
CPP-ELM: Cryptographically Privacy-Preserving Extreme Learning Machine
for Cloud Systems
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Abstract

The training techniques of the distributed machine learning approach replace the traditional methods with
a cloud computing infrastructure and provide flexible computing services to clients. Moreover, machine
learning-based classification methods are used in many diverse applications such as medical predictions,
speech/face recognition, and financial applications. Most of the application areas require security and
confidentiality for both the data and the classifier model. In order to prevent the risk of confidential data
disclosure while outsourcing the data analysis, we propose a privacy-preserving protocol approach for
the extreme learning machine algorithm and give private classification protocols. The proposed proto-
cols compute the hidden layer output matrix H in an encrypted form by using a distributed multi-party
computation (or cloud computing model) approach. This paper shows how to build a privacy-preserving
classification model from encrypted data.
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1. Introduction

Classification algorithms are used for predicting the

label of new instances by a classifier model that is

built using correctly identified input observations. In

order to achieve high performance results for accu-

rate classification, the classification algorithm needs

a large number of valid input instances.

Today, many organizations such as financial and

medical institutions produce large-scale data sets.

Machine learning-based data analysis tools are used

by these organizations. The main problems with

these data sets are privacy and security concerns. All

of these tools want full authority to access private

and confidential data to build a supervised or unsu-

pervised model.

Even though various anonymization techniques

are applied to confidential data sets to protect pri-

vacy, the confidential data itself can be still retrieved

by an adversary via various method 15. Imagine a

scenario in which two or more institutions want to

build a classification model 19 by combining each

other’s confidential dataset. In such a case, it is

crucial to find a new privacy-based training method

for classification algorithms that can run together on

multiple confidential data sets without retrieving the

private data.

In machine learning, a classification algorithm

basically consists of two sequential steps: model

building and labeling of new instances. The model
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building phase of a classification algorithm creates

a classifier hypothesis, h, from the correctly labeled

input data set D . In the phase of labeling new in-

stances, the classifier hypothesis h predicts the label

of unseen input instances X . The traditional clas-

sifier algorithms require direct access to data, which

poses security and privacy risks as mentioned above.

Extreme learning machines (ELMs) were re-

cently introduced as a probabilistic neural network

learning algorithm, proposed by Huang et al. 3 based

on generalized single-hidden layer feed-forward

networks (SLFNs). The major properties of the

ELM method are the high generalization property

of multi-class labeling of unseen input instances,

small model building time in comparison to the tra-

ditional gradient-based learning methods, and be-

ing parameter-free with randomly generated hidden

layer nodes.

In this research, we propose a privacy-preserving

ELM classification model building method based on

a Paillier cryptosystem 22 that constructs the global

neural network classification model from encrypted

and partitioned data sets from different sites. The la-

beled input data set is vertically partitioned and dis-

tributed among the different sites, and then the in-

termediate computation results of each party are ag-

gregated by an independent trusted party (or at the

client-side of the computation) to privately build a

classification model that is used for predicting the

correct label.

The contributions of our paper are as follows:

• The Paillier cryptosystem encryption-based ELM

training model is proposed for learning and thus

private classification model training is achieved.

• The computation of the hidden layer output ma-

trix of the probabilistic neural network model is

distributed to independent sites, thus minimizing

the data communication.

Our paper is organized as follows: in Section 2,

we briefly introduce some of the related works for

privacy-preserving training. In Section 3, we de-

scribe the ELM, homomorphic encryption, the Pail-

lier cryptosystem, and the arbitrary data partition-

ing technique. In Section 4, we describe the pro-

posed secure multi-party training and model build-

ing method. Section 5 evaluates our proposed train-

ing and classification model. Section 6 concludes

the paper.

2. Related Works

In this section, we review the existing works that

have been developed for different security and

privacy-preserving machine learning methods. We

highlight detailed differences between our proposed

learning model and the existing works. Encryption

methods can be employed to address the security

and privacy concerns in machine learning 16,17.

Recently, numerous significant privacy-

preserving machine learning models have been pro-

posed. Secretans et al. 26 proposed a new probabilis-

tic neural network (PNN) training model. In their

proposed method, the PNN is built with an approx-

imation to the optimal classifier. The theoretically

optimal classifier is known as the Bayesian opti-

mal classifier. Their proposed method needs at least

three sites to be involved in the computation of the

secure matrix summation. The secure matrix is used

for adding the partial class conditional probability

vectors.

Aggarwal et al. 1 proposed a new condensation-

based training method. In their paper, it was shown

that the anonymized data closely matched the char-

acteristics of the original data. Their proposed ap-

proach produces disclosable data that satisfy privacy

concerns by providing utility for data analysis. Each

instance in the data is randomized while a few sta-

tistical properties of these instances are kept.

Graepel et al. 8 implemented two binary classi-

fication algorithms for homomorphically encrypted

data: linear means and Fisher’s linear discriminant.

They make scaling adjustments that preserve the re-

sults, but leave the fundamental methodology un-

changed.

Samet et al. 25 proposed new privacy-preserving

algorithms for both back-propagation training and

ELM classification between several sites. Their pro-

posed algorithms are applied to the perceptron learn-

ing algorithm and presented for only single-layer

models.

Bost et al. 4 developed a two-party computa-
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tion framework and used a mix of different partially

and fully homomorphic encryption schemes, which

allowed them to use machine learning techniques

based on hyperplane decisions, naive Bayes, and bi-

nary decision trees. The fundamental methodolo-

gies are still unchanged, but substantial communi-

cation between two “honest, but curious” parties is

required.

Oliveria et al. 20 developed techniques for dis-

torting private numerical attributes to protect con-

fidentiality for clustering analysis methods. Their

approach transforms data by using several different

types of geometric transformations such as trans-

lation, rotation, and scaling while keeping the Eu-

clidean distance.

Guang et al. 9 developed a new training method

for a privacy-preserving back-propagation algorithm

using horizontally partitioned data sets for a multi-

site learning case. Their approach uses homomor-

phic encryption-based secure summation in its pro-

tocols.

Yu et al. 33 developed a new privacy-preserving

training method for a support vector machine (SVM)

classification algorithm. Their protocols build the

global SVM classifier hypothesis from the dis-

tributed data at multiple sites, without retrieving or

pooling the data of each site with others. Homo-

morphic encryption-based secure multi-party inte-

ger sums are applied in their protocols to compute

the Gram matrix of the SVM algorithm formulation

in a distributed manner from the encrypted parti-

tioned data held by several different sites.

Yang et al. 31 proposed a privacy-preserving

schema using homomorphic encryption in image

processing. A secret key homomorphic encryption

was constructed for encrypting image. Then the en-

crypted image can be processed homomorphically.

Tso et al. 29 proposed a new practical approach

to prevent data disclosure from inside attack. Their

approach is based on FairplayMP framework which

enables programmers who are not experts in the the-

ory of secure computation to implement such proto-

cols. The method supports privacy-preserving ma-

chine learning for medical data stored in parties.

3. Preliminaries

In this section, we briefly introduce preliminary in-

formation about the ELM, homomorphic encryp-

tion, the Paillier cryptosystem, secure multi-party

computation, and arbitrarily partitioned data.

3.1. Extreme Learning Machine

As mentioned before, a probabilistic neural

network-based ELM classification algorithm was

proposed for single-layer feed-forward neural net-

works 3,12,14,6. Later, the ELM algorithm was ex-

panded to a new model of generalized single-layer

feed-forward networks. In this model, the hidden

layer of the ELM may not be a neuron like in pre-

vious papers 10,11. The first advantage of the ELM

classification algorithm is its training time perfor-

mance. The training phase of the ELM algorithm

can be a hundred times faster than the standard SVM

algorithm or the classical neural network algorithm.

The reason for this rapid model building is that its

hidden node biases vectors and input weight vectors

are arbitrarily generated, and then the output layer

weights of the model can be calculated by using a

least-squares method 28,13. As a result, the most

appreciable property of the ELM training phase is

based on the creation of probabilistic hidden layer

parameters for performance issues.

Let us give a set of input instances D = {(xi,yi) |
i = 1, ...,n},xi ∈ R

p, yi ∈ {1,2, ...,K}} from some

unknown distribution X ; they are sampled inde-

pendently and identically distributed (i.i.d.). The

main objective of a neural network model is to find

a hypothesis h : X → Y where X is the input in-

stances and Y is the set of all possible outcomes.

The outcome of a single-layer feed-forward neural

network with N hidden nodes in an n-dimensional

vector space can be shown as:

fN(x) =
N

∑
i=1

βiG(ai,bi,x), x ∈ R
n, ai ∈ R

n (1)

where ai and bi are the input weights and bias values

of hidden nodes, respectively, and βi is the weight

that connects the ith hidden node to the output node.
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The output function of the ELM algorithm for gen-

eralized SLFNs can be identified by:

fN(x) =
N

∑
i=1

βiG(ai,bi,x) = β ×h(x) (2)

For binary classification problems, the decision

function of the ELM model becomes:

fN(x) = sign

(
N

∑
i=1

βiG(ai,bi,x)

)
= sign(β ×h(x))

(3)

We can rewrite Eq. 2 in another form, as shown in

Eq. 4:

Hβ = T (4)

where H and T are the hidden layer matrix and the

output matrix, respectively.

β = H†T (5)

where H† is the Moore–Penrose generalized inverse
matrix of the hidden layer matrix H. The hidden

layer matrix can be described as:

H(ã, b̃, x̃)=

⎡⎢⎣G(a1,b1,x1) · · · G(aL,bL,x1)
...

. . .
...

G(a1,b1,xN) · · · G(aL,bL,xN)

⎤⎥⎦
N×L
(6)

where ã = a1, ...,aL, b̃ = b1, ...,bL, x̃ = x1, ...,xN .

Then the output matrix of the ELM algorithm can

be shown as:

T =
[
t1 . . . tN

]T
(7)

The hidden nodes of the ELM can be arbitrarily cre-

ated and they can be independent from the input data

set.

3.2. Homomorphic Encryption

Homomorphic encryption schemes enable opera-

tions on plaintexts to be performed on their re-

spective ciphertexts without revealing the plaintexts

when data are divided between two or more parties

as it facilitates computations with ciphertexts. One

can say that a public-key encryption scheme is ad-

ditively homomorphic if, given two encrypted mes-

sages such as �a� and �b�, there exists a public-key

summation operation ⊕ such that �a�⊕ �b� is an en-

cryption of the plaintext of a+b. The formal defini-

tion is that an encryption scheme is additively homo-

morphic if for any private key, public key (sk, pk),
the plaintext space P = ZN for a,b ∈ ZN .

Encpk(a+b mod N) = Encpk(x)×Encpk(y)

Encpk(x · y mod N) = Encpk(x)y (8)

3.2.1. Paillier’s Encryption Scheme

The Paillier cryptosystem 22 is a probabilistic and

asymmetric encryption algorithm. The Paillier

cryptosystem is based on the problem of deciding

whether a given number is an nth residue modulo n2

where n is the product of two large primes 21. The

problem of computing the nth residue classes is be-

lieved to be computationally hard.

Let us give a set of possible plaintext messages

M and a set of secret and public key pairs K =
pk× sk, where pk is the public key and sk is the se-

cret key of the cryptosytem. Then the Paillier homo-

morphic encryption cryptosystem satisfies the fol-

lowing property of any two plaintext messages m1

and m2 and a constant value a:

Decsk
(
Encpk (m1)×Encpk (m1)

)
= m1 +m2 (9)

Decsk
(
Encpk (m1)

a)= a×m1 (10)

One of the main properties of the Paillier cryp-

tosystem is that it is based on a probabilistic encryp-

tion algorithm. Large-scale data sets are sparse ma-

trices in which most of the elements are zero. In or-

der to prevent the guessing of elements of the input

data set, the Paillier cryptosystem has probabilistic

encryption that does not encrypt two equal plaintexts

with the same encryption key into the same cipher-

text.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 33–44
___________________________________________________________________________________________________________

36



3.3. Arbitrarily Partitioned Data

In this work, arbitrarily partitioned data exist be-

tween multplei sites (K), where K > 2 is considered.

In the arbitrarily partitioned data scheme, there is

not any specific order of how the data set is split

between the multiple sites. More specifically, let

us give a data set X = {x1, · · ·xn}, consisting of n
instances, and each instance in X contains m nu-

meric features xi = {x1
i · · ·xm

i }. X j
i is the subset of

the data set owned by party Pj, and then we have

X1
i ∪ X2

i · · · ∪ XK
i = Xi and X1

i ∩ X2
i · · · ∩ XK

i = /0.

Then, in each instance (Xi), site Pk has a number of

features tk
i , where ∑K

p=1 tk
i =m and each site’s feature

size does not have to be equal. If a site has the same

features in each instance, then the arbitrary partition

becomes a vertical partition.

4. Cryptographically Privacy-Preserving ELM
(CPP-ELM)

In this section, we briefly introduce our assump-

tions in the security model, our notations, and the

sequence diagram of the overall method. In Section

4.6, we explain our proposed privacy-preserving

training of the ELM algorithm in detail.

4.1. Security Model

In this paper, the aim is to enable multiple parties (or

servers) to cooperatively build the ELM classifica-

tion model without retrieving their own confidential

input data set. Our main assumption is that the in-

put data set is divided between two or more parties

that are willing to train an ELM classifier if nothing

beyond the expected end results is revealed 2. Our

other assumption is that all parties follow the proto-

col; this is called a semi-honest security model 18,32.

4.2. Notations

The input instance x of data set X is shown in the

form of x = {x1, · · ·xn}. In this work, two or more

parties that hold vertically partitioned data are con-

sidered.

• Boldface lowercase letters denote the vectors

(e.g., x).

• �m� denotes the ciphertext of a message m.

• sign(m) denotes the sign of the plaintext number

m.

• ⊕ denotes encrypted addition and ⊗ denotes en-

crypted multiplication with the public-key opera-

tion.

4.3. Floating Point Numbers

The Paillier encryption scheme operates only on in-

teger numbers. Thus, the proposed protocols ma-

nipulate only integers. However, the ELM classifi-

cation algorithm is typically applied to continuous

data. Nonetheless, in the case of an input data set

with real numbers in the protocol, we need to map

floating point input data vectors into the discrete do-

main with a conversion function (i.e. scaling).

Let ConvertToInteger : Rm → Z
m be the corre-

sponding function that multiplies its floating point

number argument by an exponent (K : 2K) and then

rounds them to the nearest integer value and thus

supports finite precision. Eq. 11 shows the conver-

sion function:

x̂←ConvertInteger(x) where x ∈ R
m, x̂ ∈ Z

m

(11)

4.4. Vertically Partitioned Data

The input data set that is used for finding an ELM-

based classifier consists of m rows in n-dimensional

vector space shown with D ∈Rm×n. Input matrix D
is arbitrarily and vertically partitioned into k differ-

ent sites of P0,P1, · · · ,Pk and each attribute of rows

is owned by a private site as depicted in Fig. 1. As

denoted in Eq. 6, in the second phase of the ELM

training, hidden layer output matrix H is computed

using randomly generated hidden node parameters

w, b, and β . The ELM training phase then com-

putes the output weight vector, β , by multiplying

H and T. Each element of matrix H is computed

with activation function g. The global G matrix is

such that G(wi,xi,bi) = g(xi ·wi + bi) for sigmoid

or G(wi,xi,bi) = g(bi−||xi−wi||) for radial-based

functions. The (i, j)th element of H is:

G(wi,xi,bi) = sign(xi ·wi +bi) (12)
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where xi is the ith row of the input data set D , wi is

the hidden node input weight vector of the ith row,

and xi,wi ∈ R
n.

x1,1 · · · x1,t−1 · · · x1,t · · · x1,n

x2,1 · · · x2,t−1 · · · x2,t · · · x2,n

...
...

...
...

...
...

...
xm,1 · · · xm,t−1 · · · xm,t · · · xm,n

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

Party1 · · · Partyk

D =

x1,1 · · · x1,t−1

x2,1 · · · x2,t−1

...
...

...
xm,1 · · · xm,t−1

x1,t · · · x1,n

x2,t · · · x2,n

...
...

...
xm,t · · · xm,n

Fig. 1. Vertically Partitioned Data Set D .

Let x1
i , · · ·xk

i be vertically partitioned vectors of

an input instance xi, let w1
j , · · ·wk

j be vertically par-

titioned vectors of the jth hidden node input weight

w j, and let b0
j , · · · ,bk

j be the jth node input bias over

k different parties. Then the output of the jth input

node with the ith instance of an input data set using

k different parties is:

sign(xi ·w j +b j) =

sign
((

x0
i ·w0

j +b0
j)+ · · ·+(xk

j ·wk
j +bk

j

)) (13)

From Eq. 13, the computation of the hidden layer

output matrix H can be distributed into k different

parties by using the secure sum of matrices, such

that:

H = sign(T1 + · · ·+Tk) (14)

where:

Ti =

⎡⎢⎣
(
xi

1 ·wi
1 +bi

1

) · · · (
xi

1 ·wi
L +bi

L
)

...
. . .

...(
xi

N ·wi
1 +bi

1

) · · · (xi
L ·wi

N +bi
N
)
⎤⎥⎦

N×L
(15)

4.5. Sequence Diagram of Overall Method

In this section, we present the conceptual level of the

CPP-ELM. We define the converting of the flow of

messages into the flow of methods. In the sequence

diagram, we use the following notation for the ac-

tions executed by an actor when receiving a signal:

• M: Method invocation.

• :User, :ClientApp, :CloudApp: Actors

The CPP-ELM is composed of four steps, as

shown in Fig. 2 - 3:

• Client initialization

• Information sharing

• Hidden layer output matrix computation

• Classifier model building

:User :ClientApp :CloudApp

M1: init(datasetPath)

Instance created

M2: prepareDataset()

M3: normalize()

X ← Xnormalized

M4: split(ServerSizen)

X1, · · · , Xn

M5: encrypt(CryptoKeypriv)

Xenc
1 , · · · , Xenc

n

M6: sendToCloudServers()

M7: sendELMweights(w,b)

void

M8: sendCryptoKey(Keypub)

void

M9: sendEncryptedDataset(Xn)

void

encrypted Hidden Matrices

Fig. 2. Sequence diagram of overall method: Client com-

putation.

:User :ClientApp :CloudApp

M10: calcHiddenMatrix()

M10.a: calcHiddenMatrix()

encrypted Hidden Matrixn (Hn)

encrypted Hidden Matrixn (Hn)

Each Cloud ServerEach Cloud Server Hidden Layer Matrix Calculation

M11: createClassificationModel()

M12: mergeHiddenMatrices(Xenc
1 , · · · , Xenc

n )

Encrypted Global Hidden Matrix (Henc)
M13: decryptHiddenMatrix(H)

Decrypted Hidden Matrix (H)
M14: createClassificationModel()

f
ELM Classifier (f)

Fig. 3. Sequence diagram of overall method: server com-

putation.
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4.6. Privacy-Preserving ELM Algorithm

In this section, a cloud-based privacy-preserving

multi-party CPP-ELM learning algorithm over arbi-

trarily partitioned data is presented.

4.6.1. Client Initialization

In the client initialization phase of the proposed

method, first the client normalizes the input data set

D = {(x,y)|x ∈ R
n,y ∈ R}. Let xmin and xmax be an

input data set of minimum and maximum values of

each corresponding feature. Hence, the normalized

data set can be written as:

D =
D−xmin

xmax−xmin
(16)

Next, the client splits the whole data set D based

on the server size of the cloud systems and then it

encrypts each element of the input data set D indi-

vidually by using its public-key through the Paillier

cryptosystem as shown in Eq. 17:

�Di� = Epk(Di) ∀i ∈ k (17)

Algorithm 1 shows the overall process in the ini-

tialization phase.

Algorithm 1: Client Initialization.

Data: data set: D ∈ R
m×n

server size: k
Crypto key length: l
Hidden layer size: nh
Result: Encrypted sub-data sets for each party

Ps

begin
D ←− normalize(D) ;

// Generate public and private keys ;

Keypub,Keypriv←− KeyGen(l) ;

// Create weight vectors ;

w←− random(nh,m) where w ∈ R
nh×m ;

b←− random(1,m) where b ∈ R
m ;

for i ∈ k do
create sub-data sets D i with random

feature index for party Pi ;

�D�i←− encrypt(D i,Keypriv) ;

4.6.2. Information Sharing

In the second phase of the CPP-ELM, first the client

sends the encrypted sub-data set �Di� to each party

Pi.

Second, the client generates public and secret

keys, as described in Algorithm 1: the client gener-

ates and assigns random weights w∈Rn and b∈Rn,

and then sends the weight vectors’ corresponding

items to each Pk. Algorithm 2 shows the overall pro-

cess.

Algorithm 2: Information Sharing D i
enc.

Data: encrypted sub-data sets: �D�i ∈ R
m×n

public key: Keypub
weight vectors: w ∈ R

nh×m and b ∈ R
m

Result: information sharing is a success

begin
for i ∈ k do

res←− sendELMWeights(w,b) ;

if res == T RUE then
res←− sendCryptoKey(Keypub) ;

if res == T RUE then
res←−
sendEncryptedDataSet(�D�i)
;

4.6.3. Hidden Layer Output Matrix Computation

The encrypted sub-data sets �Di� of each server and

weight vectors w,b are used for computing the en-

crypted hidden layer output matrix for each data

chunk �Hi�, ∀i ∈ k. The computed �Hi� is sent to

the client. Considering a case where a party k = 1,

we have:

�H1� =[(�D1,s� ·w)+bs],

whereD ∈ R
m×n,s = 1, · · · ,k (18)

The party (server) knows the plaintext weight

vectors w,b. It can perform the required multiplica-

tion and additions with its own encrypted sub-data

set �Di� by performing dot multiplication of each

row with w and addition of b.

Algorithm 3 shows the calculation of the hidden

layer output matrix for each server in the encrypted

domain.
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Algorithm 3: Hidden Layer Output Matrix

Calculation.
Data:

Result: Encrypted sub-hidden layer output

matrix �H�s for each party Ps

begin
for i ∈ k do

�H�i←−
calcHiddenLayerMatrix(�D�i,wi,bi)
;

sendOut putLayerToClient(�H�i)

4.6.4. Classifier Model Building

The client can now compute the last step given in

Fig. 3, i.e. compute the value of the ELM-based

classifier function in the private domain. First, the

client decrypts each encrypted hidden layer output

matrix �Hi� received from each party by using its

own private key and then computes the global hid-

den layer output matrix H. The smallest norm least-

squares solution of the linear system 5 is:

β̂ = H+T (19)

where H+ is the Moore–Penrose generalized in-
verse of matrix H 24.

Algorithm 4 shows the classifier model building

in the decrypted domain.

Algorithm 4: Classification Model Building.

Data: Encrypted sub-hidden layer output

matrix �H�s for each party Ps

Result: final global classifier f
begin

H←− /0;

for i ∈ k do
H←− H +
decryptHiddenLayerMatrix(�H�i,Keypriv)
;

find β then calculate final classifier f ;

5. Experiments

5.1. Experimental Setup

We have implemented our proposed protocols and

the classifier training phase in Python by using the

scikit-learn library for machine learning and the

PyPhe library for the partially homomorphic en-

cryption implementation.

To show the training phase time performance

of the proposed protocols, we tested different pub-

lic data sets with parties and encryption/decryption

keys that have different lengths. For the experi-

ments, we consider four different data sets from

the UCI Machine Learning Repository called Aus-

tralian, Breast Cancer, Ionosphere, and Sonar. Table

5.1 shows the details of the data sets.

Table 1. Details of Data Sets Used in Experiments.

Data Set Sample Class Attributes

Ionosphere 351 2 34

Sonar 208 2 60

Breast Cancer 683 2 10

Australian 690 2 14

Each data set is arbitrarily vertically partitioned

among each party (K ∈ {2,3,5,7,10}), and then the

results in the encrypted-domain are compared with

the results of the plain-domain. In plain-domain

training, the conventional ELM training phase is

performed for all data sets in a single pass. All ex-

periments are repeated 5 times and the results are av-

eraged. All data sets are publicly available in SVM-

light format on the LIBSVM website.

The Ionosphere data set consists of a phased ar-

ray of 16 high-frequency antennas with a total trans-

mitted power on the order of 6.4 kilowatts. “Good”

radar returns are those showing evidence of some

type of structure in the ionosphere. “Bad” returns

are those that do not; their signals pass through the

ionosphere 27. The data set contains 351 training in-

stances.

The Sonar data set is used for the study of the

classification of sonar signals using a neural net-

work. The task is to train a network to discriminate

between sonar signals bounced off a metal cylinder
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and those bounced off a roughly cylindrical rock 7.

The data set contains 208 training instances.

The Breast Cancer data set contains 699 in-

stances, with 458 benign (65.5%) and 241 (34.5%)

malignant cases. Each instance is described by 9 at-

tributes with an integer value 30.

The Australian data set concerns credit card ap-

plications. The data set contains 690 instances and

each instance is described by 14 attributes 23.

5.2. Experimental Results

Table 2 shows the best performance of the conven-

tional ELM method of each experimental data set.

Table 2. Accuracy Results in the Plain-Domain for Each Data
Set.

Data Set Accuracy

Ionosphere 0.8613

Sonar 0.7293

Breast Cancer 0.9592

Australian 0.8438

The proposed CPP-ELM training method has

been implemented in Python 2.7 using the PyPhe li-

brary, version 1.0. Both the server and the clients are

modeled as different process with the Python multi-

processing library. Each process sends the variables

to each other via file exchange. The developed soft-

ware is tested on a computer with 1.6 GHz Intel(R)

i5 (R) processor and 4 GB of RAM running on a

Windows 64-bit operating system. The system has

been tested while varying the party size of each data

set from 3 to 10, and with key lengths of 512 and

1024 bits. Performance results are shown in Table

3.

It is noted that the average training and model

building time depends on the total number of in-

stances used for classification. Fig. 4 shows the en-

cryption time for each data set, which is affected by

the number input instances and feature size. This

process is computed at the client-side and can be

pre-computed offline.

Table 3. Performance Results (in Seconds) for Each Data Set.

Data Key Number of Parties
2 3 5 7 10

Ion.
512 7477,43 8280,77 9743,51 11481,17 12542,17

1024 39550,93 40020,45 45148,68 56751,82 82240,62

Sonar
512 8345,99 7824,33 8621,37 10192,59 11047,74

1024 33775,32 30149,92 35418,41 38780,89 44357,66

Breast
512 7681,71 9245,26 10630,49 13672,9 18651,20

1024 44035,76 48736,21 58554,61 72524,98 99986,21

Aust.
512 8709,58 10463,64 11629,93 15406,08 17817,07

1024 39188,52 45621,76 52264,14 71074,53 79875,20
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Fig. 4. Encryption Costs for Different Data Sets.

In the proposed method, CPP-ELM, there are

three different factors (party size, complexity of the

input data set, and key bit length) that affect the com-

putation time according to the experimental results.

As show in Fig. 5, when the number of parties

varies from 3 to 10, then the overall hidden layer out-

put matrix H computation stays relatively stable in

the proposed model, at about 5 minutes to 8.5 min-

utes for 512-bit key length encryption and 20 min-

utes to 43 minutes for 1024-bit key length encryp-

tion.

In cryptographic systems, all computations work

with integers. Thus, all real numbers used in our

algorithms are mapped into finite fields by using

a scaling procedure. Before starting the learning

phase, the client converts the input data set to inte-

ger representation by multiplying and rounding the

results. In the last stage, in Algorithm 4, the client

scales down the hidden layer output matrix H. This
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Figure 5: H Computation Time for Different Party Numbers and Data Sets.

scaling operation causes accuracy loss in the final

classifier model. Table 4 shows the best perfor-

mance of the CPP-ELM method for each experimen-

tal data set.

Table 4. Accuracy Results in the Encrypted-Domain on Each
Data Set.

Data Set 512 Bits 1024 Bits

Ionosphere 0.7311 0.6598

Sonar 0.5976 0.5856

Breast Cancer 0.9433 0.9204

Australian 0.6877 0.6444

6. Conclusion

In this work, we proposed a privacy-preserving and

practical multi-party ELM learning scheme over ar-

bitrarily vertically partitioned data between two or

more parties. We have also provided cryptograph-

ically secure protocols for computing the hidden

layer output matrix and have shown how to aggre-

gate encrypted intermediate matrices securely. In

our proposed approach, the client encrypts its in-

put data, creates arbitrarily and vertically partitioned

data, and then uploads the encrypted messages to

a cloud system. The cloud system can execute

the most time-consuming operation of ELM train-

ing without knowing any confidential information.

One interesting future work is to extend the privacy-

preserving training to other existing classification al-

gorithms.

We suggest that the method proposed here is ap-

propriate for areas such as healthcare where data pri-

vacy is highly sensitive. Data privacy is protected by

transferring the identification information to the re-

mote cloud service provider in an encrypted manner.

Using the high computational power provided by the

cloud service provider, the classification model is

built on the encrypted data set. In this way, the cloud

service provider can create a classification model

without reaching plaintext data.
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