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ABSTRACT
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Particle swarm optimization (PSO) is the most well known of the swarm-based intelligence algorithms and is inspired by the
social behavior of bird flocking. However, the PSO algorithm converges prematurely, which rapidly decreases the population
diversity, especially when approaching local optima. Recently, a new metaheuristic algorithm called the crow search algorithm
(CSA)was proposed. The CSA is similar to the PSO algorithm but is based on the intelligent behavior of crows. Themain concept
behind the CSA is that crows store excess food in hiding places and retrieve it when needed. The primary advantage of the CSA
is that it is rather simple, having just two parameters: flight length and awareness probability. Thus, the CSA can be applied to
optimization problems very easily. This paper proposes a hybridization algorithm based on the PSO algorithm and CSA, known
as the crow particle optimization (CPO) algorithm. The two main operators are the exchange and local search operators. It
also implements a local search operator to enhance the quality of the best solutions from the two systems. Simulation results
demonstrated that the CPO algorithm exhibits a significantly higher performance in terms of both fitness value and computation
time compared to other algorithms.

© 2019 The Authors. Published by Atlantis Press SARL.
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1.

ID:TI0020

INTRODUCTION

ID:p0075

In recent years, various metaheuristic algorithms [1] have been
attracted growing interest in the optimization problems commu-
nity. This kind of research is inspired by natural behavior, and
it has yielded algorithms such as artificial bee colony (ABC) [2],
ant colony optimization (ACO) [3], cuckoo search (CS) [4], differ-
ential evolution (DE) [5], firefly algorithm (FA) [6], gravitational
searching algorithm (GSA) [7], and particle swarm optimization
(PSO) [8]. In addition, various applications have been proposed for
such metaheuristics algorithms in areas such as in of bioinformat-
ics [9], clustering [10], deep learning [11], DNA fragment assembly
[12], flow-shopscheduling [13], feature selection [14], geographi-
cal information systems [15], image segmentation [16], job-shop
scheduling [17], power system [18], traveling salesman [19], vector
quantization [20], and the water reactor problem [21].

ID:p0080

The PSO algorithm is the most popular nature-inspired swarm-
based intelligence algorithm. However, this algorithm is prone to
premature convergence, especially when approaching local optima
that are difficult to escape [22]. It is therefore important to main-
tain a sufficiently high particle diversity to avoid premature conver-
gence. As such, several algorithms have been proposed to improve
the exploration and exploitation of PSO, such as comprehensive
learning PSO (CLPSO) [23], orthogonal learning PSO (OLPSO)
[24], and diversity-enhanced PSO (DNSPSO) [25]. The GSA has
an effective searching strategy for solving optimization problems,
which is superior to and faster than the PSO algorithm. The crow
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search algorithm (CSA) is a recently proposed swarm-based intel-
ligence algorithm [26] based on the intelligent behavior of crows.
The main concept behind the CSA is that crows store excess
food in hiding places to retrieve later when required and will
attempt to cheat other crows by traveling to other positions in the
search space, based on the awareness probability and flight length
parameters.

ID:p0085

Thus, we herein propose a hybridization algorithm based on the
CSA and PSO algorithm, whichwill be referred to as the crow parti-
cle optimization (CPO) algorithm. The CPO algorithm is expected
to exhibit the advantages of the CSA search strategy and the fast
convergence of the PSO algorithm. The two main mechanisms of
the CPO system are hybrid operation and a local search, exchang-
ing individuals selected from the CSA and PSO systems after a
specific number of iterations. Moreover, the CSA performs local
searching to enhance the solution quality. The CPO process is as
follows: Initially, the CPO algorithm simultaneously executes the
PSO and CSA systems. Subsequently, the CPO algorithm uses cen-
ter PSO (CPSO) [27] to determine the center individual of crow and
the particle. The CPO algorithm then enhances the solution qual-
ity using the crossover operator [28], and finally, some individuals
are selected from the PSO and CSA systems for exchange if the spe-
cific number of iterations is met. In this study, selection methods
such as the roulette-wheel approach were employed [29]. More-
over, the performance of the proposed CPO algorithm was com-
pared with those of the PSO, CSA, GSA, and PSGO algorithm using
six well-known benchmark test functions. The results indicate that
the CPO algorithm outperforms the others with regard to solution
quality.Pdf_Folio:1
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Xt
i = {xti,1, xti,2, xti,j, … , xti,d} for i = 1, 2, 3… ,N. (1)

where, xti,j is the potential position solution for crow i in dimension
j, and d is the dimension number of the solution space.

xt+1i,j = { xti,j + randi × fl × (

mt
c,j – xti,j) if randp ≥ AP,

randomposition otherwise.
(2)

where xti,j denotes the position of crow i in dimension j of iteration
t, andmt

c,j denotes the hiding place position of crow c in dimension
j of iteration t. Furthermore, fl denotes the flight length of crow i in

Figure 1 Standard crow search algorithm (CSA).

Xt
i = {xti,1, xti,j, … , xti,d} i = 1, 2… ,N. (3)

vt+1i,j = 𝜔vti,j + c1r1 (pti,j – xti,j) + c2r2 (pgbesttj – xti,j) (4)

xt+1i,j = xti,j + vt+1i,j (5)

where xti,j and vti,j denote the position and velocity, respectively, of
the particle i in dimension j and 𝜔 is an inertia weight that influ-
ences the convergence speed. The local optimum and global opti-
mum pti and ptgbest, respectively, represent the current best position
and the best position in the swarm among all particles over time
period t, respectively. The constants c1 and c2 represent the cogni-
tive and social parameters, respectively, and r1 and r2 are random
variables in the interval [0, 1].

The PSO algorithm is detailed in Figure 2.

2.3. Center Particle Swarm Optimization

Liu et al. [32] proposed an improved PSO approach known as cen-

Pdf_Folio:2

In this paper, the relevant background information is presented in
Section 2, the proposed CPO algorithm is described in Section 3,
the results of the algorithm performance tests are reported and dis-
cussed in Section 4, and the conclusions and future research outlook
are given in Section 5.

2. BACKGROUND INFORMATION AND
RELATED WORK

2.1. The CSA

Crows are among the most intelligent birds. Indeed, their behav-
ior indicates a high level of intelligence only slightly below that of
humans; for example, crows exhibit self-awareness in mirror tests
and display tool-making abilities [30]. In fact, each crow has its
own hiding place for storing food and takes precautions to protect
this location from other crows, who could potentially follow the
first crow to steal the stored food. CSA, which was introduced by
Askazadeh [26], is a newly developed stochastic swarm-based intel-
ligence algorithm designed to solve function optimization prob-
lems. The concepts underlying CSA are as follows:

1. Crows live in flocks.

2. They can memorize hiding-place positions.

3. Crows will follow one another to steal food.

4. They protect their hiding spaces from attackers with a proba-
bility in the interval [0, 1].

In the CSA system, the individual aggregates are described as crows.
There are twomain parameters for crows: the flight length fl and the
awareness probability AP, respectively. The value of fl corresponds
to a local search (small value) or global search (large value), and
the AP controls the crow intensity (small value) or diversity (large
value). These crows are randomly generated at certain positions by
the CSA. The fitness values are computed and the position of each
crow in the current population is updated using Equation (1). The
position of crows i in iteration t, which provides a potential solution
for N crows, is defined as follows:

The current solution for each crow is then updated according to one
of two cases. In the first case, it is assumed that crow c does not know
that crow i is in pursuit. In the second case, it is assumed that crow c
knows that crow i is in pursuit. The updated position for each crow
is computed using Equation (2):

iteration t, AP denotes the awareness probability of crow c in iter-
ation t, and randi and randp are random variables in the interval
[0, 1].

The CSA algorithm is described in Figure 1.

Step Description

1. Initialize all crow positions with randomization
2. Initialize memories of all crows
3. Obtain fitness values for all crows
4. Obtain memories of all crows
5. Update all crow positions according to Equation 2
6. Repeat Steps 35 until termination criterion is reached
7. Output the best solution

2.2. Particle Swarm Optimization

The PSO algorithm, which was introduced by Kennedy and Eber-
hart [8, 31] is a stochastic swarm-based intelligence algorithm that
is a widely known because of its efficient searching strategy. Simi-
lar to the genetic algorithm (GA), PSO is inspired by the collective
behavior of schools of fish or bird flocks. In the PSO algorithm, the
positions and velocities of N particles in the d-dimensional space
offer randomly initialized solutions. The solution of particle i in
iteration t is as given by Equation (3). The current solution of each
particle is then updated with regard to the local and global optima,
which are computed using Equations (4) and (5), respectively.

ter particle swam optimization (CPSO). In this study, we employed
the concepts to improve the PSO and CSA systems. The main con-
cept behind CPSO is that a population of N particles is considered,
and their positions represent potential solutions. After the position
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Step Description

ID:t0075

1.

ID:t0080

Initialize solution with randomization.

ID:t0085

2.

ID:t0090

Obtain fitness values for all particles

ID:t0095

3.

ID:t0100

Obtain personal best solution for each particle

ID:t0105

4.

ID:t0110

Obtain global best solution for all particles

ID:t0115

5.

ID:t0120

Update positions and velocities of all particles according to
Equations 4 and 5

ID:t0125

6.

ID:t0130

Repeat Steps 2–5 until maximum iteration is reached

ID:t0135

7.

ID:t0140

Output best solution

Figure 2

ID:p0165

Standard PSO algorithm.

Step Description

ID:t0145

1.

ID:t0150

Initialize solution with a randomization

ID:t0155

2.

ID:t0160

Calculate center particle cp based on all particles to Equation (6)

ID:t0165

3.

ID:t0170

Obtain fitness values for all particles

ID:t0175

4.

ID:t0180

Obtain personal best solution for each particle

ID:t0185

5.

ID:t0190

Obtain global best solution for all particles

ID:t0195

6.

ID:t0200

Update positions and velocities of all particles according to
Equations (4) and (5)

ID:t0205

7.

ID:t0210

Repeat Steps 2–6 until maximum iteration is reached

ID:t0215

8.

ID:t0220

Output best solution

Figure 3

ID:p0180

Center particle swarm optimization (CPSO) algorithm [32].

ID:p0175

3.

ID:TI0045

PROPOSED CPO ALGORITHM

ID:p0185

We herein present our proposed CPO algorithm, which couples the
PSO and CSA systems. More specifically, CPO involves simultane-
ously executing the PSO and CSA systems and guiding the solution
toward the global optimum using the CPSO algorithm. Some indi-
viduals are selected from the PSO and CSA systems using selection
approaches and are exchanged following the processing of a spe-
cific number of iterations. Finally, a local search operator is used to
improve the solution quality.

3.1.

ID:ti0050

Individual Velocity

ID:p0190

During successive iterations, the solution space is searched for each
particle and its solution is updated using Equation (4). Oscillations
in the PSO algorithm are controlled by a time-varying maximum
velocity Vmax. The velocity thresholds are given by the expressions
presented in the literature [33], as shown in Equations (7) and (8):

(7)

Vmax0 = 𝛼 × (xmax – xmin) (8)

ID:p0195

where the exponent h is a positive constant,𝛼 controls the bounds of
the search space at each velocity, the xmin and xmax are the position
thresholds, t is the iteration t, and tmax is the maximum iteration.

3.2.

ID:ti0055

Hybrid Operator

ID:p0200

A hybrid operator is called at specific iterations. Some individu-
als are selected from the CSA and PSO systems and exchanged
using the selection approaches. In this study, random selection
was employed along with the roulette-wheel approach [29] with
probabilities depending on the fitness values. The roulette-wheel
approach is expressed as Equation (9):

probi = f iti∑N
i=1 f iti (9)

ID:p0205

where f iti is the fitness value of individual i in the population.

ID:p0210

An example of the hybrid operator is shown in Figure 4. In the CSA
system, the random number is 0.23 and is located in the region Cl,
while the random number of the PSO algorithm is 0.30, located
in the region P2. Thus, in the roulette-wheel operator, the particle
numberC1 and agent number P2 are selected for exchange between
the two systems.

3.3.

ID:ti0060

Local Search Operator

ID:p0220

The local search operator proposed in this study is similar to the
DE crossover operator [28]. Denoting crow c as the best of individ-
ual crow,

(

xt+1c,j )
CSA

, and particle p as the best one of PSO parti-

cles,
(

xt+1p,j )
PSO

, the local search operator performs a recombination
between the original best solution for the crow (particle) in each
dimension as follows Equation (10):

ID:p0225

where xi,j represents the position of the i-th crow (particle) in
dimension j.

ID:p0230

An example of the local operator is shown in Figure 5. Iteration t,
assuming the PSO solutions for each dimension are 2.3, 1.5, 0.5,
0.8, 5.5, and 1.7, the CSA solutions for each corresponding dimen-
sion are 3.7, 0.3, 1.6, 0.1, 3.7, and 4.8, respectively. According to
Equation (10), the new best solution is 2.3, 0.3, 0.5, 0.1, 3.7, and 1.7,
respectively.

3.4.

ID:ti0065

Summary of CPO Algorithm

ID:p0240

Figure 6 shows the procedure of the proposed CPO algorithm. In
the initial step, each crow (particle) is generated at random. Upon
implementation of the CPSO algorithm to determine a central crow
or particle, the CPO algorithm simultaneously executes the CSA
and PSO algorithm to update the solutions of the two systems.

Pdf_Folio:3

values are updated for N – 1 particles, a center particle cp is added
to the population, as follows Equation

xt+1cp,j = ∑N–1
i=1 xti,j
N – 1 for j = 1, 2… , d (6)

where xt+1cp,j is the position of the center particle in dimension j in
iteration t + 1. The CPSO algorithm is detailed in Figure 3.

Vmax = (1 – ( t
tmax

)h) × Vmax0

xt+1i,j = {xti,j if f ( xti,j) < f (xt+1i,j )
xt+1i,j otherwise

(10)
∶∶

(6):
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Figure 4 Example of the hybrid operator.

Figure 5 Example of the local search operator.

Step Description

1. Initialize each agent with a randomized position and velocity in
the CSA and PSO

2. Obtain the center crow and particle according to Equation 6
3. Execute CSA process according to Figure 1
4. Execute PSO process according to Figure 2
5. Rim the local operator to increase the best solutions among both

systems
6. If specific iteration is reached, implement hybrid operator
7. If terminal criterion is not met, repeat Steps 2–6
8. Best solution is found

Figure 6 Proposed crow particle optimization (CPO) algorithm.

4. EXPERIMENT AND RESULTS

4.1. Environment Setting

Numerous simulations were conducted to evaluate the perfor-
mance of the proposed CPO algorithm. All simulation results were
obtained using a computerwith an i7-6700 3.40-GHz Intel CPUand
8GB of main memory running on Microsoft Windows 7. All pro-
gramming was implemented using Java language.

4.2. Benchmark Functions

The six benchmark test functions used in our experiments (namely
the Sphere, Rosenbrocks, Ackley, Griewanks, Schwefel, and Rast-
rigin functions) are described in Table 1 [23]. In this case, d is the
function dimensions, which was set to 10 for the purpose of study.
The optimal solution of each benchmark function is 0d.

After a specific number of iterations and exchange of a crow and a
particle, it becomes necessary to trigger the hybrid operator. Finally,
the quality of the best solution is improved using the local search
operator.Pdf_Folio:4
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Table 1

ID:p0260

Test functions.

Test Function Formula Solution Space Optimal Value

ID:t0305

Sphere

ID:t0310

f1 (x) = ∑d
i=1 x2i

ID:t0315

[–100, 100]d

ID:t0320

0

ID:t0325

Rosenbrocks

ID:t0330

f2 (x) = ∑d–1
i=1 (100(xi – xi+1)2 + (xi – 1)2)

ID:t0335

[–2.048, 2.048]d

ID:t0340

0

ID:t0345

Ackley

ID:t0350

f3 (x) = –20 exp (

–0.2√1
d
∑d

i=1 x2i
)

– exp
(1
d
∑d

i=1 cos (2𝜋xi))+ 20 + e

ID:t0355

[–32.768, 32.768]d

ID:t0360

0

ID:t0365

Griewanks

ID:t0370

f4 (x) = ∑d
i=1 x2i4000 –∏d

i=1 cos
(

xi√i

)+ 1

ID:t0375

[–600, 600]d

ID:t0380

0

ID:t0385

Schwefel

ID:t0390

f5 (x) = ∑d
i=1 ‖xi‖ +∏d

i=1 ‖xi‖

ID:t0395

[–10, 10]d

ID:t0400

0

ID:t0405

Rastrigin

ID:t0410

f6 (x) = ∑d
i=1 (x2i – 10 cos (2𝜋xi)+ 10)

ID:t0415

[–5.12, 5.12]d

ID:t0420

0

ID:ti0085ID:p0265ID:t0425ID:t0430ID:t0435ID:t0440ID:t0445ID:t0450ID:t0455ID:t0460ID:t0465ID:t0470ID:t0475ID:t0480ID:t0485ID:t0490ID:t0495ID:t0500ID:t0505ID:t0510ID:t0515ID:t0520ID:t0525ID:t0530ID:t0535ID:t0540ID:t0545ID:t0550ID:t0555ID:ti0090ID:p0275

4.5.

ID:ti0095

Comparison of CPO With Difference
Variants

ID:p0285

As mentioned in the previous subsection, the roulette-wheel oper-
ator was found to provide the best solutions, so this operator was
selected for use in the remaining experiments. Several variants
of the CPO algorithm were compared in the subsequent simula-
tions, for which the number of iterations and individuals exchanged
among the composite algorithms were varied, as detailed in Table
4. Variant 1 was used for the comparison of selection approaches
reported in the previous subsection. In Variant 1, two individu-
als were exchanged between the two systems every 20 iterations,
whereas for Variant 3, 10 individuals were exchanged between the

Table 3

ID:p0280

Comparison of different selection operators of the crow particle optimization (CPO) algorithm for d = 10.

Strategy f1 f2 f3 f4 f5 f6

ID:t0560

Roulette-wheel

ID:t0565

Best

ID:t0570

5.15E-56

ID:t0575

1.12E+00

ID:t0580

3.55E-15

ID:t0585

7.39E-3

ID:t0590

7.32E-43

ID:t0595

9.96E-01

ID:t0600ID:t0605

Average

ID:t0610

3.52E-20

ID:t0615

4.49E+00

ID:t0620

1.74E-10

ID:t0625

6.70E-2

ID:t0630

2.85E-13

ID:t0635

3.55E+00

ID:t0640ID:t0645

tavg(s)

ID:t0650

0.03

ID:t0655

0.03

ID:t0660

0.08

ID:t0665

0.07

ID:t0670

0.03

ID:t0675

0.07

ID:t0680

Random selection

ID:t0685

Best

ID:t0690

2.86E-87

ID:t0695

1.82E+00

ID:t0700

7.10E-15

ID:t0705

3.90E-2

ID:t0710

5.40E-32

ID:t0715

1.98E+00

ID:t0720ID:t0725

Average

ID:t0730

8.73E-20

ID:t0735

4.76E+00

ID:t0740

8.27E-11

ID:t0745

9.10E-2

ID:t0750

2.58E-13

ID:t0755

4.62E+00

ID:t0760ID:t0765

tavg(s)

ID:t0770

0.03

ID:t0775

0.03

ID:t0780

0.08

ID:t0785

0.07

ID:t0790

0.03

ID:t0795

0.07
Pdf_Folio:5

4.3. Parameter Settings

The basic parameter settings are listed in Table 2. All experimen-
tal results were collected from 30 independent runs, each involving
2000 iterations.

Table 2 Parameter settings for proposed algorithm.

Algorithm Parameter Value

CSA Number of crows 20
Flight length fl 1.5
Awareness probability AP 0.05

PSO Number of particles 20
Inertia𝜔 0.9 to 0.4
c1, c2 1.4
h 0.05𝛼 0.01

CPO Number of individuals 20

4.4. Comparison of Selection Approaches

Two different selection strategies were compared to determine the
optimal strategy for selection of the individuals from the CSA and
PSO systems. More specifically, the roulette wheel and random

CSA, crow search algorithm ; PSO, particle swarm optimization; CPO, crow particle
optimization.

selectionmethodswere considered, and the exchange iterations and
individuals were set to 20 and 5, respectively. The simulated best
solutions and average best fitness values (labeled Best and Aver-
age, respectively), as well as the average computation times (S) tavg
are summarized in Table 3. In terms of the best fitness value, the
roulette-wheel operator outperformed the random selection oper-
ator for test functions f2, f3, f4, f5, and f6. Similarly, for the average
fitness value, the roulette-wheel operator outperformed the random
selection operator for functions f1, f2, f4, and f6. Both approaches
had almost identical computation times. Overall, the roulette-wheel
approach was superior to the random selection strategy in the con-
text of this study.

430

ID:p0260ID:t0305ID:t0310ID:t0315ID:t0320ID:t0325ID:t0330ID:t0335ID:t0340ID:t0345ID:t0350ID:t0355ID:t0360ID:t0365ID:t0370ID:t0375ID:t0380ID:t0385ID:t0390ID:t0395ID:t0400ID:t0405ID:t0410ID:t0415ID:t0420ID:ti0085ID:p0265ID:t0425ID:t0430ID:t0435ID:t0440ID:t0445ID:t0450ID:t0455ID:t0460ID:t0465ID:t0470ID:t0475ID:t0480ID:t0485ID:t0490ID:t0495ID:t0500ID:t0505ID:t0510ID:t0515ID:t0520ID:t0525ID:t0530ID:t0535ID:t0540ID:t0545ID:t0550ID:t0555ID:ti0090ID:p0275ID:ti0095ID:p0285ID:p0280ID:t0560ID:t0565ID:t0570ID:t0575ID:t0580ID:t0585ID:t0590ID:t0595ID:t0600ID:t0605ID:t0610ID:t0615ID:t0620ID:t0625ID:t0630ID:t0635ID:t0640ID:t0645ID:t0650ID:t0655ID:t0660ID:t0665ID:t0670ID:t0675ID:t0680ID:t0685ID:t0690ID:t0695ID:t0700ID:t0705ID:t0710ID:t0715ID:t0720ID:t0725ID:t0730ID:t0735ID:t0740ID:t0745ID:t0750ID:t0755ID:t0760ID:t0765ID:t0770ID:t0775ID:t0780ID:t0785ID:t0790ID:t0795
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Table 4 Parameters for six variants of proposed algorithm

Variants Specific Iterations Specific Individuals

1 20
2 20
3 20
4 50
5 75
6 75

two systems every 20 iterations. In the majority of cases, d was set
to 10, the number of iterations was 2000, and the number of simu-
lations was 30.

The simulated best solutions and average best fitness values (labeled
Best andAverage, respectively), and the average computation times
tavg are summarized in Table 5. In terms of best fitness, CPO Vari-
ant 4 outperformed all other variants for test functions f3, f4, and f6;
Variant 2 outperformed the other variants for functions f2, and f5;
and Variant 5 yielded the best solution for f1. The highest average
fitness values for functions f1, f2, f5, and f6 were yielded by Variants
6, Variants 2, Variants 1, andVariants 5, respectively, while Variant 4
was the best performer for functions f3 and f4. In contrast, the com-
putation times were comparable among all variants. We therefore
concluded that Variant 4 yielded the average case of better solutions
among the variants examined herein.

To present the previous experimental results more clearly, the data
from Table 5 are depicted visually Figure 7. The x-axis shows the
different variants, and the y-axis shows the log values of the best and
average fitness values for each test function. In addition, we divided
the six functions into two groups due to f2 and f4 having different
value ranges, with some fitness values larger than 1.

4.6. Comparison of the CPO With PSO,
CSA, GSA, and PSGO Algorithm

As described in the previous subsection, Variant 4 of the CPO algo-
rithm provided the best solutions. Therefore, CPO was employed
using the parameters ofVariant 4 for comparisonwith theCSA [26],
PSO [8], GSA [7], and PSGO [34] algorithm for 2000 iterations of
the six benchmark test functions. The settings employed for all CSA
and PSO algorithms were as described for the CPO, as detailed in
Table 2.

Table 6 gives the best solution and average best fitness values
(labeledBest andAverage, respectively), as well as the average com-
putation time(s) tavg for each simulation. In terms of the best fitness
value, the PSO algorithm provided the best fitness for functions f1
and f2, whereas the CPO algorithm outperformed the other algo-
rithms for f3, f4, f5, and f6. For the average fitness values, the GSA
provided the average best fitness for function f1, while the CPO
algorithm outperformed the other algorithms for f2, f4, f5, and f6.
Furthermore, the computational time for the CPO algorithm was
only 50% that of for the GSA, and the computational times of CPO
and PSGO were comparable.

Table 5 Comparison of different variants of the crow particle optimization (CPO) algorithm for d = 10.

Variants f1 f2 f3 f4 f5 f6
1 Best 1.70E-70 1.35E+00 3.55E-15 0.00E+00 5.34E-43 1.99E+00

Average 7.18E-20 4.68E+00 2.33E-10 6.34E-02 2.27E-13 4.02E+00

tavg(s) 0.03 0.03 0.07 0.06 0.03 0.06

2 Best 4.28E-68 2.26E+00 3.55E-15 7.40E-03 2.24E-50 9.95E-01

Average 6.36E-20 5.00E+00 2.33E-10 6.47E-02 4.08E-13 4.22E+00

tavg(s) 0.03 0.03 0.07 0.06 0.03 0.06

3 Best 1.43E-60 3.84E-01 3.55E-15 7.40E-03 7.71E-52 9.95E-01

Average 7.40E-19 4.24E+00 2.17E-10 5.93E-02 5.40E-13 3.36E+00

tavg(s) 0.03 0.03 0.07 0.06 0.03 0.06

4 Best 5.45E-49 9.56E-01 3.55E-15 0.00E+00 1.81E-26 8.15E-01

Average 1.41E-19 4.66E+00 1.05E-10 5.38E-02 5.97E-13 4.62E+00

tavg(s) 0.03 0.03 0.07 0.06 0.03 0.06

5 Best 1.96E-96 6.60E-01 2.42E-12 0.00E+00 6.13E-38 9.95E-01

Average 4.57E-19 4.78E+00 2.02E-10 6.32E-02 4.41E-13 3.31E+00

tavg(s) 0.03 0.03 0.07 0.06 0.03 0.06

6 Best 1.64E-64 1.35E+00 3.55E-15 7.40E-03 3.54E-46 9.95E-01

Average 5.52E-20 4.75E+00 1.24E-10 7.21E-02 3.69E-13 3.55E+00

tavg(s) 0.03 0.03 0.07 0.06 0.03 0.06
Pdf_Folio:6
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Figure 7

ID:p0310

Comparison of the results for different variants.

Table 6 Comparison of CPO with CSA, PSO, GSA, and PSGO.

Algorithm Fitness Value f1 f2 f3 f4 f5 f6

ID:t1610

CPO

ID:t1615

Best

ID:t1620

3.87E-54

ID:t1625

8.07E-01

ID:t1630

3.55E-15

ID:t1635

5.52E-03

ID:t1640

1.20E-32

ID:t1645

9.95E-01

ID:t1650ID:t1655

Average

ID:t1660

1.60E-21

ID:t1665

4.62E+00

ID:t1670

2.25E-11

ID:t1675

2.56E-02

ID:t1680

1.59E-13

ID:t1685

3.87E+00

ID:t1690ID:t1695

tavg

ID:t1700

0.03

ID:t1705

0.03

ID:t1710

0.07

ID:t1715

0.06

ID:t1720

0.03

ID:t1725

0.06

ID:t1730

CSA

ID:t1735

Best

ID:t1740

4.07E-18

ID:t1745

3.07E+00

ID:t1750

4.70E-10

ID:t1755

1.48E-02

ID:t1760

1.64E-10

ID:t1765

1.99E+00

ID:t1770ID:t1775

Average

ID:t1780

1.5E-9

ID:t1785

4.70E+00

ID:t1790

3.37E-09

ID:t1795

4.04E-02

ID:t1800

4.11E-10

ID:t1805

5.03E+00

ID:t1810ID:t1815

tavg

ID:t1820

0.01

ID:t1825

0.01

ID:t1830

0.03

ID:t1835

0.03

ID:t1840

0.01

ID:t1845

0.03

ID:t1850

PSO

ID:t1855

Best

ID:t1860

2.86E-87

ID:t1865

4.37E-02

ID:t1870

3.55E-15

ID:t1875

3.94E-02

ID:t1880

8.23E-50

ID:t1885

2.98E+00

ID:t1890ID:t1895

Average

ID:t1900

1.27E-04

ID:t1905

7.99E+00

ID:t1910

6.03E-06

ID:t1915

2.84E-01

ID:t1920

6.83E-01

ID:t1925

8.64E+00

ID:t1930ID:t1935

tavg

ID:t1940

0.02

ID:t1945

0.02

ID:t1950

0.04

ID:t1955

0.04

ID:t1960

0.02

ID:t1965

0.03

ID:t1970

GSA

ID:t1975

Best

ID:t1980

3.55E-28

ID:t1985

5.21E+00

ID:t1990

3.20E-14

ID:t1995

0.00E+00

ID:t2000

3.77E-14

ID:t2005

1.99E+00

ID:t2010ID:t2015

Average

ID:t2020

1.09E-25

ID:t2025

5.61E+00

ID:t2030

4.78E-13

ID:t2035

2.08E-01

ID:t2040

3.02E-12

ID:t2045

6.70E+00

ID:t2050ID:t2055

tavg

ID:t2060

0.09

ID:t2065

0.10

ID:t2070

0.15

ID:t2075

0.11

ID:t2080

0.05

ID:t2085

0.11

ID:t2090

PSGO

ID:t2095

Best

ID:t2100

6.26E-06

ID:t2105

7.64E+00

ID:t2110

2.66E-04

ID:t2115

2.21E-02

ID:t2120

8.46E-05

ID:t2125

2.15E+00

ID:t2130ID:t2135

Average

ID:t2140

1.61E-05

ID:t2145

8.38E+00

ID:t2150

1.48E-03

ID:t2155

5.33E-02

ID:t2160

2.45E-04

ID:t2165

6.13E+00

ID:t2170ID:t2175

tavg

ID:t2180

0.04

ID:t2185

0.04

ID:t2190

0.07

ID:t2195

0.06

ID:t2200

0.04

ID:t2205

0.06

PSO, particle swarm optimization; CSA, crow search algorithm; CPO, crow particle optimization; GSA, gravitational searching algorithm.

ID:p0330

To present previous experimental result more clearly, the data from
Table 6 depicted visually in Figure 8. The x-axis shows the different
variants, and the y-axis shows the log values of the best and average
fitness values for each test function. In addition, we divided the six
functions into two groups due to f2 and f4 having different value
ranges, with some fitness values are larger than 1.

4.7.

ID:ti0105

Convergence Rates

ID:p0340

Finally, the convergence rates of the CSA, PSO, GSA, PSGO, and
CPO were investigated. For each benchmark function from f1 to f6,
the convergence rates of the average best fitness values for 30 runs
of 2000 iterations, are presented in Figure 9.

ID:p0345

As indicated clearly by the obtained results, a relationship exists
between the convergence speed and the best solution. Indeed, the
GSA outperformed the other algorithms in terms of the conver-
gence rate for f1 and f3, and the GSA is superior to the CPO algo-
rithm for f1 and f3, but the convergence line for the CPO algorithm
is still decreasing. The PSO algorithm exhibits the highest conver-
gence speed for f4, f5, and f6. Comparing the results of the CPO
algorithm and CSA, it is apparent that CPO is more effective for all
test functions. Comparing the results of CPO and PSGO indicates
that CPO can outperform PSGO. In summary, the proposed CPO
algorithm can yield the best results with the lowest convergence
speed. In contrast, the results for the PSO algorithm are unstable,
as this algorithm can yield the best solution for one simulation but
the worst solution when averaged over all simulations.

Pdf_Folio:7
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Figure 8 Comparison of the results for all specified algorithms.

Figure 9 Comparisons of the convergence rates for all specified algorithms over 2,000 iterations.

4.8. Scalability of CPO and GSA

As apparent from the results, there is a relationship between the
convergence speed and best solution. The GSA outperformed the
other algorithms in terms of convergence rate for f1 and f3. How-
ever, although the GSA can get a better solution than CPO in f1 and
f3, the result is in convergence status, and the convergence line of
CPO is still decreasing. Thus, in this section, to verify that CPO can
provide better solutions than the GSA in large numbers of itera-
tions, we present a comparison of the CPO algorithm with the GSA
for scalability using 10,000 iterations. The convergence rates of the
average best fitness values for 30 runs, each consisting of 10,000 iter-
ations, are presented in Figure 10.

The GSA yields better solutions using fewer than 2000 iterations,
but CPO provides better solutions in terms of convergence rate for
f1 to f6 when compared with the GSA formore than 2000 iterations.
In summary, the results confirm that the proposed CPO algorithm
can yield the lowest convergence speed.

5. CONCLUSIONS AND FUTURE WORK

To improve the global search performance of the CSA, we pro-
posed a CPO algorithm to solve function optimization problems.
In this case, the CPO algorithm simultaneously executes the PSO
and CSA systems, before using the CPSO algorithm to generate the
center individual. Subsequently, in specific iterations, some indi-
viduals from the PSO and CSA systems are selected for exchange
using the roulette-wheel method. Finally, the local search opera-
tor is fine-tuned to yield the best solutions, which include the best
individuals among those of the CSA and PSO systems. This CPO
approach exhibits significantly better performance than the exist-
ing algorithms in terms of the average fitness values and compu-
tation times for six benchmark test functions. Future studies will
focus on our investigation into application of the CPO algorithm to
nondeterministic polynomial hard combinatorial problems such as
clustering issues and medical image processing, as well as diversity
enhancement of the CPO system to avoid fast convergence.

Pdf_Folio:8
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Figure 10
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Comparison of convergence rates between CPO and GSA for f 1 to f 6.
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