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Abstract

Suffix tree is an important data structure for indexing a
long sequence (like a genome sequence) or a concatena-
tion of sequences. It finds many applications in practice,
especially in the domain of bioinformatics. Suffix tree al-
lows for efficient pattern search with time independent of the
sequence length. However, the performance of disk-based
suffix tree is a concern as it is slowed down significantly by
poor localized access resulting in high IO disk access.

The focus of this paper is to design an IO-efficient and
Compact Partitioned Suffix tree representation (CPS-tree)
on disk. We show that representing suffix tree using CPS-
tree has several advantages. First, our representation al-
lows us to visit any node in the suffix tree by accessing at
most log n pages of the tree where n is the length of the
sequence. Second, our storage scheme improves the ac-
cess pattern and reduces the number of page fault result-
ing in efficient search retrieval and efficient tree traversal
operations. Third, by bit packing, our index is compact.
Experimental results show that CPS-tree outperforms other
indexes on disk. When fully loaded into the main memory,
CPS-tree is still efficient. Hence, we expect CPS-tree to be a
good disk-based representation of suffix tree, with potential
use in practical applications.

1. Introduction

Suffix tree is an important data structure for indexing text
string since it can answer pattern searching query efficiently
independent of the text string size. There are many practical
applications that rely on suffix tree, especially for process-
ing biological sequence data. As various genome sequenc-
ing projects are ongoing and more genome sequences are
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made known, the application of suffix tree on biological re-
search is expected to increase.

Since genome size is in the order of gigabytes, maintain-
ing suffix trees becomes an important issue. There are two
immediate problems. The first problem is on constructing
suffix tree efficiently. Fortunately, a suffix tree (or a suffix
array) for human genome of 3 billion characters can now be
constructed within 30 hours [7, 9]. Hence, the problem on
suffix tree construction has largely been solved in practice.

The second problem is on accessing the suffix tree. As
the genome database gets bigger, maintaining suffix tree in
memory is no longer feasible. We need to have a disk-based
representation of suffix tree that allows for efficient access.
We have seen a number of disk-based representations of suf-
fix tree [1, 4, 9] in the literature. However, these disk-based
suffix trees either fail to support all the general suffix tree
operations well or have high IO disk access for certain op-
erations.

This paper focuses on having a practical and efficient
suffix tree implementation on disk that supports various
suffix tree operations efficiently. We proposed a Compact
P artitioned Suffix tree representation (CPS-tree) for disk-
based access. Our CPS-tree achieves good IO bound and
time complexity, and is shown to be efficient on real datasets
as well.

There are many applications on genome sequences that
use suffix tree structure to search for patterns. These appli-
cations are memory based and hence only handle genomes
that are small. For large genome that needs to reside on disk,
the disk IO efficiency becomes an important issue. As such
we study the disk IO efficiency of our proposed suffix tree,
both in worst case performance and in practice, to answer
exact match problem and also to handle general tree traver-
sal operations. In Table 1, we present the worst case disk
access performance of our CPS-tree and compare with other
proposed suffix structures in the literature. Table 2 gives a
list of notations used throughout this paper for easy refer-
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Suffix Exact match query Exact match Edge label Child node
structure count query access access

SB-tree[4] logB n + m+occ
B logB n + m

B logB n + �
B logB n + �

B

CPT[1] H√
B

+ logB n + m+occ
B

H√
B

+ logB n + m+occ
B

H√
B

+ logB n + �
B log |A|

WOTD-tree[5, 9] min{m, H} + m+occ
B min{m, H} + m+occ

B
�
B 1

CPS-tree min{m, logn} + m+occ
B min{m, logn} + m

B
�
B 1

suffix array[8] m log n + occ
B m logn log n + �

B log n + �
B

The WOTD-tree is generated using the TDD construction algorithm[9]. The SB-tree does not maintain the original
suffix tree structure, so we derived the worst case complexity for the node and edge label access to recover the
original suffix tree information. Note that H , the depth of the suffix tree, is bounded by O(n).

Table 1. Worst case big-O IO bounds for operations on various proposed suffix data structures.

Notation Description

n Index size
N Length of text string to be indexed
B Memory page size (in bytes)
m Query string length
occ Number of matching occurrences

of the query on the text
|A| Alphabet size + 1

� Edge label length
H Suffix tree depth

Table 2. Description of notations used.

ence. Exact match query on suffix tree structures is gener-
ally IO bounded by m, which can be in the order of n. When
logB n ≤ m, SB-tree gives the best worst case IO bound for
exact match query running in O(logB n+(m+occ)/B) (re-
fer to Table 1). Here we present CPS-tree with an IO bound
of O(min{m, logn}+(m+occ)/B). Furthermore, if only
the number of matches is needed, the exact match count
query is IO bounded by O(min{m, logn}+m/B) for CPS-
tree, independent of occ, the number of occurrences.

On DNA sequences, we find that the average perfor-
mance of CPS-tree gives 3 logical block accesses per ex-
act match query on the suffix tree. This is on par with the
reported average performances of SB-tree and CPT. Our ex-
perimental results also show that CPS-tree performs better
both in memory and on disk for exact string match query
when compared to other suffix data structures like WOTD-
tree and suffix array.

Next, structures like SB-tree, CPT and suffix array are
not well-suited for basic tree traversal operations like child
node and edge label access. On the other hand, CPS-tree
and WOTD-tree cater to these operations so that the bound
on the IO access is independent of n. Tree traversal opera-

tions are essential to handle complex queries and to support
various search techniques over a suffix tree.

As for disk space usage, we are able to keep the CPS-
tree compact. Experiments show that for DNA sequence,
we need 7N to 9N bytes to store our bit-packed suffix tree
on disk, assuming that every position on the text is to be
indexed and addressable using a 4 bytes word. Our scheme
is comparable to the most space efficient suffix tree repre-
sentations [1, 4, 6]. Retrieval of the matching occurrences
on the text, given a search string, can be performed by tra-
versing the suffix tree to access all the leaf nodes within a
subtree. Alternatively, this can be handled more efficiently
by using additional 4N bytes to store the suffix array on disk
so that the occurrences which correspond to an index range
in the array can be retrieved sequentially from disk directly.
However, this increases the total index size on disk to range
within 11N to 13N bytes. Most suffix tree implementations
take 17N to 65N bytes [6] with more compact version in
12.5N bytes [5, 9], while a suffix array [8] uses 4N bytes.

In brief, we made improvements to the techniques used
in CPS-tree to give the following results: (1) Fast searching
and traversal of the suffix tree in terms of IO paging and
computational time based on partitioning and buffering, (2)
fast enumeration of the occurrences by storing the ranges
on the suffix array, in the tree, together with the suffix array
on disk, and lastly, (3) compact the suffix tree size using
bit-packing representation and other space optimization.

2. Structures and Algorithms

Our CPS-tree representation is illustrated in Figure 1.
We first partition the suffix tree into smaller trees, which
we will address them as “local” trees, in a top-down fashion
so that each local tree fits into a logical block (the bounding
boxes in Figure 1). The end node in a local tree is either
a leaf node (terminating circular node) or an external node
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(rectangular node with an outgoing dashed edge) pointing
to the descending local tree in another logical block. Each
local tree, rooted at a node v, is constructed by first adding
the node v and its children, then the node with the heavi-
est subtree (largest number of leaf nodes), among all nodes
at the local tree boundary, and its children are added. The
process repeats until the local tree is full (that is, too big
to fit into a logical block). This partitioning method guaran-
tees a good IO disk access bound for both worst and average
cases.

There are several tree partitioning methods in the litera-
ture. In the paper by Diwan et. al. [2], bottom-up, tree par-
titioning methods have been proposed, that find the optimal
layout minimizing either the worst (maximum) or average
block access when traversing from the root to any leaf in the
tree. Another common approach is to build the partitions
naively by grouping the nodes in the breadth-first order.
This gives a good average performance in general. How-
ever, our partitioning scheme is good for both worst and
average case. The average and worst case block accesses
are O(H/B) and O(H/B + log n) respectively (the proof
is skipped). We did a comparison of the breadth-first order
partitioning and our approach for CPS-tree, and the results
show that our proposed approach achieves fewer page faults
in both average and worst cases in exact string matching.

To compact the local tree, for each edge, we store the
first character together with its label length (only for non-
leaf edges for compactness). For each external node u in
a local tree, we find in the subtree rooted at u (considering
the whole suffix tree), a leaf node whose text position is to
be replicated in u. The leaf node is choosen such that every
node on the path from u to the selected leaf node, has the
heaviest subtree (largest number of leaf nodes), among its
siblings. Also, at the root v of each local tree, we store the
SA range of the subtree rooted at v (see Figure 1 for an
example).

To facilitate searching of nodes further down the tree,
we maintain extra link, denoted as “forward link”, at the
block-level (in addition to the CPS-tree structure presented
in Figure 1). We can then access any node from the root,
by traversing through, in the worst case O(log n) logical
blocks. This property is useful for applications that demand
worst case guarantee in query time. However, due to the
limit of space, we will leave the discussion on the “forward
link” to the full paper.

Based on our observations, the top few levels of nodes
in the suffix tree are most frequently visited in answering
queries. As such, CPS-tree is written to disk in a top-down
order. The order to be written is illustrated in Figure 1 as the
label on the top left corner of each bounding box. Memory
buffer is implemented to handle the accessing of the suffix
tree where the memory buffer can be initialized very quickly
through sequential read of the first few pages of the suffix

tree from disk. Using an optimized bit-packing scheme to
encode the individual tree structure, CPS-tree can further
achieve good space utilization and IO efficiency in answer-
ing string matching query.
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Figure 1. CPS-tree representation for text =
“aaaaabaaabaababaaaaba$".

3. Performance Studies

We study the performance of reporting on the exact
match locations in the text sequence, given a query string.
CPS-tree is compared with WOTD-tree and SA for both
on-disk and in-memory settings. The WOTD-tree is con-
structed in a top-down approach using the TDD package [9]
available. We also perform string searching over the suffix
array using binary search technique.

3.1. Experimental settings

The dataset used are the Fruit Fly genome of 118.3
million bases (http://www.fruitfly.org/sequence, Release
4) and the E. Coli K12 genome of 4.6 million bases
(http://www.ncbi.nih.gov, GI: 49175990). These are DNA
sequences consisting of characters ‘A’, ‘C’, ‘G’ and ‘T’. The
data and index are buffered separately. The index file size
for CPS-tree on the Fruit Fly genome is ≈ 850M bytes
(7.2N) while WOTD-tree takes ≈ 1475M bytes (12.5N).

The buffers are first initialized fully with the first few
blocks read from the text sequence and index files respec-
tively. Initialization of the buffers can be performed very
quickly with sequential read from the files. If a block to ac-
cess is not in the buffer, a page fault occurs and a new page
of 8K bytes containing the required block is fetched into
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the buffer, using the First-In-First-Out buffer replacement
policy.
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Figure 2. Result 1 - Page faults on index buffer
for Fruit Fly genome.

Queries are generated from random positions on the
genome itself so that it is guaranteed to return a match in
the indexing structure. The average performance is mea-
sured from running consecutively, 1000 different random
queries of the same length.

The experiments are carried out on an Intel P4 2.4GHz
machine with 512KB cache and 1GB of RAM, running
Linux, with codes written in C++. We implemented the
search algorithms for CPS-tree, WOTD-tree and SA, so that
they all share the same access routines to the buffers.

3.2. Performance results

Result 1. First, we examine the IO efficiency in travers-
ing CPS-tree index structure. We use the Fruit Fly genome
in this comparison with the main portion of the index struc-
ture residing on disk. The page faults are generated from
traversing the indexes and also from reporting on the oc-

currences. We observed that CPS-tree consistently outper-
forms the other indexes for different index buffer size. The
average occ per query found are 388.6 and 1.6 for query
length 10 and 100 respectively. Query of length 10 gener-
ates more page faults than those of length 100, mainly from
reporting on the occurrences. Our finding shows that a care-
ful organization of the nodes into blocks does significantly
improve upon the search performance.
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Figure 3. Result 2 - Page faults on text and
index buffers for Fruit Fly genome.

Result 2. Next, we look at the buffer size allocation
between the text and the index. Given a total of 128MB for
buffering, we varied the text buffer size as a percentage of
the text size, and use the remaining space available to buffer
the index. Results in Figure 3 show that CPS-tree has the
best IO performance, generating significant less page faults
when compared to the other 2 indexes. Also CPS-tree and
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SA work best with full text buffering (in memory) while
WOTD-tree gives mixed results depending on the query
length.

Result 3. We now give the in-memory (for both in-
dex and text) running time of the different indexes in exact
match as shown in Table 3. This is performed on the E. Coli
genome (4.6M). When compared to WOTD-tree, CPS-tree
is much faster, showing that CPS-tree has a better repre-
sentation scheme for suffix tree. CPS-tree is equally fast
when compared to SA for short queries with CPS-tree gain-
ing faster performance as the query gets longer.

Query Per query Query time (µsec) per query

length occ count CPS-tree WOTD-tree SA
10 9.960 21 52 22
100 1.078 16 39 18

Table 3. Result 3 - In-memory (exact match)
query timing on E. Coli genome.

Query k = 1 (per query) k = 2 (per query)

length occ count paging occ count paging
10 7369 58 79346 684
100 1.68 37 1.72 460

Table 4. Result 4 - k-mismatch query on Fruit
Fly genome.

Result 4. We run k-mismatch query on CPS-tree to
show its capability in handling complex query. The results
are shown in Table 4. The k-mismatch query finds all oc-
currences of the query, located on the text with Hamming
distance ≤ k. The number of occurrences increases sharply
for larger k, especially for short queries. Using 200MB
for buffering, the running time is around 0.1 to 0.2 sec per
query for k = 1 and 0.4 to 2 sec when extended to 2 mis-
matches. For k = 1, a total of 31 and 3001 substituted query
patterns are searched, for query length 10 and 100 respec-
tively. That gives an average page fault of 1.87 and 0.01
per substituted query pattern. This is faster than search-
ing the individual patterns directly as there is saving in the
page access through our search approach. For long query of
length 100, not many substituted patterns can find a match
and hence resulting in early termination of the search and
faster running time. It is to note that edit distance can be
handled, by adopting the standard dynamic programming
technique over the suffix tree.

4. Conclusion

CPS-tree is optimized to support tree traversal and enu-
meration of occurrences efficiently. Our experiments show
that CPS-tree outperforms other compact representation of
suffix tree in both in-memory and on-disk scenarios. CPS-
tree performs better than suffix array on disk and is equally
fast (or slightly faster) when runs fully in memory.
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