
CQMP: A Mesh-based Multicast Routing Protocol
with Consolidated Query Packets

Harleen Dhillon and Hung Q. Ngo
Computer Science and Engineering,

State University of New York at Buffalo,
201 Bell Hall, Amherst, NY 14260, USA.
{dhillon, hungngo}@cse.buffalo.edu

Abstract— We propose a mesh-based multicast routing protocol
for wireless ad hoc networks. The protocol retains all of the ad-
vantages of the on-demand multicast routing protocol (ODMRP)
such as high packet delivery ratio under high mobility, high
throughput. Moreover, the protocol significantly reduces control
overhead, one of the main weaknesses of ODMRP, under the
presence of multiple sources. This feature is a crucial contributing
factor to the scalability of multicast routing for mobile ad hoc
networks. The results are experimentally verified. It is shown
that in the presence of high number of sources, our protocol
reduces the control packet load by upto 30 percent, increases the
multicast efficiency by 10 to 20 percent and improves the data
delivery ratio of ODMRP.

I. INTRODUCTION

Mobile ad hoc networking has emerged as one of the major
sub-areas of communication networks, since the potential
set of ad hoc network applications is enormous, ranging
from mobile conferencing, emergency services, to battle field
communications. Multicasting is probably the most important
communication primitive for these applications. One of the
major challenges faced by researchers in this area is to design
an effective and scalable multicast routing protocol under the
mobile and infrastructureless conditions of ad hoc wireless
networks. As network nodes’ mobility increases, maintaining
persistent network states to assure high packet delivery ratio
and high throughput becomes more difficult. It is intuitively
obvious that control overhead is a price we have to pay
for mobility. However, control overhead is also one of the
major factors affecting power consumption, a very important
resource for ad hoc network nodes. In some applications, in
fact, energy is entirely non-renewable ([1], [2]). Consequently,
devising a multicast routing protocol with low control over-
head, yet highly effective under dynamic network conditions,
is a very important problem in mobile ad hoc networking.

There are two main design philosophies for routing pro-
tocols under mobile ad hoc networks: proactive (distance
vector or link-state type), and reactive (also referred to as on-
demand).

Proactive protocols require all nodes to periodically ex-
change information to maintain global routes. Distance vector
and link-state routing protocols have been well-studied for
infrastructured networks. Hence, the advantage is that we
can inherit a lot from existing implementations and literature.

Unfortunately, proactive protocols often suffer from excessive
control overhead due to frequent updates when network mo-
bility is high. Both distance vector and link-state based routing
protocols also impose linear growth in routing table sizes.
Given that ad hoc network nodes have scarce resources, large
routing tables are not desirable, affecting the scalability of the
protocol.

Reactive (on-demand) protocols have been widely seen as
the solution to the control overhead problem. The basic idea
is to discover routes only when needed. Small QUERY/REPLY

packets are used for this purpose. For unicasting, many of
such protocols have been proposed in recent years: ad hoc on-
demand distance vector (AODV, [3]), dynamic source routing
(DSR, [4]), temporally ordered routing algorithm (TORA, [5]),
associativity based routing (ABR, [6]), and signal stability
based adaptive routing (SSA, [7]). There is also an attempt to
combine reactive and proactive approaches in the zone routing
protocol (ZRP, [8], [9]).

In general, on-demand protocols impose lower overhead
and storage even in large networks. However, as mobility
increases, control overhead gets higher and higher due to
periodic flooding and route breakdowns. Some protocols even
generate more overhead than actual throughput [10]. Thus, it
is still a very challenging problem to devise scalable routing
protocols for dynamic networks.

Many multicast routing protocols have been proposed for
ad hoc networks in recent years (see [11], for example, for a
survey). We shall review some of these in the next section. Two
major classes of multicast routing protocols are tree-based and
mesh-based.

Tree-based schemes establish a single path between any
two nodes in the multicast group. These schemes require a
minimum number of copies per packet to be sent along the
branches of the tree. Hence, they are bandwidth efficient.
If there is only one source, then oftentimes there is only a
minimal number of nodes involved in the routing. Hence,
tree-based schemes could also be relatively power-efficient.
However, as mobility increases, link failures trigger the re-
configuration of the entire tree. When there are many sources,
one either has to maintain a shared tree, losing path optimality,
or maintain multiple trees resulting in storage and control
overhead. Examples of tree-based schemes include: ad hoc

multicast routing protocol (AMRoute, [12]), ad hoc multicast
routing utilizing increasing ID-numbers protocol (AMRIS,
[13]), bandwidth efficient multicast protocol [14], multicast
ad hoc on-demand distance vector routing protocol (MAODV,
[15]), and multicast core-extraction distributed ad hoc routing
protocol (MCEDAR, [16]).

Mesh-based schemes establish a mesh interconnecting the
source and the destinations. They are more resilient to link fail-
ures, and thus, to mobility. In multiple source cases, they can
provide better paths than a shared tree. The major disadvan-
tage is that mesh-based schemes introduce higher redundancy
since multiple copies of the same packet are disseminated
through the mesh, resulting in bandwidth wastage and power-
inefficiency. This is the price one has to pay for higher
packet delivery and throughput under highly mobile condi-
tions. Examples of mesh-based schemes include: on demand
multicast routing protocol (ODMRP, [17]), forwarding group
multicast protocol (FGMP, [18]), core assisted mesh protocol
(CAMP, [19]), neighbor supporting ad hoc multicast routing
protocol (NSMP, [20]), location-based multicast protocol [21],
and dynamic core-based multicast protocol (DCMP [22]).

Of these protocols, ODMRP is probably one of the most
well-studied protocols. The major advantage of ODMRP is
that it produces high packet delivery ratio and throughput even
under highly mobile network conditions. The disadvantage is
that the control overhead introduced also grows higher and
higher. Several earlier attempts have been made to reduce
ODMRP’s control overhead ([22], [23]).

In this paper, we propose a mesh-based on-demand multi-
cast routing protocol with an idea of “query packet consolida-
tion” to address this scalability problem. We shall refer to our
protocol as CQMP (for Consolidated Query-packet Multicast
Protocol) henceforth. Our ideas are then validated by extensive
simulations, which show that as the network scales, the control
overhead can be much reduced than that experienced by
ODMRP in similar situations, while maintaining comparable
levels of throughput.

The rest of the paper is organized as follows. Section
II overviews several related works in more details. Section
III discusses the intuitions behind our protocol. Section IV
presents the new protocol in its full technical details. Section
V gives the simulation results validating our protocol. Lastly,
Section VI concludes the paper.

II. RELATED WORK

Mesh-based protocols transmit data to receivers by creating
a forwarding mesh. A mesh between sources and receivers en-
ables redundancy in the routes, which increases the robustness
of the paths. In ODMRP [17], a source periodically floods
an advertising packet in the network. A receiver responds
to this packet by using backward learning. The nodes on
the path from the receiver to the source form a mesh of
forwarding nodes for the multicast group. FGMP [18] is
similar to ODMRP. The major difference lies in who initiates
the flooding. Whereas in ODMRP, the flooding of group
membership advertising packets in the network in initiated by a

source, in FGMP, the receivers are the entities that perform this
flooding. In addition, in FGMP, a source has to keep track of
all receivers in a multicast group. Both of these protocols result
in considerable control overhead due to frequent flooding.

CAMP [19] attempts to eliminate this flooding by the use
of core nodes. Instead of each source sending advertising
packets to the network, in CAMP, each core disseminates to
the network the mappings of multicast addresses to one or
more core addresses. CAMP, however, assumes the availability
of routing information from a unicast routing protocol. This
unicast routing protocol is also required to provide correct
distances to known destinations within a finite amount of time.
CAMP also assumes the existence of a beaconing protocol,
which may be embedded into the unicast routing protocol. In
addition, CAMP relies on the associated routing protocol to
work correctly in the presence of router failures and network
partitions.

NSMP [20] is another mesh-based protocol that tries to re-
duce flooding. Like ODMRP, NSMP operates independently of
the unicast routing protocol. It reduces the routing overhead by
localizing route discovery and maintenance operations. For an
initial route establishment or a network partition repair, NSMP
performs flooding route discovery in which control messages
are broadcast by all nodes. Since routine path maintenance
usually occurs much more frequently than the initial path
establishment, the saving by localized path maintenance could
be sizable.

In Location-Based Multicast protocol [21], location infor-
mation is used to limit the flooding in the network. This thus
necessitates the use of a global positioning system or similar
tools. Based on location of the multicast region, forwarding
zones are defined. Only nodes in the forwarding zone forward
a multicast packet.

DCMP [22] attempts to reduce the flooding in the network
by specifying some sources as passive. Broadcast Medium
Window [24] uses downstream congestion information to
determine whether or not to send or transmit an advertising
packet. ODMRP-MPR [23] uses two-hop neighborhood infor-
mation to select a set of multicast relay nodes [25] that perform
network flooding of advertising packets.

III. INTUITIVE INTRODUCTION TO OUR MODIFICATIONS

ODMRP provides a high packet delivery ratio even at high
mobility, but at the expense of heavy control overhead. It
does not scale well as the number of senders and traffic
load increases [26]. Since every source periodically floods
advertising packets called JOIN QUERIES through the network,
congestion is likely to occur when the number of sources is
high. We present an algorithm that consolidates Join Queries
together in an attempt to reduce the total number of Query
transmissions. Where there exist sources in a network that
relay Join Queries within a close interval of each other, there
is a certain amount of redundancy that can be reduced. This
motivates our ideas.

IV. DETAILED TECHNICAL DESCRIPTIONS

Each source is identified by a unique identifier called the
NODEID. Each source also generates a unique SEQUENCE

NUMBER that is appended into all packets that it originates.
A node receiving a packet from a source temporarily saves
the pair (SENDER ID, SEQUENCE NUMBER) from the packet
into a message cache to avoid duplicate packet processing.

An active source periodically transmits an advertising
packet called QUERY to the network. We will use the terms
QUERY and JOIN QUERY interchangeably in the rest of this
document. The QUERY is flooded at regular intervals and for
two reasons: (a) to update existing routes to match the current
network conditions, and (b) to enable new receivers to create
a route to itself. Before transmitting the QUERY packet, the
source generates two sequence numbers. We will call them
CURRENTSEQ and NEXTSEQ. Fig. 1 shows the format of a
QUERY packet. The QUERY SEQUENCE NUMBER field is set
to be the CURRENTSEQ. The SENDER ID field is filled by
the NODEID of the source. These two fields will not change
throughout the lifetime of this QUERY. The NUMSOURCES

field refers to the number of sources whose information is
contained in this QUERY. At this point, it would be just 1. The
LAST HOP field is its own ID. In addition to these fields, the
first SOURCE ROW of the QUERY packet is filled as follows.
The SOURCE ID is set to be its own ID and HOPCOUNT,
which refers to the number of hops traversed by the QUERY,
is set as 1. The NEXTSEQ is used to relay information to the
nodes receiving this QUERY about the next query transmission.
INT refers to the interval after which the source will send
another QUERY. Hence, a node processing this information
can expect to receive another QUERY from this source with
sequence number NEXTSEQ and after INT time units. The
number NEXTSEQ is saved by the source for later use in
consolidation.

Fig. 1. Format of a QUERY packet

After these fields are filled, the QUERY is transmitted to
the network. When a node receives this QUERY, it determines
whether it can consolidate into this QUERY information about
other sources from which it is expecting to hear a QUERY.
This process is described in the following sub-section.

A. Query consolidation by intermediate nodes

When a node receives a QUERY packet, it first compares
the pair (SENDER ID, SEQUENCE NUMBER) from the QUERY

with the entries in its message cache. If there is a match, the
QUERY is discarded as a duplicate. If not, it is processed as
follows.

From each Source Row in the QUERY, the node retrieves
the pair (SOURCE ID, CURRENTSEQ) and checks it against

its message cache. If there is a match in the cache, the node
goes on to the next row. Otherwise, the node saves the Source
ID, NextSeq and INT values from the Source Row, and the
Last Hop from the QUERY as an entry into a table. This
table is used as the Routing Table (RT) for the REPLIES

sent back toward the source. In addition, the (SOURCE ID,
CURRENTSEQ) pair is saved in its message cache.

The node now goes through its RT (Routing Table) to
determine if it is expecting any QUERIES from the same Last
Hop as carried by the received QUERY within a small TIME-
INTERVAL. It would know this if, for some entry in its RT,
all of the following conditions apply:

• The NEXTSEQ field is not null.
• INT would expire within this TIME-INTERVAL.
• LAST HOP in the received QUERY packet is the same as

the LAST HOP in the RT entry.
If all these conditions apply, the node will add another

Source Row in the QUERY packet and increment its Num-
Sources. While the Source ID for the new row is taken from
the same field from the corresponding entry in the RT, the
value of its CurrentSeq is set as equal to the NextSeq from
the RT entry. The NextSeq field in the new Source Row is left
empty. Information from any applicable (as determined by the
conditions described above) entries in the RT is thus added
into the Source Rows, and the NumSources is incremented
every time. If information about a source entry in the RT is
appended into the QUERY, the NextSeq field for that source
entry in the RT is made null. This step is performed to ensure
that information about the same source and sequence number
pair is not appended into another QUERY. Now the node sets
the Last Hop ID field in the QUERY to itself and transmits the
QUERY.

This process continues until the QUERY reaches a multicast
receiver node. At this point, the QUERY may contain more than
one Source Row. The receiver goes through each and every
Source Row entry in the QUERY, and builds and transmits a
REPLY packet based upon matched entries. When any node
receives a REPLY packet, it checks if the next node Id in any
of the entries in the REPLY matches its own. If so, it realizes
that it is on the way to a source, and sets a flag indicating
that it is part of the FORWARDING GROUP for that multicast
group. It then builds and broadcasts its own REPLY packet.
When a REPLY reaches a source, a route is established from
the source to the receiver. The source can now transmit data
packets towards the receiver. A Forwarding Group node will
forward any data packets received from a member for that
group.

The example in Fig. 2 demonstrates the process. The
connected lines between two nodes indicate that they are
within transmission range of each other. The nodes 1 and
3 are sources. Let’s assume that both sources start flooding
their QUERIES at the same time with sequence number 100
incremented by one with every new QUERY. At this time, there
would only be one Source Row in the packet that would consist
of the sender’s own ID as Source ID, 100 as CurrentSeq and
101 as NextSeq.

The QUERY packet from source 1 reaches node 2 first. Node
2 first checks the pair (1,100), i.e. the (SENDER ID, SEQUENCE

NUMBER) from the QUERY against its message cache. Since
there is no match found, node 2 processes the packet. From the
first Source Row of the Query, node 2 saves in its RT the INT
value which will tell it when to expect the next QUERY from
source 1, the NextSeq 101 and the Last Hop ID. In this case,
the Last Hop ID toward source 1 would be 1. It also saves
the (SOURCE ID, CURRENTSEQ) pair - which is (1, 100) - in
its message cache and transmits the QUERY to its neighbors
with the Last Hop ID set as its own NodeID. This process is
repeated by all nodes receiving this Query. As shown in the
figure, node 7 hears the QUERY from both sources via node
6 and nodes 8 and 9 hear the Queries via node 7.

After the INT is over, both sources flood QUERY packets
with sequence numbers 101 and NextSeq 102. Let’s assume
that node 7 first hears the QUERY from source 1 via node
6. Node 7 processes the packet as described. It now checks
if it is expecting any other Queries via node 6 within TIME-
INTERVAL. From its routing table, it realizes that it should be
receiving a QUERY from source 3 with NextSeq 101 through
node 6. It thus appends a second row in the QUERY from
source 1. In this row, it sets the Source Id as 3, CurrentSeq as
101, and leaves the rest of the fields blank. It then increments
the NumSources, sets its own NodeID as the Last Hop and
transmits the QUERY to its neighbors. Node 7 also saves the
pair (3, 101) in its message cache.

The QUERY that nodes 8 and 9 receive from node 7 will
have two source rows, one representing each source. Nodes 8
and 9 will thus process both rows and save the pairs (1,101)
and (3,101) in their respective message caches. Now, when
node 7 receives the QUERY from source 3 with sequence
number 101, the pair (3,101) would already be present in 7’s
message cache. Node 7 thus determines this QUERY to be
duplicate and drops it. There is no loss in this dropping since
nodes 8 and 9 have already processed the pair (3,101). Thus,
there would be three less QUERY transmissions here than if
there were no consolidation.

Fig. 2. Query consolidation at any node

B. Query consolidation by source

When a source receives a QUERY from another source, it
processes the packet just as described above for any node. The
following is performed in addition.

Before transmitting the QUERY, the source checks its INT
to determine if it would expire within TIME-INTERVAL. What
that means is the source checks if it is about to create and
transmit its own QUERY between now and TIME-INTERVAL.
If so, it adds one more row to the QUERY. This row consists
of its own NodeID as Source Id, and the CurrentSeq field
is filled by the NextSeq that it generated and saved when it
sent its last QUERY. The rest of the fields are left empty.
The NumSources field in the QUERY is incremented and the
QUERY is then transmitted with the LAST HOP set as its own
NodeID.

If within this short interval prior to creating and transmitting
its own QUERY, more than one QUERY from different sources
is received, the source would add its information into each of
them. When the INT is over, the source sets its CurrentSeq
equal to its NextSeq and generates a new NextSeq. The
source then creates and transmits a new QUERY as described
previously.

When this QUERY is received by a node, it may already
have consolidated the information represented by this QUERY

with another QUERY or have received the same information
from a Source Row of another QUERY. If any of these is
true, then the node would have the (SENDER ID, SEQUENCE

NUMBER) pair carried by the QUERY in its cache and the
QUERY would be treated as a duplicate. If the node has no
information in its cache about this pair, then the QUERY is
processed as described previously in this section.

The example in Fig. 3 demonstrates this kind of QUERY

consolidation. Nodes 1 and 7 are the sources whose the
sequence numbers start from 100 and are incremented by 1
with every new QUERY.

Source 1 sends a QUERY with (1,100) as the (SENDER ID,
SEQUENCE NUMBER) pair. The NextSeq is 101. Let’s assume
that the QUERY from source 1 reaches source 7 within TIME-
INTERVAL before source 7 has sent its first Query. Source 7
then appends another Source Row in the QUERY from source
1. This Source Row has Source Id as 7, and CurrentSeq as
source 7’s NextSeq, which should be 100. The rest of the fields
in the Source Row are left empty. Source 7 also increments
the NumSources field. It now sets itself as the Last Hop and
transmits the QUERY to its neighbors.

Source 1’s QUERY that nodes 8, 9 and 10 receive from node
7 will have two source rows, one representing each source.
Nodes 8, 9 and 10 will thus process both rows and save the
pairs (1,100) and (7,100) in their respective message caches.

When source 7 sends its own QUERY shortly afterward, it
will carry the pair (7,100) as the (SENDER ID, SEQUENCE

NUMBER) pair. It will be first received by neighbor nodes 3, 8
and 9. When nodes 8 and 9 receive this, they will check their
message caches for the pair (7,100) and will find a match.
They will hence consider this packet a duplicate and drop it.
Node 3, another neighbor of source 7, will not find this pair

in its message cache and will process it accordingly. Thus, in
this example as well, there are three less QUERY transmissions
than if there were no consolidation.

Fig. 3. Query consolidation at a source node

The choice of TIME-INTERVAL needs to be carefully made,
as a large TIME-INTERVAL can lead to out-dated routes under
high mobility, whereas a very small TIME-INTERVAL may not
provide the full benefit of the protocol. In our simulations, we
have used a value between one-fifth and one-tenth of the INT
as the TIME-INTERVAL.

V. SIMULATION RESULTS

We evaluated the performance of our protocol against
ODMRP by carrying out simulations in a GlomoSim envi-
ronment. We also implemented DCMP and ODMRP-MPR.
DCMP uses two parameters called MAXHOP and MAXPASS-
SIZE, which refer to maximum allowed distance between
a CORE node and its PASSIVE node, and the maximum
number of passive nodes allowed per core node, respectively.
A source P can become a passive source for a core node
C if C’s MaxPassSize parameter is not exceeded, P is no
more than MaxHop number of hops away from C, and C
has a higher NodeID than P. If these conditions are met,
P sends a PASSREQ packet toward C requesting to become
its passive node, and C responds with a CONFIRM packet. P
then refrains from sending its JOIN QUERY while it meets the
conditions for its passive node status, and instead forwards its
data packets to its core node. In ODMRP-MPR, each node
periodically transmits a HELLO packet carrying the list of any
neighbors that are known. Such HELLO packets allow a node
to collect information about its 1-hop and 2-hop neighbor sets.
This information is used to select a group of nodes called
MultiPoint Relays (MPRs) [25] which would cover its entire
2-hop set. A known neighbor of a node X that is not in the
MPR set of X does not need to transmit X’s QUERIES.

The MAC protocol used in our simulations is IEEE 802.11
DCF. The simulation model consists of 100 mobile nodes
within a 1500m x 1500m area. The nodes are placed ran-
domly within this region. The mobility model used is random
waypoint, in which each node independently picks a random
destination and speed from an interval (min, max) and moves

toward the chosen destination at this speed. Once it reaches
the destination, it pauses for pause number of seconds and
repeats the process. Our min speed is 1 m/s, max speed is
20 m/s and pause interval is 0 seconds. Thus, the nodes are
constantly moving. A source generates data load at the rate
of 5 Pkts/second. The QUERY interval is set at 3 second.
The channel capacity is 2Mbps. Each simulation is run for
100 seconds. For each parameter combination, ten randomly
generated scenarios are run and the results are averaged. For
DCMP, the MaxHop is 3 and there is no limit on MaxPassSize.
For ODMRP-MPR, the HELLO refresh interval is the same
as the QUERY interval. In all other cases, we have used the
same simulation parameters for all protocols unless othrwise
specified.

A. Performance Metrics used:

• Control Packet Load: The average number of control
packet tranmissions by a node in the network. Control
packets include any of QUERY, REPLY, PASSREQ, CON-
FIRM, HELLO and Ack packets.

• Packet delivery Ratio: The ratio of data packets sent by
all the sources that is received by a receiver.

• Data packet Overhead: The number of data transmissions
performed by the protocol per successfully delivered data
packet.

• Control Packet Overhead: The number of control trans-
missions performed by the protocol per successfully
delivered data packet.

• Total Packet Overhead: The total of control and data
overheads per successfully delivered data packet. This
metric represents the multicast routing efficiency.

B. Results:

The Fig. 4 - 9 show the results of our simulation of ODMRP,
CQMP, DCMP and ODMRP-MPR. DCMP performs better
than ODMRP in most cases. This protocol may result in a
weaker mesh between sources and receivers as the number of
passive sources increases due to a reduction in the number of
forwarding nodes. Additionally, a source that is passive may
have a longer route to a receiver than if it were active. As a
result, the number of data packets transmitted in the network
may be larger than in ODMRP under a high number of
sources. This is exhibited in Fig. 7. ODMRP-MPR can lead to
varying results based on the order of arrival of HELLO packets.
At its best, it would lead to a minimal set of multi-point relay
(MPR) nodes and thus reduce the redundant transmission of
QUERIES. Due to the flavor of the MPR heuristic ([23],
[25]) used in this protocol, the worst case scenario, where
all or most neighbors may be considered MPR nodes, also
becomes a possibility. In this case, the HELLO packet overhead
may actually lead to a higher overhead that ODMRP. This
possibility is exhibited in our simulations in Fig. 4, 5 and 8.

CQMP, on the other hand, does not introduce any additional
transmissions other than the ones defined in the ODMRP pro-
tocol. Since it works only with a QUERY already transmitted,
it shows favorable results in all analyses.

Fig. 4. Average number of Query Pkts. forwarded by a Node

Fig. 5. Average number of Control Pkts. forwarded by a Node

Fig. 6. Packet Delivery Ratio as a function of Number of Sources

Fig. 7. Data Packet Overhead per Data Packet Delivered

Fig. 8. Control Packet Overhead per Data Packet Delivered

Fig. 9. Total Packet Overhead per Data Packet Delivered

The cause of high control overhead in ODMRP is redundant
transmission of JOIN QUERY. Fig. 4 and 5 show the average
number of QUERY packets transmitted by a node and the
average number of all control packets transmitted by a node,
respectively. CQMP performs better than the other protocols.
The improvement of CQMP over ODMRP becomes more
marked as the number of sources is increased. As the number
of sources approaches 20 and beyond, CQMP produces almost
1/3 less average control packet load than that produced by
ODMRP.

As shown by Fig. 6, the reduction in control packet load
is also accompanied by an improvement in terms of data
packet delivery ratio. Since CQMP has less QUERY packet
transmissions than ODMRP, there is less chance of data packet
loss by collision or congestion. The data delivery ratio of both
ODMRP and CQMP decreases as the number of sources in-
creases under high mobility conditions, but CQMP constantly
maintains about 2 to 3 percent higher packet delivery ratio
than ODMRP and consequently less data overhead as shown
by Fig. 7.

Fig. 8 and 9 show the improvment of CQMP in terms of
Control Packet Overhead and Total Data and Control Packet
Overhead. CQMP performs better than all the compared proto-
cols, especially as the number of sources increases. Our results
thus show that by consolidating the QUERY at different levels,
the control overhead of an ad-hoc network can be significantly
reduced, while maintaining the desired level of packet delivery
ratio.

’

VI. CONCLUSIONS

We have proposed a mesh-based, on-demand multicast
routing protocol, CQMP, which uses consolidation of multi-
cast group membership advertising packets. We implemented
CQMP using GlomoSim and show by simulations that CQMP
shows upto 30 percent reduction in control packet load and
upto 20 percent improvement in multicast efficiency upon
comparison with ODMRP. In addition, our results show that as
the number of mobile sources increases, CQMP gives about
2 to 3 percent improvement over ODMRP in terms of data
packet delivery ratio.

REFERENCES

[1] Anthony Ephremides, “Energy concerns in wireless networks,” IEEE
Wireless Communications, vol. 9, no. 4, pp. 48–59, Aug 2002.

[2] Charles E. Perkins, Ad Hoc Networking, Pearson Education, New Jersey,
USA, Dec 2000.

[3] C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance vector
routing,” in Proceedings of IEEE WMCSA’99, Feb 1999, pp. 90–100.

[4] D. B. Johnson and D. A. Maltz, “The dynamic source routing protocol
for mobile ad hoc networks,” Internet-Draft, draft-ietf-manet-dsr-02.txt,
1999, Work in progress.

[5] Vincent D. Park and M. Scott Corson, “A highly adaptive distributed
routing algorithm for mobile wireless networks,” in Proceedings of
the Sixteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM). 1997, pp. 1405–1413, IEEE.

[6] C. K. Toh, “Associativity based routing for ad hoc mobile networks,”
Wireless Personal Communications, vol. 4, no. 2, pp. 1–36, 1997.

[7] Rohit Dube, Cynthia D. Rais, Kuang-Yeh Wang, and Satish K. Tri-
pathi, “Signal stability based adaptive routing (ssa) for ad-hoc mobile
networks,” Tech. Rep., 1996.

[8] Z. J. Haas, M. R. Pearlman, and P. Samar, “Zone routing protocol (zrp),”
Internet-Draft, draft-ietf-manet-zpr-04.txt, Jan 2001, Work in progress.

[9] Zygmunt J. Haas and Marc R. Pearlman, “The performance of query
control schemes for the zone routing protocol,” IEEE/ACM Trans. Netw.,
vol. 9, no. 4, pp. 427–438, 2001.

[10] Samir Ranjan Das, Charles E. Perkins, and Elizabeth M. Belding-Royer,
“Performance comparison of two on-demand routing protocols for ad
hoc networks,” in Proceedings of the Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM).
2000, pp. 3–12, IEEE.

[11] Thomas Kunz, “Multicasting: from fixed networks to ad hoc networks,”
pp. 495–507, 2002.

[12] Jason Xie, Rajesh R. Talpade, Anthony McAuley, and Mingyan Liu,
“AMRoute: Ad hoc multicast routing protocol,” MONET, vol. 7, no. 6,
pp. 429–439, 2002.

[13] C. Wu, Y. Tay, and C.-K. Toh, “Ad hoc multicast routing protocol uti-
lizing increas ing id-numbers (amris) functional specification,” Internet-
Draft, draft-ietf-manet-amris-spec-00.txt, Nov 1998, Work in progress.

[14] Tomochika Ozaki, Jaime Bae Kim, and Tatsuya Suda, “Bandwidth-
efficient multicast routing for multihop, ad-hoc wireless networks,” in
Proceedings of the Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM). 2001, pp. 1182–
1191, IEEE.

[15] Elizabeth M. Royer and Charles E. Perkins, “Multicast operation of
the ad-hoc on-demand distance vector routing protocol,” in Proceed-
ings of the 5th annual ACM/IEEE international conference on Mobile
computing and networking. 1999, pp. 207–218, ACM Press.

[16] P. Sinha, R. Sivakumar, and V. Bharghavan, “MCEDAR: Multicast
core extraction distributed ad hoc routing,” in Proceedings of IEEE
WCNC’99, Sep 1999, pp. 1313–1317.

[17] William Su Sung-Ju Lee and Mario Gerla, “On-demand multicast
routing protocol in multihop wireless mobile networks,” in Mobile Net-
works and Applications. 2002, vol. 7, pp. 441–453, Kluwer Academic
Publishers.

[18] Ching-Chuan Chiang, Mario Gerla, and Lixia Zhang, “Forwarding group
multicast protocol (fgmp) for multihop, mobile wireless networks,”
Cluster Computing, vol. 1, no. 2, pp. 187–196, 1998.

[19] Ewerton L. Madruga and J. J. Garcia-Luna-Aceves, “Scalable multicas-
ting: the core-assisted mesh protocol,” Mob. Netw. Appl., vol. 6, no. 2,
pp. 151–165, 2001.

[20] Seungjoon Lee and Chongkwon Kim, “Neighbor supporting ad hoc
multicast routing protocol,” in Proceedings of the 1st ACM international
symposium on Mobile ad hoc networking & computing. 2000, pp. 37–44,
IEEE Press.

[21] Young-Bae Ko and Nitin H. Vaidya, “Geocasting in mobile ad hoc
networks: Location-based multicast algorithms,” in Proceedings of the
Second IEEE Workshop on Mobile Computer Systems and Applications.
1999, p. 101, IEEE Computer Society.

[22] B. S. Manoj Subir Kumar Das and C. Siva Ram Murthy, “A dynamic
core based multicast routing protocol for ad hoc wireless networks,” in
Proceedings of the 3rd ACM International Symposium on Mobile Ad
Hoc Networking and Computing, Lausanne, Switzerland. 2002, pp. 24
– 35, ACM Press.

[23] Yao Zhao, Leiming Xu, and Meilin Shi, “On-demand multicast routing
protocol with multipoint relay (odmrp-mpr) in mobile ad-hoc network,”
in Proceedings of ICCT2003. 2003, ICCT.

[24] Ken Tang and Mario Gerla, “Reliable on-demand multicast routing
with congestion control in wireless ad-hoc networks,” in Proceedings
of the Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM). 2003, IEEE.

[25] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, and
L. Viennot, “Optimized link state routing protocol,” Internet-Draft,
draft-ietf-manet-olsr-08.txt, March 2003, Work in progress.

[26] Thomas Kunz and Ed Cheng, “Multicasting in ad-hoc networks:
Comparing maodv and odmrp,” in Proceedings of the Workshop on
Ad hoc Communications, Bonn, Germany, 2001.

ACKNOWLEDGMENTS

Dr. Hung Q. Ngo is supported in part by NSF CAREER
Award CCF-0347565 and by Telcordia Technologies Subcon-
tract: FA8750-04-C-0249 from the DARPA SRS Program.

