist (scientific simulation). CPU hard-capping was
applied twice: from 16:49 to 16:59 and from 17:14 to 17:24,
indicated by shaded area.

0

0.6

1.2

1.8

2.4

C
P

I
o

f
v
ic

ti
m

0

20

40

60

80

#
 o

f
th

re
a

d
s

13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30
0

0.2

0.4

0.6

0.8

C
P

U
 u

s
a

g
e

 o
f

a
n

ta
g

o
n

is
t

13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30
0

0.2

0.4

0.6

0.8

C
P

U
 u

s
a

g
e

Figure 12: Case 5: (a) CPU usage of an antagonist
(replayer-batch) and CPI of a victim (a query serving ser-
vice). (b) CPU usage and thread count for the antagonist.
Shading shows when the antagonist CPU is hard-capped.

mance drops too far, for too long, in the hope that they will
be rescheduled onto a different machine with better perfor-
mance. Figure 13 shows an example. The throttled antago-
nist is a task from a MapReduce job that survived the first

386

hard-capping (perhaps because it was inactive at the time)
but during the second one it either quit or was terminated by
the MapReduce master.

0

0.5

1

1.5

2

2.5

C
P

I
o

f
v
ic

ti
m

16:15 16:25 16:35 16:45 16:55 17:05 17:15 17:25
0

3

6

9

12

15

C
P

U
 u

s
a

g
e

 o
f

a
n

ta
g

o
n

is
t

Figure 13: Case 6: CPU usage of a throttled suspect an-
tagonist (a MapReduce worker) and the CPI of a victim (a
latency-sensitive service). The MapReduce batch survived
the first throttling (from 16:48 to 16:53, indicated by shaded
area) but exited abruptly during the second throttling (from
17:12 to 17:17, indicated by shaded area).

In our experiments we hard-capped the antagonists to
only 0.01 CPU-sec/sec. That may be too harsh; a feedback-
driven throttling that dynamically set the hard-capping target
would be more appropriate; this is future work. At the other
extreme, we have also discussed extending CPI2 so that if
throttling didn’t work, it would ask the cluster scheduler to
kill and restart an antagonist task on another machine.

7. Large-scale evaluation
The measurement part of CPI2 has now been rolled out
to all of Google’s production machines. It is identifying
antagonists at an average rate of 0.37 times per machine-
day: that’s a few thousand times per day in a cluster like the
one analyzed here [30].

At the time of writing, the enforcement part of CPI2 is not
widely deployed (due to a deliberately conservative rollout
policy), so to evaluate what enforcement would do if it were
more widely deployed, we periodically look for recently-
reported antagonists and manually cap their CPU rate for 5
minutes, and examine the victim’s CPI to see if it improves.
We collected data for about 400 such trials and present our
analysis below.

7.1 Is antagonism correlated with machine load?
It might be thought that antagonists occur more frequently,
and have larger effects, on overloaded machines. However,
our data does not support this.

Figure 14 shows machine CPU utilization and victim CPI
relative to the job’s mean at the moment when an antagonist
was reported. Antagonism is not correlated with machine
load: it happens fairly uniformly at all utilization levels and

0 20 40 60 80 100
0

0.5

1

C
o

rr
e

la
ti
o

n

Machine CPU utilization (%)

(a)

0 20 40 60 80 100
0

0.5

1

Machine CPU utilization (%)

C
D

F

(b)

0 20 40 60 80 100
0

2X

4X

6X

8X

10X

12X

Machine CPU utilization (%)

N
o

rm
a

liz
e

d
 C

P
I

(c)

0 2X 4X 6X 8X 10X 12X
0

0.5

1

Normalized CPI

C
D

F

(d)

w. antagonist

w.o. antagonist

Figure 14: CPU utilization, antagonist detection, and in-
crease in CPI. (a) Calculated antagonist correlation versus
observed CPU utilization. (b) CDF of observed CPU uti-
lization on the machine. (c) Observed victim CPI divided by
the job’s mean CPI versus the observed CPU utilization. (d)
CDFs of observed CPI divided by the job’s mean CPI, in
cases where an antagonist was identified and when no antag-
onist could be identified. All but graph (d) show data points
sampled at the time when an antagonist was detected.

the extent of damage to victims is also not related to the
utilization.

Figure 14(d) shows CDFs of CPIs when an antagonist
was reported versus when no antagonist was reported. It
shows that CPI2 is indeed capturing cases where CPI has
increased and that the increase has quite a long tail.

7.2 Accuracy of antagonist identification
To evaluate the quality of our algorithm to detect antagonists,
we look at the true and false positive rates for the detector.
To do this, we compare the victim’s CPI when an antagonist
was first reported and the victim CPI that resulted when the
antagonist was throttled. If the latter is smaller (by some
margin) than the former, we say it is a true positive; if the
latter is larger by the same margin, we say it is a false
positive; any other case is considered noise. A natural choice
of margin is the standard deviation (cpi stddev) in the CPI
spec.

Our workload is divided into two priority bands (produc-
tion and non-production), and we break down our results the
same way in Figure 15. The production jobs show a much
better true positive rate than non-production ones. We think
this is because non-production jobs’ behaviors are less uni-
form (e.g., engineers testing experimental features) so it is
harder to identify performance fluctuations due to interfer-
ence.

387

0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100%

Correlation threshold

T
ru

e
/F

a
ls

e
 p

o
s
it
iv

e
 r

a
te

s

(a)

0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Correlation threshold

R
e
la

ti
v
e
 C

P
I

(b)

0 0.5 1
0

0.2

0.4

0.6

0.8

1.0

1.2

Relative CPI

R
e
la

ti
v
e
 L

3
 m

is
s
 r

a
te

(c)

True (nonproduction)

False (nonproduction)

True (production)

False (production)

Nonproduction

Production

Figure 15: Antagonist-detection accuracy for all jobs. (a)
Detection rates versus the antagonist correlation thresh-
old value. (b) Observed relative CPI for true-positive cases
versus antagonist correlation. (c) The relative L3 cache
misses/instruction versus relative CPI for the true-positive
cases. A relative rate is calculated by dividing the rate dur-
ing throttling by the rate seen before throttling begins. We
did not collect antagonist correlation values larger than 0.4
for non-production jobs in (a) and (b).

Based on these results, declaring an antagonist only when
the detector correlation is 0.35 or above seems a good thresh-
old. Using it, throttling just the single most-suspected antag-
onist reduces the victim CPI to 0.82× (non-production jobs)
and 0.52× (production jobs) its pre-throttling value in the
case of a true positive (Figure 15(b)).

We looked at correlations between CPI improvement and
several memory metrics such as L2 cache misses/instruction,
L3 misses/instruction, and memory-requests/cycle, and found
that L3 misses/instruction shows strongest correlation (with
0.87 linear correlation coefficient in Figure 15(c)).

Figure 16(a) shows a true positive rate in identifying
the right antagonist of ∼70% for production jobs. This is
independent of the antagonist correlation value when it is
above a threshold of 0.35. Figure 16(b) suggests that an
anomalous event should not be declared until the victim has
a CPI that is at least 3 standard deviations above the mean.

7.3 Benefits to victim jobs
A victim’s relative CPI (the CPI during throttling divided by
the CPI before it) provides a useful measure of how much the
victim’s performance is improved by throttling. Figure 16(c)
shows that it is significantly lower than 1 across a wide range
of CPI degradation values (CPI before throttling divided by
mean CPI).

Figure 16(d) shows that the median victim production
job’s CPI is reduced to 0.63× it’s pre-throttling value when

0.35 0.4 0.45 0.5
0%

20%

40%

60%

80%

100%

Correlation threshold

T
ru

e
/F

a
ls

e
 p

o
s
it
iv

e
 r

a
te

s (a)

True

False

2X 5X 8X 11X 14X
0%

20%

40%

60%

80%

100%

CPI increase (in stddevs)

T
ru

e
/F

a
ls

e
 p

o
s
it
iv

e

(b)

True

False

0 2X 4X 6X 8X 10X
0

0.5

1.0

1.5

2.0

CPI degradation

R
e

la
ti
v
e

 C
P

I

(c)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative CPI

C
D

F

(d)

Figure 16: Antagonist-detection accuracy and CPI improve-
ment for production jobs. (a) Detection rates versus the an-
tagonist correlation threshold value. (b) Detection rates ver-
sus how much the CPI increases, expressed in standard de-
viations. (c) Observed relative victim CPI (see Figure 15)
versus the victim’s CPI degradation (CPI before throttling
divided by the job’s mean CPI). (d) CDF of victim’s relative
CPI. The antagonist correlation threshold is 0.35 in (b), (c)
and (d).

throttling the top antagonist suspect, including both true and
false positive cases.

8. Related Work
The pure-software approach taken by CPI2 complements
work in the architecture community on cache usage moni-
toring and partitioning (e.g., [35, 36, 9, 42, 4, 32]). It has
one major advantage: we can deploy it now, on existing com-
modity hardware.

CPI2 is part of a larger body of work on making the
performance of applications in shared compute clusters more
predictable and scalable. For example, Q-cloud [28] aims
to provide a QoS-aware cloud for applications by profiling
applications’ performance in a standalone mode and using
that to provide a baseline target when consolidating them
onto a shared host.

Alameldeen et al. [1] argue that IPC (the inverse of CPI)
is not a good performance metric because changes in instruc-
tion count might have little effect on the amount of useful
work a user program actually accomplishes. This was not the
case for our production jobs. Where CPI2 uses CPI increases
to indicate conflicts, other work has used application-level
metrics, which may be more precise but are less general and
may require application modifications. For example, Mantri
[3] looks for MapReduce stragglers, which it identifies using
progress reported by the MapReduce job, so that it can du-

388

plicate or restart them. PRESS and CloudScale [16, 34] use
a combination of application-level signals and CPU usage
data to identify and control usage-driven performance inter-
ference. We do not have a universal definition of a standard
application transaction, but even we did, it would be a large
effort to change all the user programs to report against it.

Google-Wide Profiling (GWP) [31] gathers performance-
counter sampled profiles of both software and hardware per-
formance events on Google’s machines. It is active on a tiny
fraction of machines at any time, due to concerns about the
overhead of profiling. In contrast, CPI2 uses hardware per-
formance counters in counting mode, rather than sampling,
which lowers the cost of profiling enough that it can be en-
abled on every shared production machine at Google at all
times.

HiTune [10] uses similar instrumentation techniques to
GWP, but focuses on building a high-level dataflow-based
model of application behavior. It helps application develop-
ers identify problems in their deployments, but it doesn’t au-
tomatically identify antagonists and deal with them.

Mars et al. [23] focused on detecting when cache con-
tention happens, rather than who causes contention. We go
further by selecting an antagonist out of tens of candidates,
and our solution applies whatever the type of CPU resource
contention.

Kambadur et al. [21] collected per-CPU samples at mil-
lisecond granularity and analyzed interference offline. Our
per-task CPI samples are aggregated over a few seconds and
antagonist identification is conducted online.

CPI2 uses hard-capping to control antagonists, motivated
by observations that adjusting CPU scheduling can achieve
fair cache sharing among competing threads [14]. An alter-
native would be to use hardware mechanisms like duty-cycle
modulation [41]. This offers fine-grain control of throttling
(in microseconds by hardware gating rather than millisec-
onds in the OS kernel scheduler), but it is Intel-specific and
operates on a per-core basis, forcing hyper-threaded cores to
the same duty-cycle level, so we chose not to use it.

Similarly, CPI2 consciously uses a simple metric (CPI)
for its input, rather than probing for the root cause. This
could certainly be done: for example, Zhang et al. [40] used
memory reference counts to approximate memory band-
width consumption on SMP machines; West et al. [38] used
cache miss and reference counts to estimate cache occu-
pancy of competing threads on multicore machines; VM3

[20] profiled applications’ cache-misses per instruction to
estimate effective cache sizes in a consolidated virtual ma-
chine environment; Cuanta [17] introduced a cache loader
micro-benchmark to profile application performance under
varying cache-usage pressure; and Blagodurov [7] and Zhu-
ravlev [43] applied heuristics based on cache miss rates
to guide contention-aware scheduling. Koh et al. [22] and
Matthews et al. [24] studied performance interference of co-
hosting multiple VMs on a single physical machine. Instead,

CPI2 focuses on managing the effects of interference and
leaves detailed diagnostics to other tools.

There are many potential causes of contention. For ex-
ample, Barker et al. [5] studied interference due to back-
ground disk and network loads in an Amazon EC2 cloud [2]
and found performance degradation can be up to 75% for
latency-sensitive applications. CPI2 focuses just on CPU; it
could usefully be complemented by approaches that handle
other shared resources.

TRACON [8] uses statistical machine learning tech-
niques to predict interference of data-intensive applications,
which it uses to guide placement decisions. Its models are
trained by driving applications with a workload generator;
CPI2 uses data from application tasks in production to build
its models.

9. Future Work
Disk and network I/O conflicts are managed at Google using
mechanisms outside the scope of this paper, but the idea of
correlation-based antagonist identification could be applied
to this I/O realm as well.

Our cluster scheduler will not place a task on the same
machine as a user-specified antagonist job, but few users
manually provide this information. In the future, we hope
to provide this information to the scheduler automatically.

Our fixed hard-capping limits are rather crude. We hope
to introduce a feedback-driven policy that dynamically ad-
justs the amount of throttling to keep the victim CPI degrada-
tion just below an acceptable threshold. Other amelioration
techniques like page coloring, hardware-based cache parti-
tioning, and affinity-based placement may also be valuable
directions to explore.

10. Conclusion
We have presented the design, implementation, and evalua-
tion of CPI2, a CPI-based system for large clusters to detect
and handle CPU performance isolation faults. We showed
that CPI is a reasonable performance indicator and described
the data-gathering pipeline and local analyses that CPI2 per-
forms to detect and ameliorate CPU-related performance
anomalies, automatically, using CPU hard-capping of antag-
onist tasks.

We demonstrated CPI2’s usefulness in solving real pro-
duction issues. It has been deployed in Google’s fleet. The
beneficiaries include end users, who experience fewer per-
formance outliers; system operators, who have a greatly
reduced load tracking down transient performance prob-
lems; and application developers, who experience a more
predictable deployment environment.

In future work, we will be exploring adaptive throttling
and making job placement antagonist-aware automatically.
Even before these enhancements are applied, we believe that
CPI2 is a powerful, useful tool.

389

Acknowledgements
This work would not have been possible without the help
and support of many colleagues at Google. In particular,
the data pipeline was largely built by Adam Czepil, Paweł
Stradomski, and Weiran Liu. They, along with Kenji Kaneda,
Jarek Kusmierek, and Przemek Broniek, were involved in
many of the design discussions. We are grateful to Stephane
Eranian for implementing per-cgroup performance counts
in Linux, and to him and David Levinthal for their help
on capturing performance counter data. We also thank Paul
Turner for pointing us to Linux CPU bandwidth control.

References
[1] ALAMELDEEN, A. R., AND WOOD, D. A. IPC considered

harmful for multiprocessor workloads. IEEE Micro 26, 4
(July 2006), 8–17.

[2] Amazon Elastic Compute Cloud. http://aws.amazon.

com/ec2/, 2008.

[3] ANANTHANARAYANAN, G., KANDULA, S., GREENBERG,
A., STOICA, I., LU, Y., SAHA, B., AND HARRIS, E. Reining
in the outliers in Map-Reduce clusters using Mantri. In
Proc. USENIX Symp. on Operating Systems Design and
Implementation (OSDI) (Vancouver, Canada, Nov. 2010).

[4] AWASTHI, M., SUDAN, K., BALASUBRAMONIAN, R., AND

CARTER, J. Dynamic hardware-assisted software-controlled
page placement to manage capacity allocation and sharing
within large caches. In Proc. Int’l Symp. on High Performance
Computer Architecture (HPCA) (Raleigh, NC, Feb. 2009).

[5] BARKER, S. K., AND SHENOY, P. Empirical evaluation of
latency-sensitive application performance in the cloud. In
Proc. 1st ACM Multimedia Systems (MMSys) (Phoenix, AZ,
Feb. 2010).

[6] BARROSO, L. A., DEAN, J., AND HOLZLE, U. Web search
for a planet: the Google cluster architecture. In IEEE Micro
(2003), pp. 22–28.

[7] BLAGODUROV, S., ZHURAVLEV, S., DASHTI, M., AND

FEDOROVA, A. A case for NUMA-aware contention
management on multicore systems. In Proc. USENIX Annual
Technical Conf. (USENIX ATC) (Portland, OR, June 2011).

[8] CHIANG, R. C., AND HUANG, H. H. TRACON:
Interference-aware scheduling for data-intensive applications
in virtualized environments. In Proc. Int’l Conf. for High
Performance Computing, Networking, Storage and Analysis
(SC) (Seattle, WA, Nov. 2011).

[9] CHO, S., AND JIN, L. Managing distributed, shared L2
caches through OS-level page allocation. In Proc. Int’l Symp.
on Microarchitecture (Micro) (Orlando, FL, Dec. 2006),
pp. 455–468.

[10] DAI, J., HUANG, J., HUANG, S., HUANG, B., AND LIU,
Y. HiTune: Dataflow-based performance analysis for big data
cloud. In Proc. USENIX Annual Technical Conf. (USENIX
ATC) (Portland, OR, June 2011).

[11] DEAN, J., AND BARROSO, L. A. The tail at scale.
Communications of the ACM 56, 2 (Feb. 2012), 74–80.

[12] DEAN, J., AND GHEMAWAT, S. MapReduce: simplified data
processing on large clusters. In Proc. USENIX Symp. on
Operating Systems Design and Implementation (OSDI) (San
Francisco, CA, Dec. 2004), pp. 137–150.

[13] ERANIAN, S. perfmon2: the hardware-based perfor-
mance monitoring interface for Linux. http://perfmon2.

sourceforge.net/, 2008.

[14] FEDOROVA, A., SELTZER, M., AND SMITH, M. D. Im-
proving performance isolation on chip multiprocessors via an
operating system scheduler. In Proc. Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT) (Brasov,
Romania, Sept. 2007), pp. 25–36.

[15] Wikipedia: Generalized extreme value distribution. http:

//en.wikipedia.org/wiki/Generalized_extreme_

value_distribution, 2011.

[16] GONG, Z., GU, X., AND WILKES, J. PRESS: PRedictive
Elastic ReSource Scaling for cloud systems. In Proc. 6th
IEEE/IFIP Int’l Conf. on Network and Service Management
(CNSM 2010) (Niagara Falls, Canada, Oct. 2010).

[17] GOVINDAN, S., LIU, J., KANSAL, A., AND SIVASUBRA-
MANIAM, A. Cuanta: quantifying effects of shared on-chip
resource interference for consolidated virtual machines. In
Proc. ACM Symp. on Cloud Computing (SoCC) (Cascais,
Portugal, Oct. 2011).

[18] Apache Hadoop Project. http://hadoop.apache.org/,
2009.

[19] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND

FETTERLY, D. Dryad: distributed data-parallel programs
from sequential building blocks. In Proc. European Conf. on
Computer Systems (EuroSys) (Lisbon, Portugal, Apr. 2007).

[20] IYER, R., ILLIKKAL, R., TICKOO, O., ZHAO, L., APPA-
RAO, P., AND NEWELL, D. VM3: measuring, modeling and
managing VM shared resources. In Computer Networks (Dec.
2009), vol. 53, pp. 2873–2887.

[21] KAMBADUR, M., MOSELEY, T., HANK, R., AND KIM,
M. A. Measuring interference between live datacenter
applications. In Proc. Int’l Conf. for High Performance
Computing, Networking, Storage and Analysis (SC) (Salt
Lake City, UT, Nov. 2012).

[22] KOH, Y., KNAUERHASE, R., BRETT, P., BOWMAN, M.,
WEN, Z., AND PU, C. An analysis of performance
interference effects in virtual environments. In Proc. IEEE
Int’l Symposium on Performance Analysis of Systems and
Software (ISPASS) (San Jose, CA, Apr. 2007).

[23] MARS, J., VACHHARAJANI, N., HUNDT, R., AND SOFFA,
M. L. Contention aware execution: online contention
detection and response. In Int’l Symposium on Code
Generation and Optimization (CGO) (Toronto, Canada, Apr.
2010).

[24] MATTHEWS, J. N., HU, W., HAPUARACHCHI, M., DE-
SHANE, T., DIMATOS, D., HAMILTON, G., MCCABE, M.,
AND OWENS, J. Quantifying the performance isolation
properties of virtualization systems. In Proc. Workshop on
Experimental Computer Science (San Diego, California, June
2007).

390

[25] MEISNER, D., SADLER, C. M., BARROSO, L. A., WEBER,
W.-D., AND WENISCH, T. F. Power management of on-
line data-intensive services. In Proc. Int’l Symposium on
Computer Architecture (ISCA) (San Jose, CA, June 2011).

[26] MELNIK, S., GUBAREV, A., LONG, J. J., ROMER, G.,
SHIVAKUMAR, S., TOLTON, M., AND VASSILAKIS, T.
Dremel: Interactive analysis of web-scale datasets. In Proc. of
the Int’l Conf. on Very Large Data Bases (VLDB) (Singapore,
Sept. 2010), pp. 330–339.

[27] MENAGE, P. Linux control groups. http://www.kernel.
org/doc/Documentation/cgroups/cgroups.txt, 2007.

[28] NATHUJI, R., KANSAL, A., AND GHAFFARKHAH, A. Q-
Clouds: managing performance interference effects for QoS-
aware clouds. In Proc. European Conf. on Computer Systems
(EuroSys) (Paris, France, Apr. 2010).

[29] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND

TOMKINS, A. Pig Latin: a not-so-foreign language for data
processing. In Proc. ACM SIGMOD Conference (Vancouver,
Canada, June 2008).

[30] REISS, C., TUMANOV, A., GANGER, G., KATZ, R., AND

KOZUCH, M. Heterogeneity and dynamicity of clouds at
scale: Google trace analysis. In Proc. ACM Symp. on Cloud
Computing (SoCC) (San Jose, CA, Oct. 2012).

[31] REN, G., TUNE, E., MOSELEY, T., SHI, Y., RUS, S., AND

HUNDT, R. Google-Wide Profiling: a continuous profiling
infrastructure for data centers. IEEE Micro, 4 (July 2010),
65–79.

[32] SANCHEZ, D., AND KOZYRAKIS, C. Vantage: scalable
and efficient fine-grain cache partitioning. In Proc. Int’l
Symposium on Computer Architecture (ISCA) (San Jose, CA,
2011).

[33] SCHURMAN, E., AND BRUTLAG, J. The user and business
impact of server delays, additional bytes, and HTTP chunking
in web search. In Proc. Velocity, Web Performance and
Operations Conference (2009).

[34] SHEN, Z., SUBBIAH, S., GU, X., AND WILKES, J. Cloud-
Scale: Elastic resource scaling for multi-tenant cloud systems.
In Proc. ACM Symp. on Cloud Computing (SoCC) (Cascais,
Portugal, Oct. 2011).

[35] SUH, G. E., DEVADAS, S., AND RUDOLPH, L. A new
memory monitoring scheme for memory-aware scheduling
and partitioning. In Proc. Int’l Symp. on High Performance
Computer Architecture (HPCA) (Boston, MA, Feb 2002).

[36] SUH, G. E., RUDOLPH, L., AND DEVADAS, S. Dynamic
partitioning of shared cache memory. The Journal of
Supercomputing 28 (2004), 7–26.

[37] TURNER, P., RAO, B., AND RAO, N. CPU bandwidth control
for CFS. In Proc. Linux Symposium (July 2010), pp. 245–254.

[38] WEST, R., ZAROO, P., WALDSPURGER, C. A., AND

ZHANG, X. Online cache modeling for commodity multicore
processors. Operating Systems Review 44, 4 (Dec. 2010).

[39] ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D., KATZ,
R., AND STOICA, I. Improving MapReduce performance
in heterogeneous environments. In Proc. USENIX Symp. on
Operating Systems Design and Implementation (OSDI) (San
Diego, CA, Dec. 2008).

[40] ZHANG, X., DWARKADAS, S., FOLKMANIS, G., AND

SHEN, K. Processor hardware counter statistics as a first-
class system resource. In Proc. Workshop on Hot Topics in
Operating Systems (HotOS) (San Diego, CA, May 2007).

[41] ZHANG, X., DWARKADAS, S., AND SHEN, K. Hardware
execution throttling for multi-core resource management. In
Proc. USENIX Annual Technical Conf. (USENIX ATC) (Santa
Diego, CA, June 2009).

[42] ZHAO, L., IYER, R., ILLIKKAL, R., MOSES, J., NEWELL,
D., AND MAKINENI, S. CacheScouts: Fine-grain monitoring
of shared caches in CMP platforms. In Proc. Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT)
(Brasov, Romania, Sept. 2007), pp. 339–352.

[43] ZHURAVLEV, S., BLAGODUROV, S., AND FEDOROVA,
A. Managing contention for shared resources on multicore
processors. In Proc. Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS)
(Pittsburgh, PA, Mar. 2010), pp. 129–142.

391

