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Abstract

Background: Macromolecular complexes are the molecular machines of the cell. Knowledge at the atomic level is essential
to understand and influence their function. However, their number is huge and a significant fraction is extremely difficult to
study using classical structural methods such as NMR and X-ray crystallography. Therefore, the importance of large-scale
computational approaches in structural biology is evident. This study combines two of these computational approaches,
interface prediction and docking, to obtain atomic-level structures of protein-protein complexes, starting from their
unbound components.

Methodology/Principal Findings: Here we combine six interface prediction web servers into a consensus method called
CPORT (Consensus Prediction Of interface Residues in Transient complexes). We show that CPORT gives more stable and
reliable predictions than each of the individual predictors on its own. A protocol was developed to integrate CPORT
predictions into our data-driven docking program HADDOCK. For cases where experimental information is limited, this
prediction-driven docking protocol presents an alternative to ab initio docking, the docking of complexes without the use of
any information. Prediction-driven docking was performed on a large and diverse set of protein-protein complexes in a
blind manner. Our results indicate that the performance of the HADDOCK-CPORT combination is competitive with ZDOCK-
ZRANK, a state-of-the-art ab initio docking/scoring combination. Finally, the original interface predictions could be further
improved by interface post-prediction (contact analysis of the docking solutions).

Conclusions/Significance: The current study shows that blind, prediction-driven docking using CPORT and HADDOCK is
competitive with ab initio docking methods. This is encouraging since prediction-driven docking represents the absolute
bottom line for data-driven docking: any additional biological knowledge will greatly improve the results obtained by
prediction-driven docking alone. Finally, the fact that original interface predictions could be further improved by interface
post-prediction suggests that prediction-driven docking has not yet been pushed to the limit. A web server for CPORT is
freely available at http://haddock.chem.uu.nl/services/CPORT.
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Introduction

Macromolecular complexes are the molecular machines of the

cell. In order to fully understand how the various units work

together to fulfill their tasks, structural knowledge at the atomic

level is required. An atomic-resolution structure is also an

important first step in rational drug design and other efforts to

influence the function of macromolecular complexes, which is of

high medical relevance.

The classical methods to obtain atomic-resolution structures are

X-ray crystallography and Nuclear Magnetic Resonance (NMR).

In recent years, tens of thousands of single protein structures have

been solved using these methods, as well as an increasing number

of complexes. However, the number of expected macromolecular

complexes will exceed the number of proteins in a proteome by at

least one order of magnitude [1]. Since complexes are often weak,

dynamic and/or very large, a significant fraction of these will be

extremely difficult to study using any experimental method.

Therefore, the importance of large-scale computational approach-

es in structural biology is evident [2].

This study combines two of these computational approaches,

interface prediction and docking. Interface prediction aims, by

computational means, to identify the residues on the protein

surface that interact with another protein or biomolecule. Docking

takes this one step further by predicting the three-dimensional

structure of a protein complex, starting from the free, unbound

structures of its constituents.
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Interface prediction is based on the extraction and combination

of distinguishing features from protein sequences and structures.

Genomic and structural genomic initiatives, combined with

advances in computer technology, have allowed protein interfaces

to be analyzed and predicted today in a far more systematic way

than what was possible in the past. While older methods could

only be tested on a case-by-case basis or on a small set of similar

complexes, large-scale statistical analysis and validation on non-

redundant benchmarks has become the norm. Therefore, interface

prediction is a field that is rapidly developing. For two recent

reviews on interface prediction, see Zhou and Qin [3] and de

Vries and Bonvin [4].

Similar developments have benefited the docking field as well.

The protein-protein docking benchmark 2.0 [5] represents a large

and diverse set of complexes and forms a testing ground for the

development of new methods. In addition, to monitor the

performance of current docking methods, CAPRI (Critical

Assessment of Predicted Interactions), a community-wide blind

docking experiment, has been established (http://capri.ebi.ac.uk).

In this experiment, participants are asked to predict by docking a

recently solved protein-protein complex a few weeks prior to its

publication. The large majority of the recent targets had to be

predicted using only unbound structures or even homology

models. Also, recent targets have a higher representation of

biologically interesting signal transduction complexes, which are

known to be difficult to dock. Despite these challenges, successful

predictions were made for several targets that were considered

beyond the limits of docking methodology a few years ago.

In general, docking methods can be divided into ab initio and

data-driven docking methods. Data-driven docking means that

experimental information is used directly during the docking

process, so that the only possible solutions are those that agree with

experiment. The most widely used data-driven docking method,

HADDOCK [6,7,8], was developed in our group. HADDOCK is

currently the most-cited docking method in the world: it is widely

used for structure calculation of protein complexes using NMR

data, and more than 70 experimentally-determined structures

have been solved and deposited in the PDB. HADDOCK has

been applied to a variety of problems including protein-protein,

protein-nucleic acids and protein-small molecule complexes, in

combination with a wide range of experimental data, ranging from

NMR, mass spectrometry to mutagenesis data (for an overview,

see [9,10]).

However, the sophisticated use of experimental data in

HADDOCK, which is its strength, also imposes a limitation. Ab

initio docking in HADDOCK, while possible, performs poorly

compared to state-of-the-art docking methods, limiting the

effective use of HADDOCK to cases where sufficient experimental

information is available. In principle, interface predictions can be

used to remove this limitation and there have been previous

attempts in this direction [3,11]. However, until now, no interface

prediction method has been reliable enough to be combined with

docking and then applied to a wide range of protein-protein

complexes.

The aim of this work is to derive from interface predictions a set

of optimal restraints for data-driven docking using HADDOCK.

This can then serve as a starting point for docking cases where

experimental information is limited. To achieve this aim, six

interface prediction web servers were combined in a consensus

method called CPORT (Consensus Prediction Of interface

Residues in Transient complexes). CPORT predictions were used

to dock the full protein-protein benchmark, excluding only

antibody-antigens and multimer complexes, using HADDOCK.

CPORT predictions were shown to be more reliable than the best

individual predictor, PINUP, and resulted in at least an acceptable

docking solution in the top 400 for the majority of the complexes.

Results

The aim of this work is to derive from interface predictions a set

of optimal restraints for data-driven docking. Interface predictors

often disagree strongly with each other; in most cases, at least one

predictor will be correct but it is not possible to tell which one [4].

One way to deal with this problem is meta-prediction: by

parametric combination of interface prediction scores, a new

score can be computed that is more specific than any of the

individual scores. We have previously made such a combination of

WHISCY and ProMate [11], and this approach has also been

adopted by Qin and Zhou [12] and more recently by Huang and

Schroeder [13].

However, the maximization of overall specificity is not the best

approach when interface predictions are meant to drive the

docking in HADDOCK. We found that HADDOCK is

consistently able to deal with fuzzy data, i.e. data where correct

interface predictions are mixed with wrong ones. It is, however,

essential to cover at least some part of the interface, and this must

be the case for both partners, because correct solutions will not be

sampled otherwise. Therefore, we opted for a consensus strategy,

selecting residues that are predicted by one or another predictor,

rather than combining them into a new score. We also chose to

deliberately overpredict the interface, relying on the HADDOCK

scoring function to discriminate between correct and incorrect

docking solutions. Together, this minimizes the risk that an

interface prediction is entirely wrong, and increases the chance of

success in prediction-driven docking.

We must emphasize that the current work is specifically aimed

at the use of interface predictions in data-driven docking with

HADDOCK. In the literature, many different test statistics have

been used to evaluate interface predictions, including specificity,

sensitivity, Matthews correlation and AUC (Area Under the

Curve) (see [4] for a review). The assessment of interface

predictions is further complicated by the fact that proteins often

have alternative interfaces with different partners, and that this

should be properly accounted for in the computation of ‘‘true’’

statistics. In a docking context, however, only the interface with

the docking partner is relevant, and only test statistics with regard

to this interface could have any relationship to the outcome of the

docking. Finally, our emphasis on achieving good sensitivity and

minimizing the chance of entirely wrong predictions comes from

our experience with HADDOCK and may not be true in a

different docking context.

Collecting interface prediction data
In order to develop a consensus prediction method and to test it

in docking, the protein-protein docking benchmark 2.0 [5] was

chosen. This is a non-redundant benchmark of complexes of

which both bound and unbound structures are available. We took

all complexes in the ‘‘enzyme’’ and ‘‘other’’ categories, since

antibody-antigens are not suitable for interface prediction [3,4,

14], resulting in a dataset of 59 complexes. The unbound forms of

these complexes were sent to each of the six web servers

(WHISCY, PIER, ProMate, cons-PPISP, SPPIDER, and PINUP)

and the prediction scores were extracted. We found that it was

better to use the rank of the prediction score, rather than its

absolute value, except for SPPIDER. A detailed analysis is given

in figure S1.

An important issue is whether predictions should be made on

bound or unbound forms. Since the goal is to use predictions in

CPORT: Consensus Interface Prediction for Docking
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docking, and since bound docking has little biological relevance,

we focused on the unbound forms for both prediction and docking.

In addition, we investigated the effect of switching from the

unbound to the bound forms. Earlier literature suggested that

interface predictors are insensitive to such small structural

differences [4,14]. However, we found considerable influence on

several predictors: in particular, PIER and SPPIDER performed

better on bound structures while PINUP performed better on the

unbound forms (Figure S2).

While the complexes in the benchmark 2.0 are transient

complexes, the large majority of complexes in the PDB are

obligate: no unbound form is available for them because their

chains are never separated in vivo. It has been shown that obligate

interfaces differ considerably from transient interfaces in terms of

size, shape, composition, contacts and conservation [15,16]. This

is another reason why only the protein-protein benchmark was

used, and none of the hundreds of bound complexes available in

the PDB.

The protein-protein benchmark is non-redundant in the sense

that no complexes have homology for both partners. However, at

the single protein level there is considerable redundancy, with

proteins such as trypsin and its homologs represented several times

with different partners and having somewhat or completely different

residues in the interface. This means that independent cross-

validation by partitioning is not possible. Thus, it is important to

train a consensus predictor in a simple way, to prevent over-fitting of

the data. This is also the reason why the set was not partitioned into

training set and test set. However, in addition, an independent

validation was performed on complexes not used in training, namely

the new chains of the benchmark 3.0 [17].

Consensus interface prediction
We assembled a training set of residues that was limited to those

for which all predictors assigned a score. Prediction scores were

converted to integer values, by simply taking the rank of the score

within the protein chain (except for SPPIDER). Then, consensus

prediction was done by deriving a number of optimal sets. Each set

corresponds to a certain sensitivity and consists of the top X

WHISCY predictions, the top Y ProMate predictions, the top Z

PINUP predictions, etc. The goal is to find the optimal cutoff

values for X,Y,Z,… for the given sensitivity.

We could have used regression to find the optimal values for

each set, but this would have resulted in considerable risk of over-

fitting. Instead, a simple, greedy algorithm was used (see Materials

and Methods). Starting with an empty set (all six cutoffs X,Y,Z,…

set to zero), new sets were generated by incrementing one of the

cutoffs by 1. Therefore, there were only six different possibilities

per set, with minimal chances of over-fitting.

Initial docking tests were then performed on six complexes using

various degrees of interface overprediction (see Text S1). This

resulted in the choice of an optimal cutoff with on average 50

predictions per chain. The resulting consensus interface predictor

is called CPORT (Consensus Prediction Of interface Residues in

Transient complexes).

The test set was then expanded into an evaluation set, with

some additional chains and additional interface residues (see

Materials and Methods). All six individual interface predictors, as

well as CPORT, were evaluated on this set. For the six individual

predictors, the top 30 residues were taken. Among them, we found

PINUP to be the best-performing: for 47 of the 109 chains,

PINUP was the best or tied for the best interface predictor. For

PIER, ProMate, SPPIDER, WHISCY and cons-PPISP these

numbers were 28, 21, 20, 18 and 15, respectively. PINUP was

among the best three predictors, or tied for those, for 84 chains.

For PIER, WHISCY, ProMate, SPPIDER and cons-PPISP these

numbers were 71, 58, 56, 52 and 49, respectively. Therefore, it is

clear that while PINUP is better than the other predictors, it is

outperformed by at least one of those predictors in most cases, and

that consensus interface prediction is in principle possible.

The performance of CPORT was evaluated and compared to

PINUP (Table 1). The top 50 PINUP predictions were taken, so

that on average the same number of predictions was made by

PINUP and CPORT. It can be seen that CPORT predictions

improve on PINUP, although the gain in performance is modest.

The main improvement is that the number of complete failures,

i.e. cases where all predictions are wrong, is halved. This meets an

important goal, which is the reliable prediction of at least some

part of the interface, because unless this requirement is met for

both chains, data-driven docking will surely fail. However, the use

of an interface predictor should not depend on solely this criterion;

sensitivity and specificity should be considered as well. The

percentage of proteins for which at least 40% sensitivity and/or

specificity is achieved is a measure of the stability of the method.

For these criteria, CPORT makes a modest improvement by two

to five percentage points. The overall sensitivity and specificity

over the predictions is nearly the same between the two predictors.

In addition, we compared CPORT to the other five interface

predictors (Table S1) and to alternative meta-prediction schemes

(Table S2). Also here, CPORT showed a more constant and

reliable performance.

Validation of CPORT on an independent test set
We also tested CPORT on all new complexes from version 3.0

of the benchmark [17], representing another 74 chains. This set of

additional complexes was not used in the training of CPORT and

differs in overall composition, containing fewer enzymes and more

complexes that undergo large conformational changes. CPORT

made only 45 predictions per chain on average for these

complexes. Therefore, we compared CPORT with the top 45

predictions from PINUP (table 2). It can be seen that CPORT

performs much better than PINUP, with all predictions wrong in

only 3% of the cases, compared to 16% for PINUP. Sensitivity and

specificity values are also much better for CPORT than for

PINUP. The same was observed for alternative meta-prediction

schemes (table S3).

Statistical significance of the improvements
For the benchmark 2.0, the observed improvements over

PINUP were not large enough to be statistically significant

(p = 0.235–0.432, Fisher exact test, one-tailed); the number of

chains (109) is too small to detect differences of just a few percent.

However, compared to all other individual predictors, CPORT

was significantly better in sensitivity (p = 0.0001–0.02, Fisher exact

test), and better in specificity than all methods except ProMate

(p = 0.00064–0.041; CPORT vs ProMate, p = 0.119). This is not

very surprising given the fact that CPORT outperforms all of these

methods by at least ten percent.

For the benchmark 3.0, CPORT’s improvements over PINUP

were more substantial, and were statistically significant for the

number of all wrong predictions (p = 0.0046), the number of

predictions with sensitivity .40% (p = 0.031), the overall sensitiv-

ity (p = 0.00014) and the overall specificity (p = 0.0011).

Correlation between sensitivity and the number of
predictions

As a rule, in interface prediction, the more residues are

predicted, the higher the sensitivity will be, usually at the cost of

CPORT: Consensus Interface Prediction for Docking
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specificity. For example, taking all the WHISCY scores higher

than zero as predicted interface results in a sensitivity that is well

correlated with the number of predictions (r = 0.63). However,

CPORT shows exactly the reverse: among the proteins in the

benchmark, the sensitivity of the prediction is negatively

correlated with the number of predicted interface residues

(r = 20.35). This intriguing property is due to the fact that

CPORT adds predictions from various interface predictors

(rather than combining their scores), so that the predicted

interface is small when the underlying interface predictors agree

well, indicating a strong signal for the possible binding site.

Disagreement between predictors, indicating multiple possible

binding sites and/or a weak signal, results in a much larger

number of predictions, increasing sensitivity for an interface that

is otherwise elusive to interface prediction. In the context of data-

driven docking, where fuzzyness in the data can be dealt with but

sensitivity must be achieved at all cost, this property is very

desirable.

Docking results
CPORT predictions were used to drive the docking of the

complexes in the protein-protein benchmark 2.0 using HAD-

DOCK. A small training set of six complexes was used to find the

optimal values for two docking parameters, namely the number of

docking trials and the percentage of restraints to discard at random

(see Text S1). After this, docking proceeded on all complexes from

benchmark 2.0 except antibody-antigen complexes and multimers.

For each complex, 10 000 structures were generated in the rigid

body stage, of which the top 400 were refined. As a control, a

docking run using HADDOCK in ab initio mode was performed

for each complex. Finally, an alternative CPORT docking run

was performed under slightly different conditions, resulting

in better energies and a higher percentage of correct structures,

but with considerable difficulty to discriminate correct from

incorrect structures. Because of this, we decided from the

beginning not to use the results of the alternative run in this

study, but it is made available together with the other runs as

decoy sets (see Text S1) for use in the development of better

scoring functions.

Figure 1 shows an evaluation of the docking results according to

the CAPRI criteria [18] (see Materials and Methods), based the

Root Mean Square Deviation (RMSD) and the fraction of native

contacts (fnat). For the majority of the complexes (58%), a

structure of one-star or better quality was present among the 400

structures after refinement. In most of these cases, at least one of

these structures was ranked in the top 100.

We found sampling, rather than scoring, to be the limiting step.

In 15% of the cases, not a single one-star structure could be

generated in the rigid body stage, and in an additional 22% of the

cases, there were less than 10 of them among the 10 000 structures

(based on RMSD alone). This leaves only 63% of the complexes

for which the sampling was good. Focusing on those complexes,

we found that at least a one-star was selected in all but three cases

(92%), as shown in Table 3. In the majority of the cases, we found

a statistically significant enrichment of one-star complexes in the

top 400.

It was considerably more difficult to generate two-star

complexes. In only 44% of all cases, a two-star complex could

be generated at all during the rigid-body docking stage (Figure 1).

Fortunately, the HADDOCK scoring of these solutions worked

very well. In 65% of the cases where any two-star was generated,

one could be selected among the top 400 (Table 3). For the large

majority of those cases, this corresponds to a significant

enrichment in two-star structures in the top 400. In total, after

refinement, a two-star structure was present in 25% of the cases.

These successes of HADDOCK on the benchmark are largely

due to the fact that the docking was driven by CPORT

predictions. For comparison, we performed an ab initio HAD-

DOCK docking run for every complex (Figure 1, lower graph). In

only 27% of all cases, a one-star or better structure was present in

the 400 refined structures in ab initio docking, which is less than

half the success rate of CPORT. Only one complex (1IJK) was

successful in ab initio docking but not in CPORT-driven docking

(results not shown). 32% of the cases were successful for the

CPORT run alone and 25% were successful for both runs. After

pooling all of these categories, 71% (corresponding to 42% of all

complexes) had more one-star structures in the CPORT run than

in the ab initio run.

Table 1. Comparison between CPORT and PINUP predictions on the benchmark 2.0.

All wrong
Sensitivity
. = 40%

Specificity
. = 40%

Sens & spec
. = 40% Overall sensitivity Overall specificity

CPORT 2% 82% 24% 24% 53% 27%

PINUP 4% 80% 19% 19% 52% 27%

CPORT made on average 50 predictions per protein chain; shown is the comparison between CPORT and the top 50 PINUP predictions on the protein-protein docking
benchmark 2.0 [5].
doi:10.1371/journal.pone.0017695.t001

Table 2. Comparison between CPORT and PINUP on the benchmark 3.0.

All wrong Sensitivity Specificity Sens & spec Overall Overall

. = 40% . = 40% . = 40% sensitivity specificity

CPORT 3% 70% 26% 24% 48% 28%

PINUP 16% 54% 19% 19% 42% 25%

CPORT made on average 45 predictions per protein chain; shown is the comparison between CPORT and the top 45 PINUP predictions for the 37 new targets of the
protein-protein docking benchmark 3.0 [17].
doi:10.1371/journal.pone.0017695.t002

CPORT: Consensus Interface Prediction for Docking
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Figure 1. Docking results. Docking results for CPORT-driven docking using HADDOCK (top), compared to HADDOCK ab initio docking (bottom).
The figure shows the percentage of cases for which at least one structure of that quality was generated during the rigid body stage (10 000
structures), and the top 400 (all refined structures), 100, 10 and 1 of the refinement stage. One-star and two-star criteria correspond to the CAPRI [18]
definitions (see Methods). For the rigid body stage, the fnat criterion is not taken into account.
doi:10.1371/journal.pone.0017695.g001

CPORT: Consensus Interface Prediction for Docking
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Two-star structures in ab initio docking could be generated for

only 11 complexes (19%). In only four cases (7%), one or two of

these two-stars were among the refined 400 structures, corre-

sponding to less than one third of the success rate of the CPORT

runs. Only in a single case (1AY7), a three-star prediction could

be generated after refinement in the CPORT run (results not

shown). No three-star structures were generated during ab initio

docking.

The effect of HADDOCK refinement
We previously found that refinement in HADDOCK does not

systematically improve RMSD, but does result in significant

improvements in the fraction of native contacts (fnat), if the

structure is already of one-star quality [8]. This is confirmed by the

current results. During the first flexible annealing refinement stage,

the overall fnat increased on average by a small amount of 0.014.

However, limiting the analysis to structures that are of one-star

quality or better (based on RMSD alone) after the rigid body stage,

the average fnat increase was 0.095. Upon water refinement, an

additional gain in native contacts of 0.021 was achieved for these

structures. Therefore, refinement resulted in an average gain of

more than 11 percent of the native contacts. Note that this is

sufficient to promote a structure without any native contacts to a

one-star prediction. In terms of RMSDs, refinement had no

systematic effect, with average changes of less than 0.2 Å and

standard deviations of less than 1 Å for interface and ligand

RMSDs.

We found refinement to have little effect on the scoring of one-

star structures (results not shown). However, refinement signifi-

cantly improved the scoring of two-star structures. The rank of the

first two-star structure improved in 86% of the cases, and the

average rank of the first two-star structure improved from 81 to 35.

Success rate among different categories
The docking benchmark consists of different categories:

enzymes (enzyme-inhibitor and enzyme-substrate complexes),

antibody-antigens (not suitable for interface prediction and

therefore not studied here) and other complexes. The complexes

are also subdivided into rigid, medium and hard complexes, based

on the conformational change upon complexation.

In general, we found large differences in success rate between

the different categories. While a one-star model could be

generated during refinement in 58% of the cases overall, this

percentage increased to 80% for enzymes (91% of the rigid

enzymes and 25% of the medium/hard enzymes) while it was only

41% for non-enzyme complexes (57% of the rigid non-enzymes

and 15% of the medium/hard non-enzyme complexes). Overall,

the success rate was 74% for rigid complexes and 18% for non-

rigid complexes. Using interface predictions, it seems that rigid

enzymes and medium/hard complexes form two extremes in

docking difficulty, with rigid non-enzymes almost exactly in

between.

Among all complexes, 25% contained at least one two-star

structure among the 400 refined structures. All of these successful

cases were rigid, forming 36% of all rigid structures. Two of them

were non-enzymes, comprising 10% of all rigid non-enzymes. The

remainder consisted of rigid enzymes, comprising 62% of this

category.

Docking results in relation to interface prediction results
For the 33 successful complexes (with at least one star in

the top 400 refined structures), we compared the rank of the first

one-star solution to the sensitivity and specificity of the interface

predictions (Table S4). Overall sensitivity values were high,

and no particular relationship was found between the average

sensitivity and the first one-star rank (Spearman rank correlation,

r = 20.28).

For specificity, however, a strong relationship was found. 14

complexes had an average specificity of more than 35%, of which

5/14 had a one-star solution at rank 1; 8/14 in the top 10; 12/14

in the top 50; and 13/14 in the top 100. In contrast, among the

complexes with less than 35% average specificity, only 1/19 had a

one-star solution at rank 1; 3/19 in the top 10; 6/19 in the top 50;

and 10/19 in the top 100. The overall correlation between average

specificity and first one-star rank was 20.53 (Spearman rank

correlation).

Post-docking interface prediction
Fernandez-Recio et al. [19] reversed the usual concept that

interface predictions should be used in docking: analyzing the

interfaces of favored ab initio docking solutions, they found that the

interface could be predicted from these structures in most cases.

Very recently, the same result was found by Hwang et al. [20] and

also from an analysis of CAPRI predictions [21].To investigate

whether this is also true for our study, we analyzed the contacts

made by all 400 refined structures for every complex in the

CPORT-driven run. For each of the two chains, we took the top N

contact-forming residues, where N is the original number of

CPORT predictions for that chain, and used these residues to

‘‘post-predict’’ the interface. Very difficult docking cases were

excluded from the analysis, i.e. at least one good solution (one-star

or better) had to be present among the top 400 predictions of the

CPORT run and/or the ab initio run. Complexes with internal

symmetry were also excluded.

We found that interface post-prediction on docking solutions

can make considerable improvements on the interface predictions

Table 3. Scoring of docking solutions at the rigid body stage of the CPORT docking runs.

Top 400 Significant Nonsignificant Nonsignificant Significant

enrichment enrichment depletion depletion

One-star 92% 63% 16% 16% 5%

Two-star 65% 46% 19% 35% 0%

The table indicates the percentage of cases for which at least one correct structure is selected in the top 400, and the percentage of complexes of which the number of
correct structures is higher than random selection (enrichment) or lower than random selection (depletion). Significance (p,0.05) was determined using the
hypergeometric distribution.
One-star and two-star criteria correspond to the CAPRI [18] definitions (see Material & Methods). For one-star structures, only those complexes are considered with at
least 10 one-star solutions among the 10 000 (63% of all complexes). For two-star structures, only those complexes are considered with at least one two-star solution
(44% of all complexes). The fnat criterion is not taken into account.
doi:10.1371/journal.pone.0017695.t003
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that drove them. In 66% of the cases, interface post-prediction

improved compared to the original CPORT prediction, whereas it

deteriorated in only 19%. The average sensitivity among all these

complexes was 72.3%, compared to 62.3% for CPORT. This

improvement in interface prediction was already apparent after

rigid body docking: by analyzing the top 400 rigid body structures,

average sensitivity among all complexes was 71.5%, only slightly

worse than the average after refinement and much better than

CPORT.

Moreover, we found that interface post-predictions could also

be obtained from ab initio HADDOCK runs. Again, we took the

top N contact-forming residues, were N was the number of

CPORT predictions for that protein. After refinement, predictions

were better than random for 86% of the cases, significantly so in

53% of all cases (p,0.05, hypergeometric distribution). Strikingly,

in 33% of the cases, this prediction was actually better than the

CPORT prediction for that chain. The average sensitivity among

all analyzed complexes was 57.7%, worse than CPORT but much

better than the average sensitivity of 40.7% for a random

prediction. Post-prediction results were nearly identical when

obtained from rigid body solutions instead of refined solutions

(results not shown).

Discussion

Here we present CPORT, a consensus docking method

specifically optimized for data-driven docking in HADDOCK.

Based on six interface predictors for which a web server is

available, it improves upon the best-performing of those methods,

PINUP. Applied to a large and diverse benchmark of complexes,

CPORT interface predictions were shown to be constant and

reliable, generating at least one correct prediction for all but 2% of

the cases. This stable performance was confirmed on an

independent test set consisting of all new complexes from

benchmark 3.0. In addition, CPORT predictions were used to

drive blind unbound docking using HADDOCK, resulting in an

acceptable or better solution among the 400 refined structures for

58% of the complexes.

Zhou and Qin [3] found that interface predictions can be used

in docking if specificity and sensitivity are both higher than 40%,

limiting their use to the enzyme-inhibitor category of complexes.

Here we show that interface predictions are already useful for

predictions of considerable lower quality. For only 24% of the

chains, the 40% sensitivity/specificity criterion was met, which

means actually that for few complexes this was met for both

chains. Nevertheless, we find that for 71% of the complexes,

HADDOCK with CPORT interface predictions performs better

than HADDOCK ab initio (excluding complexes that failed in both

cases). For a fair comparison, it must be mentioned that Zhou and

Qin used interface predictions to filter ab initio docking solutions,

rather than using them to drive the docking.

It should be noted here that we have measured the prediction

performance against the interfaces defined from the protein-

protein docking benchmark. In reality, not all ‘‘false positive’’

predictions will be wrong: many might actually correspond to

alternative interfaces (it is well known that proteins can often bind

various targets). While those residues are ‘‘wrong predictions’’ in

the context of the protein complexes defined in the benchmark,

they might well be correct for interaction with other partners.

Consequently, in the purpose of only predicting putative interfaces

for a given protein, the reported specificities only represent lower

limits, which we, however, consider to give fair measure of the

performance in the context of predicting a specific complex, as is

the case in this work.

The docking results obtained here are a considerable improve-

ment over our previous efforts based on a combination of the

interface predictors WHISCY and ProMate [11]. The aim of that

study was merely to sample acceptable complexes (l-

RMSD,10 Å) among 2000 rigid body structures, focusing on a

data set of (mostly rigid) enzyme complexes. Both a meta-

prediction strategy (WHISCYMATE) and a consensus strategy

(Added prediction) were tried. Nevertheless, among the complexes

from benchmark 2.0, the WHISCYMATE docking run generated

no acceptable solutions for 6/23 cases and only one (out of 2000)

in a seventh case. The Added docking run generated no acceptable

solutions for 3/23 cases, only one in another 2/23 and only three

in a sixth case. In contrast, in the current work, for only one of

those 23 cases (1F34), no structure with l-RMSD,10 Å could be

generated in the top 2000. For all other cases, at least five correct

structures could be generated. Therefore, unlike the previous

study, CPORT can achieve sufficient sampling for enzyme

complexes in nearly all cases.

Comparison of HADDOCK-CPORT with BDOCK-metaPPI
Huang and Schroeder [13] published a meta-predictor for

protein-protein interfaces, metaPPI, designed to improve docking

results, in this case in combination with their docking program

BDOCK. However, their design differs in several important

aspects from the present work. First, metaPPI combines interface

predictors using a voting machine rather than the consensus

strategy used by CPORT. Second, the predictors used by Huang

and Schroeder do not include PIER and WHISCY, but do include

a patch predictor, PPI-PRED [22]. The output of metaPPI is also

a continuous patch, rather than a list of residues such as provided

by CPORT and the other individual predictors. Finally, the

predictions are used to filter the docking results, rather than to

drive the docking process.

We found HADDOCK-CPORT to be superior in performance

to BDOCK-metaPPI. Comparisons were made to the best

performing docking method BDOCKnb, filtered by metaPPI

predictions, resulting in 1500–2000 docking solutions. BDOCK-

metaPPI selected at least one structure with l-RMSD,10 for 17/

19 enzymes and 7/21 other complexes chosen from the

benchmark 2.0 (not counting antibody-antigen complex 1KXQ).

With an identical dataset, criteria and selecting the same number

of structures from the rigid body stage, HADDOCK-CPORT was

successful for 17/19 enzymes and 9/21 other complexes. In

general, HADDOCK-CPORT generated far more acceptable

structures than BDOCK-metaPPI: using a more strict criterion of

at least four acceptable structures in the selected 1500–2000

structures, the success rate for BDOCK-metaPPI dropped to 15/

19 and 5/21 for enzymes and other complexes, respectively, but

the success rate for HADDOCK-CPORT remained 17/19 for

enzymes and became 7/21 for other complexes.

Comparison of HADDOCK-CPORT with the SVM method
of Martin and Schomburg

Martin and Schomburg [23] trained a Support Vector Machine

(SVM) method to score docking solutions, exploiting several

properties also used in interface prediction, such as interface

propensity and conservation, as well as other properties. Unlike

the simple optimization scheme used by CPORT, machine

learning methods such as SVMs contain hundreds of parameters

that are optimized, and therefore great care must be taken to

prevent over-fitting.

The SVM program was trained separately on docking solutions

from each of the three classes from the benchmark (enzyme,

antibody-antigen and other) and tested on different docking

CPORT: Consensus Interface Prediction for Docking
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solutions from the same complexes. Therefore, the program was

implicitly aware on the characteristics of correct solutions for each

of the complexes in the benchmark. In contrast, the current work

is a blind docking study: neither HADDOCK nor CPORT was

aware of the correctness or incorrectness of any docking solution of

the complexes during prediction, docking or scoring.

Nevertheless, we found HADDOCK-CPORT to achieve the

same performance as the SVM method of Martin and Schomburg.

As a criterion for success, Martin and Schomburg used the

presence of at least one structure of i-RMSD,5 Å among the top

100 structures, which they achieved for 26/51 complexes. For

HADDOCK-CPORT, this was achieved for 29/59 complexes.

Comparison on the class level is not possible since Martin and

Schomburg classified some complexes differently than currently

annotated in the benchmark.

Comparison of HADDOCK-CPORT with ZDOCK-ZRANK
ZDOCK [24,25] is an FFT-based ab initio rigid body docking

method, one of the top performing methods together with

HADDOCK in the CAPRI experiment [26,27]. The protein-

protein docking benchmark has been developed by the ZDOCK

group, who has used it in the optimization of docking and scoring

methodology. It serves as an important testing ground for new

developments in docking methodology.

A scoring function called ZRANK has been developed by the

ZDOCK group, with the goal to re-rank ZDOCK solutions [28].

Using ZRANK and version 3.0 of ZDOCK, Pierce and Weng

[29] managed to score a hit (structure with i-RMSD,2.5 Å)

among the top 100 in more than 50% of the complexes in the

benchmark 2.0, while 60% contains a near-hit (structure with i-

RMSD,4.0 Å). This sets a formidable standard for any docking

method.

It is not the goal of the present study to outperform ab initio

docking methods in the context of docking with zero experimental

data. Unlike HADDOCK, ZDOCK is optimized for such cases,

containing features such as shape complementarity [30,31] and

statistical contact potentials [32] that are absent in HADDOCK.

Rather, the strength of HADDOCK lies in its flexible use of

experimental data. The present study aims to establish a

prediction-driven docking protocol that experimentalists can use

as a starting point, incorporating experimental data and expert

knowledge in the form of filtering the predictions, adding

additional constraints, cutting up the protein or any of the

myriads of other possibilities offered by HADDOCK, and that will

directly improve the results.

Still, we compared the ab initio results of ZDOCK-ZRANK to

the blind data-driven docking results of HADDOCK-CPORT.

The ZDOCK-ZRANK supplementary material was downloaded

and analyzed, limiting the analysis to the same set of complexes

used here. Since the supplementary material contains only i-

RMSD values, and no l-RMSD or fnat values, a comparison based

on CAPRI criteria is not possible. Therefore, we used the near-hit

definition (i-RMSD,4.0 Å) as criterion of success, since it is

similar to the CAPRI one-star criterion.

We found HADDOCK-CPORT to be competitive with

ZDOCK-ZRANK in terms of near-hits (Table 4). Among the

top 400, HADDOCK-CPORT selected a near-hit in 35/59 cases,

the same performance as ZDOCK-ZRANK. However, in three

cases, the near-hit deteriorated and was lost during refinement. In

addition, ZDOCK-ZRANK was also better able to rank near-hits

in the top 100.

Although not corresponding to any CAPRI criterion, we also

looked at the generation and scoring of what Pierce and Weng

defined as ‘‘hits’’ (i-RMSD,2.5). Here we found that HAD-

DOCK-CPORT was outperformed by ZDOCK-ZRANK. After

the rigid body stage, in 18/59 cases at least one hit scored among

the top 400 for HADDOCK-CPORT. During refinement, this

increased to 19/59, which is still significantly less than the 25/59

complexes that were successful using ZDOCK-ZRANK. The

complexes that yielded hits in the top 400 with HADDOCK-

CPORT usually also did so with ZDOCK-ZRANK. However,

there were two complexes (1GP2 and 2MTA) that were successful

for HADDOCK-CPORT and not for ZDOCK-ZRANK.

The properties used in PINUP were used by the authors to

enrich the number of hits generated by ZDOCK [33]. They

achieved a six-fold enrichment over the native ZDOCK score,

leading to a performance comparable to ZRANK.

Conclusions
Protein-protein docking can be and has been applied to a wide

range of complexes, ranging from cases where extensive

experimental information about the interface is available, to cases

where docking is completely blind, i.e. no other information is

known than that the proteins do interact. The large majority of the

docking methods are ab initio methods, designed towards the latter

class of complexes, although experimental data can often be

incorporated to restrict the search space. In contrast, HADDOCK

is a data-driven docking program that has been widely used in

combination with experimental data, ranging from NMR data,

mass spectrometry data to mutagenesis data (for a comprehensive

overview, see van Dijk et al. [9]). Ab initio docking in HADDOCK,

while possible, performs poorly compared to state-of-the-art

docking methods limiting HADDOCK to cases where sufficient

experimental data is available. While these data are much easier to

obtain than the actual experimental structure of the protein

complex, this has been an important limitation of the data-driven

docking paradigm compared to ab initio methods.

Here we have demonstrated that this limitation is removed

when data-driven docking is combined with consensus interface

predictions. While interface predictions have been used previously

in docking, their success has been mostly limited to cases for which

interface prediction is relatively easy, such as rigid enzymes [11] or

enzyme-inhibitors [3] In the current work, by using a consensus

Table 4. Comparison between HADDOCK-CPORT and
ZDOCK-ZRANK.

Top 10 000 Top 400 Top 100

i-RMSD,4.0

ZDOCK-ZRANK 52 35 25

HADDOCK-CPORT,

rigid body stage 45 35 21

HADDOCK-CPORT,

refinement stage - 32 21

i-RMSD,2.5

ZDOCK-ZRANK 38 25 21

HADDOCK-CPORT,

rigid body stage 26 18 9

HADDOCK-CPORT,

refinement stage - 19 13

Success rate of HADDOCK-CPORT compared to ZDOCK-ZRANK among 59
‘‘enzyme’’ and ‘‘other’’ complexes from the protein-protein docking benchmark.
Shown is the number of successful complexes for each method.
doi:10.1371/journal.pone.0017695.t004
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prediction strategy in combination with improved docking

protocols, much improvement has been made over earlier

attempts.

We have demonstrated that sampling, rather than scoring, is the

limiting step when using interface predictions in HADDOCK.

Even if only 0.1% (10/10 000) of the sampled structures is of one-

star quality or better, one can be selected among the top 400 in

basically all cases. For two-star structures, the sampling of even a

single structure is often enough. We have also shown that flexible

refinement is helpful in improving the fraction of native contacts in

the docking models, and in improving the rank of two-star

structures among the selected structures.

The current study shows that using interface predictions, the

performance gap between data-driven docking and ab initio

docking methods for blind docking cases is nearly closed. It is

not the purpose of this study to develop a docking protocol to

replace ab initio docking. Indeed, our results show that in the

complete absence of experimental information, ZDOCK-ZRANK

is still somewhat better than HADDOCK-CPORT. However, the

small difference in performance makes HADDOCK-CPORT an

excellent starting point for cases with limited experimental data.

Blind docking driven by interface predictions represents the

absolute bottom line of what is possible in HADDOCK: since

HADDOCK is designed to incorporate experimental data in the

most powerful and flexible way, any additional biological

knowledge will greatly improve the results obtained by predic-

tion-driven docking alone.

In this light, it is also encouraging that the initial estimate of the

interface given by consensus interface prediction can also be

improved by post-prediction based on the top-scoring docking

results. In data-driven docking, these new predictions can be used

directly in a new docking run. Used together with expert

knowledge in the interpretation of interface predictions and

docking results, prediction-driven docking is a powerful new tool

in the generation of new hypotheses on the atomic details of

macromolecular interactions.

All docking structures described in this work represent a very

extensive decoy set which is freely available for download at

http://haddock.chem.uu.nl/services/CPORT/cport-suppmat.html.

They contain both high-quality refined structures and energy-

minimized rigid-body structures. We hope that this decoy set will be

useful for the ongoing development of new scoring methods. The

decoy set also contains a large number of additional statistics

regarding the performance of the various interface predictors and the

different docking stages. These include, among other, the sensitivity

and specificity of each interface predictor for both chains, the number

of one-star, two-star and three-star solutions at each of the docking

stages, and also their ranks.

A web server for CPORT has been developed using the Spyder

framework for data-driven programming [34]. The CPORT web

server is freely available at http://haddock.chem.uu.nl/services/

CPORT.

Finally, the optimized protocol for prediction-driven docking

has been made available as a special web server interface in the

HADDOCK web server, and can be accessed at http://haddock.

chem.uu.nl/services/HADDOCK/haddockserver-prediction.html.

Materials and Methods

Dataset
Prediction and docking were performed on the full docking

benchmark 2.0 [5], with the exception of antibody-antigen

complexes and homotrimeric/homotetrameric complexes (see

below). Complexes classified as ‘‘medium’’ and ‘‘hard’’ were

included. We followed the re-classification of 1FQ1, 1IJK and

1M10 as ‘‘enzyme’’ in the recent version of the benchmark [17].

Quaternary state
In some of the complexes, one partner is a symmetric

homodimer, homotrimer or homotetramer. The interface between

the subunits is usually obligate and shows a strong signal in

interface prediction. Therefore, in the case of homodimers (1A2K,

1AKJ, 1EER, 1IB1, 1ML0) predictions and docking were

performed on the dimer rather than the monomer, to prevent

the dimer interface from being predicted. Predictions were not

forced to be consistent between subunits. In the RMSD evaluation

of docking solutions (see below), each dimer was fitted and

evaluated onto the reference structure in both possible ways, and

the best of the two statistics was taken.

This procedure was considered too complex for the three

complexes with homotrimers/homotetramers (1KKL, 1RLB and

1N2C), and therefore, these complexes were excluded beforehand.

Interface prediction
Predictions were retrieved from the web servers of WHISCY

[11], PIER [14], ProMate [35], cons-PPISP [36], SPPIDER [37],

and PINUP [38], using default settings and unbound structures.

Due to technical problems with the PINUP server, some of the

PINUP predictions were run locally using source code and

binaries kindly provided by the authors. For all predictors, the

prediction scores were used as returned by the web server. In case

of cons-PPISP, which returns a set of clusters, the predictions were

converted to a score based on the cluster rank, rather than the

confidence score provided for each cluster (see Text S1). The score

was computed as 100 * c+n21, where c is the rank of the

predicted cluster to which the residue belongs, and n the rank of

that residue within the cluster. Residues not belonging to any

cluster were given a score of 10 000. Residues predicted to be

buried were given a score of 100 000.

Integrating interface prediction scores
A consensus prediction method was developed on a subset of the

residues in the benchmark complexes (the ‘‘training set’’). Every

residue was classified as interface or non-interface; residues were

considered to be interface residues if the shortest heavy-atom

distance to the partner protein was less than 5 Å. All residues and

chains for which one or more predictors gave no result were

discarded, which includes all interface and non-interface residues

that one or more predictors classified as buried. This resulted in a

training set of 14480 residues, of which 2243 (15.1%) were

interface residues. PIER predictions where filtered according to

surface accessibility, considering only residues with a relative side

chain or main chain accessibility of at least 15% as determined by

NACCESS [39].

Then, for PIER, WHISCY, ProMate and PINUP, for every

chain the scores were ranked and the ranks were written in the

table. For cons-PPISP, all scores were pooled, sorted from low to

high, and divided into N partitions, where N is the average

number of predictable residues per chain. For every score, the

partition to which it belonged was determined and this was written

as rank into the table. The same procedure was applied to

SPPIDER scores, except that these were sorted from high to low.

All ranks were capped at 30.

For the integration of scores, a consensus strategy was chosen,

adding predictions rather than combining them into a new score.

For every predictor, a threshold variable was defined. A residue

with rank in any predictor lower or equal than the threshold of

that predictor was considered to be selected. To choose the
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optimal set of thresholds, a simple, greedy algorithm was used. All

thresholds were initialized to zero, starting with an empty set of

predictions. Then, for every interface predictor, a threshold

increment of one was tried; then, out of the six resulting threshold

sets, the set was chosen that resulted in the largest specificity. This

procedure was repeated until all residues were predicted. This

resulted in not a single threshold set, but a list of them, each

corresponding to the optimal prediction set for a given cutoff.

Consensus interface prediction in docking
Consensus predictions were made at three different cutoffs,

corresponding to a balanced prediction, slight overprediction and

heavy overprediction, respectively:

N The first cutoff (balanced prediction) corresponds to taking the

top 4 WHISCY predictions, the top 3 PIER predictions, the

top 6 ProMate predictions and the top 12 PINUP predictions,

no cons-PPISP predictions, and the top 6 score partitions

(scores higher than 91.02) of SPPIDER, resulting on average in

22 predictions per chain.

N The second cutoff (slight overprediction) corresponds to taking

the top 6 WHISCY predictions, the top 7 PIER predictions,

the top 11 ProMate predictions and the top 13 PINUP

predictions, the 11 highest score partitions (corresponding with

the top 14 of cluster 1) of cons-PPISP, and the top 6 score

partitions (scores higher than 91.02) of SPPIDER, resulting on

average in 33 predictions per chain.

N The third cutoff (heavy overprediction) corresponds to taking

the top 14 WHISCY predictions, the top 20 PIER predictions,

the top 19 ProMate predictions and the top 21 PINUP

predictions, the 14 highest score partitions (corresponding with

the top 14 of cluster 1) of cons-PPISP, and the top 6 score

partitions (scores higher than 91.02) of SPPIDER, resulting on

average in 50 predictions per chain.

Initial docking tests showed the third cutoff to be optimal in

docking (see Text S1), and therefore, this cutoff was chosen for the

CPORT consensus predictor. In cases where a predictor was

unable to yield a prediction on a particular chain, consensus

predictions were made using the consensus of the remaining

interface predictors.

Evaluation of interface predictions
Residues were considered to be interface residues if the shortest

heavy-atom distance to the partner protein was less than 5 Å. We

defined surface residues in the same manner as in the WHISCY

paper [11], as residues with a relative side chain or main chain

accessibility of at least 15% as determined by NACCESS [39].

This resulted in 14% of the surface residues to be defined as

interface. This resulted in an ‘‘evaluation set’’ of 20185 residues, of

which 2987 (14.8%) were interface residues.

Interface predictions were classified as true positives (TP), false

positives (FP), true negatives (TN) and false negatives (FN), and

evaluated using the following criteria:

N Sensitivity, corresponding to the fraction of the interface that

was successfully predicted, defined as TP/(TP+FN).

N Specificity, corresponding to the fraction of the predictions that

were correct, defined as TP/(TP+FP).

The evaluation set is overlapping, but not identical, to the

training set that was used to develop the CPORT thresholds and

cutoffs. All of the training set residues were in the test set, but they

formed only 71.7% of the evaluation set. This has several causes.

First, the number of chains in the evaluation set was somewhat

larger, since for some interface predictors, predictions could be

obtained after some re-formatting of the structure, which was done

after development. This final set of chains (109) consisted of all

chains in the benchmark except 1FC2 chain C, 1ML0 chain A,

1PPE chain I and both chains of 1HE8, 2PCC and 1H1V.

Second, unlike the development set, the evaluation set of

predictions contained all residues that we defined as surface

residues, regardless of whether they received a score from all

predictors. Finally, all interface residues were considered in the

evaluation, regardless of whether they received a score from all

predictors or whether they passed the surface accessibility

criterion. In fact, out of the 2987 true interface residues, 423

(14.2%) were missing or buried in the unbound structure. This

means that only 13.0% of the evaluation set consisted of interface

residues that could possibly be predicted, and this would be the

expected accuracy of a random predictor. In addition, this meant

that the maximum achievable sensitivity was only 85.8%.

To determine the relative performance of the six individual

predictors, the top 30 predictions of every method were taken.

An independent evaluation was performed on all 74 new chains

of benchmark 3.0 [17] that are not antibody-antigens. It was

verified that these chains form a validation set that is largely

orthogonal in sequence homology,: of the new chains, only 7 are

also present in the benchmark 2 (with completely different

partners), and an additional 8 have an homologue. That leaves

59 new chains with less than 30% sequence identity to any chain

in the benchmark 2.

For the benchmark 2.0, to compare the best predictor, PINUP,

with CPORT, the top 50 PINUP predictions were taken so that

the number of predictions was on average equal between the two

methods. For the benchmark 3.0, where CPORT made fewer

predictions (45 on average), the top 45 PINUP predictions were

taken for comparison, to make sure that an equal number of

predictions was made by both PINUP and CPORT.

Prediction-driven docking
CPORT prediction-driven docking was performed using

HADDOCK 2.1 and the ‘‘haddock’’ and ‘‘haddockserver’’

modules of the Spyder framework, which are part of the

HADDOCK server [34]. For chains where not all predictors

gave a result, the CPORT consensus of the remaining predictors

was used. Docking was performed with the following parameter

settings: 10 000 structures in the rigid body stage, ntrials = 1,

noecvpart = 8/7, meaning that for every structure, 87.5% of the

restraints were discarded at random. An alternative CPORT run

was performed with 5000 rigid body structures, ntrials = 5 (for

every structure, rigid-body docking was performed 5 times with

the best structure written to disk).

Predictions were translated into ambiguous interaction re-

straints (AIRs) in the standard way, defining predicted residues as

active residues and surrounding surface residues (within 6.5 Å

from any active residue) as passive residues. For each active

residue, HADDOCK defines an AIR restraint between that

residue and all active and passive residues of the partner protein.

Ab initio docking
HADDOCK ab initio docking was performed using center-of-

mass restraints: during the initial rigid body minimization, a

distance restraint was defined between the centers-of-mass of the

respective partners (this was done by defining a distance restraint

between the CA atoms of each protein with the center averaging

option in CNS [40]); the upper distance limit was automatically

defined from the dimensions of each protein along the x,y,z axis of
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the molecular alignment tensor as: dcenter-of-mass = 1+(dxi+dyi+dzi

+dxj+dyj+dzj)/12 were i and j indicates the two proteins,

respectively. 10 000 rigid body structures were generated with

ntrials = 5.

Refinement of docking solutions
For all docking runs, the top 400 structures after rigid body docking

were selected for the subsequent two refinement stages: flexible

simulated annealing in torsion angle space (it1) and flexible water

refinement in Cartesian space (water). To save computation time, the

refinement stage was only run for only those complexes with at least

one one-star (not taking into account fnat) in the rigid body stage of

either the CPORT run or the ab initio run (40 out of 59 complexes). If

this criterion was met for only one run, both runs were nevertheless

refined. The complexes for which this criterion was not met for either

run were considered failures and were not refined.

The docking calculations were performed on the Mare Nostrum

Supercomputer, Barcelona, Spain, and on the HADDOCK server

cluster in Utrecht. Each run (with refinement) required around a

total of 200 CPU hours.

Evaluation of docking solutions
Stars were awarded according to CAPRI criteria [18]. For a

complex to be classified as one-star, its interface root mean square

deviation (i-RMSD) from the complex has to be lower than 4 Å or

its ligand RMSD (l-RMSD) lower than 10 Å. In addition, the

fraction of native contacts (fnat) has to be . = 0.1. For two-star

predictions, the criteria are i-RMSD,2 or l-RMSD,5, and

fnat. = 0.3. For three-star predictions, the criteria are i-

RMSD,1 or l-RMSD,1, and fnat . = 0.5. In evaluating the

rigid body stage of docking, the fnat criterion was not applied,

because a significant improvement in fnat is usually observed upon

HADDOCK flexible refinement. In evaluating symmetry-related

complexes (1A2K, 1AKJ, 1EER, 1F51, 1IB1, 1ML0), the fnat

criterion was never applied.

Interface post-prediction
Interface post-predictions were made on all docking runs

(CPORT-driven and ab-initio) that were subjected to refinement

(see above), except for complexes with internal symmetry. For

each chain, predictions were made by ranking the residues

according to the number of contacts made by that residue among

all selected docking solutions. For post-predictions from water-

refined structures, all structures were selected, whereas only the

top 400 structures were selected for predictions from rigid body

structures.

Availability and Requirements
The CPORT web server if freely available for use without any

restriction and registration requirements from the following web

address: http://haddock.chem.uu.nl/services/CPORT.
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