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A fracture theory for a heterogeneous aggregate material which exhibits a gradual strain­
softening due to microcracking and contains aggregate pieces that are not necessarily small 
compared to struttural dimensions is developed. Only Mode I is considered. The fracture is 
modeled as a blunt smeared crack band, which is justified by the random nature of the 
microstructure. Simple triaxial stress-strain relations which model the strain-softening and 
describe the effect of gradual microcracking in the crack band are derived. It is shown that 
it is easier to use compliance rather than stiffness matrices and that it suffices to adjust a 
single diagonal term of the compliance matrix. The limiting case of this matrix for complete 
(continuous) cracking is shown to be identical to the inverse of the well-known stiffness 
matrix for a perfectly cracked material. The material fracture properties are characterized 
by only three paPlameters -fracture energy, uniaxial strength limit and width of the crack 
band (fracture Process zone), while the strain-softening modulus is a function of these 
parameters. A m~thod of determining the fracture energy from measured complete stress­
strain relations is' also given. Triaxial stress effects on fracture can be taken into account. 

The theory is verljied by comparisons with numerous experimental data from the literature. 
Satisfactory fits of maximum load data as well as resistance curves are achieved and values 
of the three matetial parameters involved, namely the fracture energy, the strength, and the 
width of crack b~nd front, are determined from test data. The optimum value of the latter 
width is found to be about 3 aggregate sizes, which is also justified as the minimum acceptable 
for a homogeneous continuum modeling. The method of implementing the theory in a finite 
element code is al$o indicated, and rules for achieving objectivity of results with regard to the 
analyst's choice of element size are given. Finally, a simple formula is derived to predict from 
the tensile strength and aggregate size the fracture energy, as well as the strain-softening 
modulus. A statistical analysis of the errors reveals a drastic improvement compared to the 
linear fracture th~ory as well as the strength theory. The applicability of fracture mechanics 
to concrete is thz4 solidly established. 

INTRODucnON 

The structural size effect is the central problem in 
predictions of fltacture. Fracture tests are normally 
conducted on relatively small specimens, and fracture 
theories are usual~y verified in the laboratory by testing 
relatively small ,*ams or panels. In practice, we then 
dare to extrapola~e this information to structures which 
are often far larger than anything tested. This, of course, 
cannot be done I reliably without a sound, realistic 
fracture theory. ' 

For the initiation of cracks in a body without,cks 
and stress concentrations, the concept of stfi:,' :1 is 
acceptable. Not so, however when a sharp crack, .:ady 
exists. The elastic analysis then yields infinite strf'~S at 
the crack front, and the strength criterion inc,' c~ctly 
predicts the crack to extend at an infinitely sma) ,oad. 
When a finite element mesh is refined, the load '1i.:edc!d 

to reach the strength limit strongly depends u: the 
choice of element size and incorrectly converges tc le:-o. 
Thus, the elastic finite element analysis of cracking 
based on the strength criterion, as currently used in 
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Fig. 1. - (a) Illustration of structural size effect in failure; (b-d) 
Relative sizes of fracture process zone (Fl, nonlinear hardening 
zone (N) and linear zone (L). 

computer codes, is unobj~tive in that it strongly 
depends on the analyst's chC!>ice of mesh. Neglect of the 
infinite stress concentration at the crack front. e. g., 
when the bending theory is applied to the ligament 
section, does not make the strength criterion correct. 
This may be illustrated in figure 1 a where we consider 

any type of geometrically similar specimens or structures 
of various sizes, with geomCl!trically similar cracks, and 

plot the logarithm of the nominal stress UN at failure 
(calculated e. g., by applyinl the bending theory to the 
ligament) versus the logaritbm of the size. The strength 
criterion predicts UN at failure to be independent of size, 
while all tests indicate a decrease of UN with an increase 
In SIZe. 

These difficulties can be circumvented only by 
fracture mechanics, in which the basic criterion is that 
of energy release needed to create the crack surface. 

According to the classicallin¢ar fracture mechanics [30], 
UN in figure 1 a is then proportional to (size) -1/2, i. e., 

the plot of log UN versus log: (size) is a straight line of 

downward slope -1/2 (fig. 1 a). However, with the 
exception of very large structures, this slope appears to 
be too steep in comparison with most existing test 
data [49]. The reality seems to be a gradual transition 
from the horizontal straight line for the strength 
criterion to the inclined straight line of slope - 1/2 
(fig. I a). Failure analysis in this transition range is 
more difficult than it is for the limiting cases of strength 
criterion or linear fracture mechanics, and most concrete 
structures unfortunately fall in this category. In the 

work which follows (based an report [10]), we develop 

a similified theory which apptars to give realistic results 
over the complete range of sizes, including the transition 

range, and can be brought in a good agreement with 
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essentially all available fracture test data for concrete, 
a goal not yet achieved in the existing literature. 

The reason for the deviations from linear fracture 
mechanics observed in concrete (as well as rocks) 

consists in its heterogeneity of the material, causing that 
it behaves nonlinearly within a relatively large zone 
adjacent to the fracture front, while the linear fracture 
mechanics requires this zone to be small. This behavior 

is similar to ductile fracture of metals [40], but there is 

one significant difference. The fracture process zone, 
representing that part of the nonlinear zone in which 
the material undergoes progressive microcracking 
manifested by strain-softening (a decrease of stress at 
increasing strain) [18], is still usually small in ductile 
fracture of metals, but in concrete it is often very large 
(compared to the cross section of the structure), due to 
the large size of aggregate (fig. 1 b-d). For this reason, 
the non linear fracture theories developed for metals 
cannot be indiscriminately transplanted to concrete. 
Furthermore, since the plastic deformation of concrete 

in tension is negligible and the strain-softening in a 
tensile test [18] is not preceded by a horizontal plateau, 

the boundary of the fracture process zone may be 
considered to be nearly identical to the boundary of the 
nonlinear zone, whereas in metals these boundaries are 
far apart (fig. 1 c, d). Thus. it appears that we do not 
need to analyse fracture by means of the J-integral, and 
can directly use the fracture energy of the crack band. 
The J-integral is, anyway, inapplicable for contours 
inside the strain-softening region, and for contours 
within the linear exterior region it reduces to the 

fracture energy. 

Because of computational convenience as well as 

resemblance to reality, the cracking of concrete (and 
also rock) has long been modeled in large finite element 
programs as systems of parallel crack that are 
continuously distributed (smeared) over the finite 
elements, as introduced by Rashid (cf. Ref. [1]). As the 
cracking criterion, the strength has been used. It was 
shown, however, that the strength concept is unobjective 
in that the results of analysis can be strongly affected 
by the analyst's choice of finite element size [6, 7, 16]. 
A remedy is to use as the cracking criterion the fracture 
energy. This concept was worked out in detail for the 

case when the stress can be assumed to drop suddenly 

to zero as the fracture forms [5-7, 16]. The assumption 
of an abrupt stress drop is, however, inadequate for 
cross section dimensions that are not sufficient! y large 
compared to the aggregate size. In this case a gradual 
strain-softening due to progressive microcracking must 
be considered, and extension of the previous work 
[6, 7, 16] to cover this case will be the purpose of this 
study, which is based on a 1981 report [10]. 

We restrict our attention to Mode I cracks, i. e., 
cracks (straight or curved) which have no shear stress 

at their front. This does not detract much from practical 

usefulness since cracks in concrete seem to propagate in 
most situations along such a path that Mode I prevails 

at the front. 



THE HYPOTHESIS OF BLUNT CRACK BAND 

Central to the .analysis which follows is the hypothesis 
that fracture in a heterogeneous material can be 
modeled as a band of parallel, densely distributed 

microcracks with a blunt front. This hypothesis may be 
justified as follows. 

Justification I. Rlepresentative volume 

When a heterpgeneous material is approximated by 
an equivalent homogeneous continuum (without couple 
stresses), as is standard for concrete structures, one 
must distinguish the continuum stresses and strains 
(macrostresses and macrostrains) from the actual 
stresses and strains in the microstructure, called the 

microstresses and micros trains. In the theory of 
randomly inhotnogeneous materials, the equivalent 

continuum stre~es and strains are defined as the 

averages of the tnicrostresses and microstrains over a 
certain representative volume. The cross section of this 
volume should ideally be taken to be much larger than 
the size of the inhomogeneities, and even for a crude 
modeling must b¢ considered to be at least several times 
their size. i. e., several times the maximum aggregate 

size in case of concrete. 

Consequently, in the usual analysis, in which only the 
average elastic (or inelastic) material properties are 

considered and the geometry of the microstructure with 
the differences in the elastic constants between the 

aggregate and the cement paste is not taken into 

account, the di$tribution of stress or strain over 
distances less tllan several aggregate sizes has no 

physical meaning. Only the stress resultants and the 
accumulated st$n over the cross section of the 
characteristic Volume do. In the finite element context, 
this means, therefore, that it makes no sense to use 
finite elements smaller than several aggregate sizes (and 
also that it makeS! no sense to use in such smallest finite 
elements distributlion functions of higher order). In case 
of fracture, this further means that if an equivalent 

homogeneous continuum is assumed, it makes no sense 

to consider conc~ntrations of stress (or of microcrack 

density) within volumes less than several aggregate sizes. 
A similar conclu~ion follows when we realize that the 
actual crack path in concrete is not smooth but highly 

tortuous. Since the crack tends to pass around the hard 
aggregate pieces and randomly sways to the side of a 
straight path by distances roughly equal to the aggregate 
size, again the actual stress (microstress) variation over 
such distances can be relevant for the 'macroscopic 

continuum model. 

According to the foregoing justification, one should 

not attempt to s~bdivide the width of the crack band 

front into several finite elements. There is however also 

another reason. : The strain-softening continuum is 
unstable and a strain localization instability, in which 
the deformation would localize into one of the elements 

in the subdivision~ would take place. 

z. P Bazan! - B. H. Oh 

Justification II. Equivalence of results 

For an elastic material in which the stress drops 
suddenly to zero at the fracture front, it was found 
[5, 16] that a sharp interelement crack and a smeared 
crack band give essentially the same results for the 

energy re!e~se rate and agree closely (within a few 

percent) with the exact elasticity solution, provided that 

the finite element is not larger than about 1/15 of the 
cross section dimension (square meshes without any 
singularity elements were used). This is true regardless 
of the aggregate size. 

To demonstrate it here, figure 3 shows some of the 
numerical results for a line crack (left) and crack band 
(right) extracted from Reference [5]. The finite element 
mesh covers a cut-out of infinite medium loaded at 
infinity by uniform normal stress Ii perpendicular to a 
line crack of length 2 a. The nodal loads applied at 
boundary are calculated as the resultants (over the 

element width) of the exact stresses in infinite medium 

at that location. The solid curve is Westergaard's exact 
solution. The calculated points are given for the square 
mesh shown (mesh A), as well as meshes Band C (not 

shown) with elements reduced to 1/2 and to 3/8. (Each 
element consisted of 2 constant - strain triangles, and 
calculations were mane for 1i=0.981 tX(MPa), 
Ec =2256MPa, v=0.1, and stress intensity factor 
0.6937 MNm -3/2.) 

The same equivalence of line cracks and crack bands 
may be expected when a gradual stress drop is 
considered (and fig. 5 confirms it). The reason for this 

equivalence is the fact that fracture propagation depends 
essentially on the flux of energy into the fracture process 

zone at the crack front, and this flux is a global 

characteristic of the entire structure, depending little on 
the details of the stress and strain distributions near the 
fracture front. 

Furthermore, the fact that the results for the stress 
intensity factor [30] obtamed with nonsingular finite 
elements agree closely (within 1% for typical meshes) 
with the exact elasticity solution also confirms that 

there is no need to use singularity elements for fracture 
analysis. In any event, the non-uniform stress distribu­

tion implied in a singularity element is meaningful only 
if its size is many times the representative volume, i. e., 
at least 20-times the aggregate size, which is too large 

for most applications. 

Computational advantages 

Since the line crack and the crack band models are 
essentially equivalent, the choice of one or the other is 

basically a question of computational effectiveness. 
From this viewpoint, the line crack model appears to be 

disadvantageous. When the crack extends through a 

certain node, the node must be split into two nodes, 

increasing the total number of nodes and changing the 

topological connectivity of the mesh. Unles~ all nodes 
are renumbered, the band structure of the structural 

stiffness matrix is destroyed. All this complicates 
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Jilt. 2. - (a) Actual crack morpholpgy. (b) Actual stresses and then 
smoothing, (e) Line crack model. (d) Crack band model used here. 

programming. When the direction in which a Mode I 
crack should extend is not known in advance, one must 
make calculations for various possible locations of the 
node ahead of the crack front, through which the crack 
should pass, in order to identify the location for which 
the energy release rate is maximum. 

These difficulties are aVQided by the crack band 
model. Here the crack is modeled by changing the 
isotropic elastic moduli matfiix to an orthotropic one, 
reducing the material stiffne$s in the direction normal 
to the cracks in the band. This is easily implemented in 

MESH A .(, ..... 6, n. 7) 

MESH B (" .. 12.".13) 

MESH C (m.10. ".25) 

m elements 

a 

a finite element program, regardless of the direction of 
the crack with respect to the mesh lines. A Mode I 
crack propagating in an arbitrary direction with respect 
to the mesh lines, or a Mode I crack following a curved 
path, may be easily modeled as a zig-zag crack band 
(see fig. 4 e) whose overall direction in the mesh 
approximates the actual crack direction. (Numerical 
applications for skew, curved or asymmetric cracks are 
however beyond the scope of this study.) 

A further advantage of the crack band model is that 
the information obtained in studies of stress-strain 
relations and failure envelopes can be applied to 
fr .. cture (e. g., the effect of the compressive normal 
stress parallel to the crack). Still another advantage is 
the fact that with the crack band model one can treat 
the case when principal stress directions in the fracture 
process zone rotate during the progressive fracture 
formation, i. e., during the strain-softening. This case 
arises, e. g., when first a vertical tensile normal stress 
produces only a partial cracking, and failure is 
subsequently caused by horizontal shear stresses. The 
line crack models do not seem suited to handle this 
situation. 

Actual pattern of microcracks 

Recently, various measurements are being made to 
observe the formation of microcracks at the fracture 
front [37, 41]. From these observations it seems that the 
larger microcracks that can be seen are not spread over 
a band of a large width but are concentrated essentially 
on a line. However, the line along which the microcracks 
are scattered is not straight (or smoothly curved) but is 
highly tortuous (fig. 2), deviating to each side of the 
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straight line extension by a distance equal to about the 
aggregate size, as the crack is trying to pass around the 
harder aggreg~te pieces. In the equivalent, smoothed 
macroscopic cQntinuum which is implied in structural 
analysis, the scatter in the locations of visible 
microcracks re~ative to a straight line is characterized 
by a microcracJc band better than by a straight row of 
microcracks. 

At the same ~me, we should realize that the boundary 
of the fracture process zone should not be defined as 
the boundary of visible microcracks but as the boundary 
of the strain-sqftening region, i. e., the region in which 
the maximum stress decreases with increasing maximum 
strain. Since the strain-softening is caused not only by 
microcrackingbut also by any bond ruptures, the 
fracture proces$ zone could be much wider (as well as 
longer) than th~ region of visible microcracks. 
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These questions are, however, unimportant for the 
macroscopic continuum modeling because of the 
foregoing Justifications I and II. They would matter 
only for micromechanics analysis, aimed, e. g., at 
calculating the fracture energy from the constituent 
properties and geometry of the microstructure. 

Previous works 

According to Justifications I and II, it cannot make 
much difference whether the fracture is modeled as a 
line crack (a sharp interelement crack) or as a band of 
continuously distributed (smeared) parallel cracks. 
Thus, if the relation of the normal stress (1. and the 
relative displacement J / across a line crack is identical 
to the relation of (1: to the displacement J / = e / We 

obtained by accumulating the strains e/ due to 
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microcracking over the width We of the crack band, the 
line crack model and the crack band model are 
essentially equivalent (except: for the influence of lateral 
stresses (1.~ and (1y in the crack band model). Line crack 
models with softening stress-cliisplacement relations were 
proposed in many previous ,+,orks [2, 8, 20, 27, 29, 51]. 
These include the works ot Knauss [29], Wnuk [51], 
and Kfouri, Miller and Rice [27, 28] on polymers and 
metals, which considered a gradual release of the forces 
between the opposite surfaces as the opening displace­
ments grow, as well as the finite element equivalent of 
a gradually decreasing internodal force as one node in 
a finite element grid is being separated by fracture into 
two nodes. For concrete, thiis concept of a gradually 
decreasing stress-displacement relation was first applied 
in the outstanding original work of Hillerborg, Modeer 
and Peterson [20, 41] in their 'model of a fictitious sharp 
interelement crack, which provided inspiration for this 
work. 

PROGRESSIVE CRACKING ANDIFRACTURE PROCESS ZONE 

We will work with a systetn of cartesian coordinate 
axes XI ::a x, X2 = y, X3 = z and will treat concrete as an 
isotropic elastic material cll1aracterized by Young's 
modulus E and Poisson ratio v. Consider that a system 
of densely and uniformly cj1istributed discontinuous 
microcracks normal to axis 31 develops in the material 
while the stresses are kept constant. This must lead to 
an increase of strain B., but tile effect of this on strains 
ex, B, parallel to the microcracks should be nil. Then, 
assuming that (1%, (1 y, (1 z are the principal stresses and 
ex, By, e: are the principal strains, we have: 

-y 

-y (1) 

-y -y 

where ef is the fracture strain, i. e., the additional strain 
caused by the opening of the microcracks, E = Young's 
elastic modulus of concrete, and v=its Poisson's ratio 
( ~0.18). 

As generally accepted, the front of an advancing 
crack band (microcrack zone), called also the fracture 
process zone, has a certain characteristic width We 

(fig. 2). This width could, in principle, be determined 
by stability analysis [3], although in practice we do not 
quite know yet how to carry out such analysis. For 
plain concrete, we may cOQsider We as a material 
constant that can be determ.ned by experiment. We 
expect that We is several-times the maximum aggregate 
size. Now, the meaning of ef is the average over 
the fracture process zone of the deformation due 
to microcracking, precisely el=JI/we where 
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t5 I = I t5~ = sum of the openings of individual 

microcracks intersecting axis z (fig. 2). 

Neglecting rate effects (time effects), it is probably 
reasonable for us to assume that el is a function of (1., 
i. e., el = f «(1:). Obviously, it must be a monotonically 
decreasing function (fig. 4 a, b). 

The simplest choice is a linear function, i. e. : 

I 
B I = f ( (1 :) = - (f; - (1,). 

CI 

(2) 

As we will see, this choice suffices to get satisfactory 
agreement with ail available test data. Here f; is the 
peak uniaxial stress, or tensile strength. 

Substituting Equation 2 into Equation 1 we obtain, 
for the strain-softening range: 

{} 
[E

-l 
ex 

By = 
e: sym. 

in which 

1 I I 
-----<0 
E

t 
- E C

I 
= , 

E - 1 -v 

E-l 

(4) 

Er is the tangent softening modulus of the declining 
(strain-softening) segment of the uniaxial stress-strain 
diagram in the z direction (fig. 4); and Bo is the strain 
at the end of strain-softening (fig. 4), at which the 
microcracks coalesce into a continuous crack and (1: 
vanishes; Bo= j;/Cf .. the square matrix in Equation 3 
is the tangent compliance matrix. 

For finite element analysis, Equation 3 must be 
inverted to get the stiffness matrix. This matrix is 
particularly simple for the case of plane stress analysis 
«(1,=0); in this case the inversion of Equation 3 yields: 

{ 
(1 x} = [ E + y~ E; 
(1= y E, 

(5) 

in which E;=(E'-I_Cjl)-I, E'=E/(l-v 2
). 

Let us now consider general initial elastic properties 
which may possibly be anisotropic (e. g., when the 
present theory is applied to rock; see Ref. [3]). Assuming 
that the directions of principal stresses and principal 
strains coincide, uncracked concrete is then characterized 
by the stress-strain relation ~ = C (1 in which 

~ = (c:x, By, Bz)T, ~ = «(1x, (1y, (1:)T, f=(3 x 3) compliance 

matrix, and superscript Tdenotes the transpose of a 
matrix. Since the effect of the formation of microcracks 
normal to z consists in an increase of ez at constant ey, 

Bx and constant stresses, the secant compliance 



formulation of t~e stress-strain relation may generally 

be written in the form ~ =<;<1.1) ~ or: 

(6) 

where C 11, C lj2' ... , C 33 are the initial elastic 
compliances be~ore cracking, and J.l is a cracking 
parameter whichl' may, in general, depend on stress and 
strain and varies ,within the range 0 < J.l < 1. For J.l = 1 we 
have an uncrat=ked material. Equation 6 becomes 
equivalent to Eqjuation 3 if the relation e: = E;l 0": + eo 
becomes equivalc;nt to the relation e: = C 33 J.l- 1 

0": where 
C33 =E- 1. This ioccurs if we set E- 1 J.l- 1=E,-1+ eo /0": 
or: 

(7) 

in which E, E, apd eo are constants, and 0": and e: are 
variables. Note that J.l -.. 0 as the state of continuous 

cracks is apprQached. i. e., as 0": - 0 (or e. - eo). 
Cracking starts when 0": = f; = C / eo, and substituting 
this into EquatiC!>n 6 along with Equation 4, we verify 
that J.l = 1 corresponds to the start of cracking. 

A salient and simple feature of our formulation is 

the independen¢e of the Poisson effect from the 
microcracking, reflected by the fact that the off­

diagonal terms ;in Equation 3 are not affected by 

microcracking. 1I'his is contingent upon our assumption 
that all micro4racks are normal to axis z. This 
assumption contJrasts with that implied in the plastic­

fracturing the0o/. [9] - a theory intended mainly for 
compressive or ~ear loadings. Due to the adoption of 
isotropic treatmelnt of the elastic part of the deformation, 
that theory im~lies the microcracks to be oriented 
randomly. Thenl of course, the microcracking in that 

theory does inflcience the Poisson effect. 

A gradually declining stress-strain relation for 
concrete, as opposed to a sudden stress drop, was 

previously introduced in a program for dynamic 

cracking for nuimerical reasons [35]. In dynamics, a 

sudden stress drop emits through the finite element 
mesh shock wa~s which are of spurious nature. 

It should be @ted that our treatment of progressive 
microcracking by reducing the stiffness with a 
mUltiplicative parameter (as in Equation 6) is quite 
similar to the sq-called continuous damage mechanics 
[23, 24, 33, 34, 3~]; but in contrast to the existing works 
on this approac~, we consider the damage concept to 
be inseparable rt·om a zone of a certain characteristic 

width, We (see Equation 16), or from an energy criterion 

(see Equations ~4 and 20). Otherwise, predictions of 

continuous da~. ge mechanics would depend on the 
choice of finite lement size. same as they do for the 
strength criterio [7]. Also, our treatment of damage is 

anisotropic, wh Ie the existing works on continuous 
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damage mechanics of concrete are confined to isotropic 
(scalar) representations of damage. 

STIFFNESS AND COMPLIANCE MATRICES FOR FULLY 
CRACKED MATERIAL 

According to our preceding considerations, the 
compliance matrix for the fully cracked concrete is 

obtained as lim ~ (J.l) for J.l- 0 where ~ (J.l) is given in 

Equation 6. The behavior of fully cracked concrete is, 
however, normally described in terms of a stiffness 
matrix, the form of which is well known [46], and 
generally accepted as correct. We must therefore check 

that the inverse of lim ~ (J.l) coincides with this stiffness 

matrix. 

First we need to show the derivation of the well­

known stiffness matrix for concrete intersected by 

continuous cracks normal to z. To this end, it is 
convenient to first rewrite the elastic stiffness relation 

~=12~, in which 12=(3x3) elastic moduli (stiffness) 

matrix. in a partitioned form: 

( 8) 

Consider now a material that is fully cracked in 

planes normal to z. Then we have 0": =0, and Equation 8 
is applicable provided that e. is replaced with strain 
~ of the solid concrete between the continuous cracks. 

So. from Equation 8, O=l!T ~a+D33e~ from which 

~= -l!T ~aID33. Furthermore, ~a=q ~a+l!~, and so 

~a = (q -l! l!T D il) ~ a. This provides: 

or 0" =D/' e, (9) - - -
which may be written as: 

(10) 

in which D./I (0:, f3 = 1, 2, 3) are the components of the 
initial stiffness matrix D for uncracked concrete, and 
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Q=(O,O)T. The stiffness matrix in Equation 10 was 

given, e. g., by Rashid, and by Schnobrich et at. [46]. 

One can prove the following theorem (see A ppendix I): 

THEOREM I. - If ~ = 12 - 1, then: 

Df, = lim C- 1 (p). ( II) 
- 11- 0 -

This theorem confirms that the limit of our 
Equation 3 or 5 or 6 for palrtially cracked concrete is 
indeed equivalent to the well~known stiffness matrix for 
fully cracked concrete. 

The compliance formulation of cracking, which we 
have just established (Equatipn 3 or 5 or 6), is simpler 
than the well-known stiffness! formulation. In program­
ming it suffices to modify a single term of the 
compliance matrix ~, while itt the stiffness formulation 

aU terms of the matrix need recalculation. In case of 
complete cracking, one may not, of course, set in the 
program p =0; rather, one may assign a very large 
number to p-l, e.g. p-l=II!>Jo. The main purpose of 
the compliance formulation is to allow description of 
both partially cracked and fully cracked concrete. 

Equation 6 and 8-11 apply to generally anisotropic 
initial elastic properties. Except for possible stress­
induced anisotropy (due, e. g.,to high compressive stress 
parallel to cracks), we may tteat concrete between the 
cracks as isotropic. Then: 

-y -'] C(P)- [.!. -y -y 

- E p.-.l ' -y -y 

~'_E'[~ .oJ I o , (12) 

0 0 

where E'=E/(I-y2), E=elastic (Young's) modulus of 
concrete, v = its Poisson ratio. 

The incremental stress-strain relations, which are 
needed for step-by-step loadins analysis, may be readily 
obtained by differentiating Equations 3 and 5 or 10. 
Since our approximation of the stress-strain diagram is 
piecewise-linear, the incremental compliance and stiff­
ness matrices are the same as those in Equations 3, 5, 
9 and 10. 

So far we paid no attention to those terms of the 
compliance or stiffness matrUc. which relate to shear 
stresses or shear strains and need to be set in a finite 
element program. For a symmetric fracture problem, 
which is the case for all Mode 1 fracture test specimens, 
the question of shear behaviot in the fracture process 
zone is of no importance becapse the shear strains are 
zero due to symmetry. Howevter, in general structural 
analysis, particularly when the crack band is curved or 
the loading is non proportional, shear strains may be 
produced in the crack band after the crack initiation. In 
such a case, the compliance or stiffness matrix for the 
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cracked material (a 6 x 6 enlargement of the matrices in 
Equations 3, 6 and 10) should reflect the aggregate 
interlock and the frictional-dilatant properties of rough 
cracks [8, 12]. 

Another related assumption implied in the use of a 
unique relation between total stresses and total strains 
is that of path-independence. This assumption is 
acceptable if the strains increase within the fracture 
process zone almost proportionally, which also implies 
that the principal strain directions do not rotate. Note 
that the same assumption underlies the method of J­

integral in ductile fracture. 

For the fracture process zone, however, consideration 
of a non proportional strain increase, of a rotation of 
the principal stress directions, and of frictional shear 
seems to be often unimportant. This is because the 
angle of rotation of principal stress directions, or a 
change in strain ratios, often becomes large only after 
many loading steps; but it takes usually only a few 
loading steps for the fracture process zone to travel 
through a fixed point. It is for the same reason that the 
use of J-integral in ductile fracture met with so much 
success. 

FRACTURE CHARACTERISTICS 

The fracture energy, rI f is the energy consumed in the 
formation and opening of all microcracks per unit area 
of plane (x, y). Thus: 

( 13) 

in which We is the effective width of the fracture process 
zone (or crack band) over which the microcracks are 
assumed to be uniformly spread, and f; is the direct 
tensile strength. If rI f' f; and We are known from 
measurements, then the basic parameters of our stress­
strain relation may be calculated as: 

( 14) 

It is interesting to note that Equation 4 allows us to 
link the area W under the complete uniaxial stress­
strain diagram with the fracture energy. Substituting 
for C f from Equation 13, Equation 4 becomes 
£,-1 = £-1-2 rI f/!;2 we, from which: 

(15) 

- where W = \ (j: de •. This conclusion, however, holds 



only if no Pll'stiC defonnations accompany tensile 
microcracking, s we tacitly assumed (cf Ref. [3]). 

Conversely, b measuring '§ f, f; and E" it is possible 
to detennine th width of the fracture process zone, 

namely: ! 

I 

W = 2'§f(~ _ II )-1 
e r;2 E , . 

(16) 

This is, of cour ,just an effective width corresponding 
to the assumed piece-wise linear stress-strain diagram 
and to the ass mption of unifonn strain within the 
fracture process one, implied in Equation 5. The actual 
width of crack band front can be quite different, 
depending on th definition of the smallest microcrack 
size to be inel ud d in the crack band. 

EFFECT OF TRIA IAL STRESS STATE 

By linking fra ture to stress-strain relations, we can 
easily take into a count the effect of triaxial stress state 

in the fracture p ocess zone. As is well known from the 
tests of the biaxi I failure envelope [31, 32], application 
of transverse c mpressive stress <I x or <I y (or both) 
reduces the tensil strength limit for <I. from f; to some 

value f;c' On th other hand, positive <Ix (or <Iy) seems 
to cause no incr ase in the strength limit for <I •• These 
facts may be cha acterized by setting: 

for .1f;~O: ~;c=f;+.1f;; 
I 

for .1f;>O: 1.=f; 

with Llf; =k ~<Ix + <Iy); (17) 

'I 

in which k is lpOSitive constant. Since the biaxial 
failure envelope ay be approximately considered as a 
straight line co necting the points for the uniaxial 
compression fail re and the uniaxial tension failure, we 
may use the apprpximation: 

( 18) 

where f~=comp lession strength (taken as a pOSItive 

number). In Equ tion 17 we use (<I % + <Iy) because this 
is an invariant f r coordinate rotations about axis z, 
which should ha e no effect on the strength limit. We 
do not need h wever the invariants for arbitrary 
coordinate rotati ns because axis z is fixed by the 
orientation of mi rocracks. 

The use of str s-strain relations would also pennit 
introducing easil the effects of loading rate and 
duration of sust ined load upon fracture. This is 

however beyond t, e scope of this work. 
, 

COMPUTATIONALfSPEcrs AND OBJEcrIVITY OF MODEL 

In an incremen I step-by-step solution of a problem 
that does not invo ve any unloading of the material, the 

z. P Bazant - B. H. Oh 

following criteria may be observed with regard to the 
fracture modeling: 

(1) When in a certain element the maximum principal 
strain G1 in the previous loading step equals or exceeds 

Gp, we switch to using for the tangential compliance 

matrix of this element the matrix from Equation 3; we 

also orient the axes x and z in the directions of the 
principal strains in that step and keep them at fixed 
orientation with regard to the material for all subsequent 
loading steps while strain-softening takes place. [The 
fact that we keep these directions fixed even if shear 
stresses are subsequently produced on the plane (x, y) 

is of course a simplification.] 

(2) When G: in the previous step equals or exceeds eo 
we switch to the compliance (or stiffness) matrix for 
completely cracked material. 

It might at first seem that the last criterion misses the 

effect of <I% and <Iy; however, it does not, since for very 

small J.l Equation 6 yields an almost unique relationship 

between <I= and e:, the effect of <I% and <Iy on e: 
becoming negligible as J.l ..... O. 

As for the mesh selection, a unifonn square mesh 
seems most appropriate since it preserves during 
propagation the width of the crack band. If the crack 

path is unknown in advance, meshes other than a 
square mesh are unsuitable because they would 
introduce bias, favoring some crack paths over others. 

In the general case of a fracture that is not parallel 

to the mesh lines, the crack band has a zig-zag shape 

(fig. 4e). We must however keep in mind that this is 

just a numerical model for a smooth crack band, and 
we must therefore decide the value We of the width of 
a smooth band which corresponds to our zig-zag band. 
Restricting attention to square meshes, it seems most 
reasonable [6] to assume that we=A/Lla where 
A = h2 = element area, Lla = h cos IX = length of smooth 
crack band advance when the zig-zag band advances by 
one element. and IX = angle of the mesh line along which 
the crack band advances with the crack direction . 

Thus, wc=h2/hcoslX or: 

h 
We=--· ( 19) 

cos IX 

It appears, however, that this relation must be limited 

to IIXI ~45° [4a,4b]. 

An essential aspect of numerical modeling is 
objectivity, in particular the requirement that the results 
must be independent of our mesh choice (except for a 

numerical error which tends to zero). In previous works 
on linear fracture analysis [5, 6, 16] it was shown that 

objectivity can be achieved only if the strength limit is 

not kept fixed but is made to depend on the element 

size, so as to ensure the correct energy release rate. In 

our nonlinear model, we have, in addition to fracture 
energy, one more material parameter - namely the 
strength limit f; (or the strain-softening motiulus E,). 

How do we assure objectivity of the results with regard 
to these parameters? 
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The strain 8r within the fracture process zone does 
not seem to be a very irrjiportant quantity. A true 
continuum which exhibits *'ain-softening is, after all, 
unstable. The main signific~nce of 8, is that it defines 
the overall relative displacement 8r We over the width We; 

this in turn determines the, work of the surrounding 
structure on the fracture process zone, which is the 
main part of the fracture e*ergy. Thus, it should not 
matter when an element-wi~e crack band of width h 

(the size of square) is consicJered instead of the actual 
width We of the fracture pro,*ss zone, provided that the 
correct value of the fracture ,nergy is preserved. So, we 
may adjust the softening $dulus E. as long as r§ f 

remains the same. Replacin~ We by h in Equations 14-
15, we see that the followi~g adjustments are needed 
when h is chosen larger than We: 

1;2 h 2~f 
Cf =-- 80--

2r§J' - I; h' 

(20) 

Since the tangent strain-s~ftening modulus E. must 
be negative, Equation 4 yields the condition 
E,-I=E- 1-Ci 1<0. It follows that Cf<E, and since 
also E,-1 =E- I -2r§J/!;2 h~O, the adjustments in 
Equation 20 can be used only if: 

h< 2r§f E 
1;2 ' 

I 

(21) 

In practice, the finite elem~nt should be less than 
about 1/2 of this valQe. The limiting case 
h = 2 r§ f E/!;2 corresponds tp E,-1 = 0 or E. - - 00, 

which amounts to a sudd~n (vertical) stress drop 
(fig·4d). ' 

Note that, except for the r.ctor 2, the expression in 
Equation 21 is of the same fcl>rm as Irwin's expression 
for the size of the yielding zOlle in ductile fracture [30]. 
An expression similar to IrWin's was also used as a 
characteristic length 10 Hillerborg-Petersson's 

model [2~]. 

To verify that our model is rbjective, in the sense that 
the results are independent 0 the chosen element size, 
an example of a rectangular FCDter-cracked panel was 
analyzed; see figure 5. It is the same example as that 
used before in demonstrating. objectivity for the linear 
fracture analysis [6]. The tOR and the bottom of the 
panel are loaded at their cente~ by force P. We consider 
three meshes with mesh s~s h=4we, h=2 We and 
h = We' For the first two mesMs, we adjust E, according 
to Equation 20. 

Four-node square elements ~onsisting of four constant 
strain triangles are used; E=3~OOO,OOOlb./in.2, v=0.18, 

r§f=O.121b./in., 1;=3301b~/in.2; also b=IOin., 
H = 10 in., B = I in. For each rack band length a. and 
for each mesh, we run a step by-step loading analysis, 
controlling increments of ttie displacements at the 
centers of the top and bottom Sides. Thus. we determine 
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the maximum reaction P of the panel. This reaction 
(load) is indicated in figure 5 d in terms of the load ratio 
P/Po in which Po is defined as 2 bl;, i. e., the maximum 
load based on the strength at no crack. 

We see in figure 5 d that the results for all three 
meshes fall into a relatively narrow band. Moreover. 
the results are quite close to the exact solution according 
to linear fracture mechanics [22, 48], which is marked 
by the solid line in figure 5 d. 

For comparison we also show in figure 5 d by dashed 
lines the results obtained when the adjustments in 
Equation 20 are ignored, i. e. E. is kept constant. We 
see large discrepancies between the results (as h -0, the 
maximum load P converges, incorrectly, to zero). Such 
calculations are obviously unobjective. The discrepancies 
are however not as large as they are for a vertical stress 
drop and a constant strength criterion [5-7, 16]. (One 
could also show that similar discrepancies between the 
results for the three meshes in figure 5 b would result if 
some of the existing continuous damage mechanics 
formulations, which do not include an energy criterion 
and a characteristic length, were used.) 

For large structures, e. g. when the cross section size 
is 100 or 1000 times the aggregate size, the element size 
limit in Equation 21 would be prohibitively small. This 
limit can, however, be violated if we consider a vertical 
stress drop (fig. 4 d) and replace the actual strength 
I; with a smaller equivalent strength J.q such that the 
correct fracture energy be preserved, i. e. such that 
h (f;q/2 E) = r§ J. This yields the condition: 

(21a) 

which coincides with the equivalent strength derived 
earlier [5-7, 16] (in a different manner). For not too 
crude meshes, the use of a vertical stress drop yields 
results essentially the same as linear fracture mechanics 
[5-7, 16]. Thus, linear fracture mechanics is the limiting 
case of the present formulation, applicable when the 
structure is very large compared to We. or to the 
maximum aggregate size (fig. I a). 

ANALYSIS OF EXPERIMENTAL DATA 

Most of the important test data from the literature 
[13-15, 17, 19-21, 25,26, 38, 39, 44, 45, 47, 49, 50] have 
been successfully fitted with the present model. See the 
solid lines in figures 6-11. The best possible fits by 
linear fracture mechanics are also shown in these figures 
(dashed lines). The data used include various specimen 
geometries, sizes and loading conditions. The material 
parameters corresponding to the fits are listed in 
Table I. The fits were calculated using rectangular finite 
elements consisting of four constant strain triangles. A 
plane stress state was assumed for all calculations. 

Initially, each data set was fitted independently, 
considering not only ~ f' I; but also We as independent 
material parameters that can differ from concrete to 
concrete. For the optimum fits thus obtained, the ratio 
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of We to the size of aggregate. da ranged from 1.5 to 4 
for various concretes. Subse~uently, the optimum fits 
were sought under the restrict~on that the ratio welda be 
the same for all concretes and only '§ f and f; vary from 
concrete to concrete (table). The resulting value of welda 
was about 3.0, and it was found that by restricting 

welda to be constant, the coefficient of variation for the 
deviations of the data points from the fits increased 
only slightly. Therefore, it is generally possible to 
assume that: 

.. 
;;-
E , 
Z 
::I! 
-", 

" 

166 

O.S 

0.6 

0.4 

0.2 

4r-------------------------, 
(3,) Q 

r-~--------~----o 

3r~Q 
~ I 0 0 ~ 
E Q ,..:-=::::c.. __ __ 

z20 ~l...... r-0 
::I! Q ~ io-!_1 a: 
" - Nonlinear n'leory 

- - - Linear Tl'teory 

o Soll,Saron, Fran~Ols (1979) 

oL-__ ~ __ ~ __ ~~ __ ~ __ ~~ 
o 5 10 15 20 25 

Flel. Crack Ed.nSlon (to / we I 

1.0...------------------------, 

0.8 

s , 
.., 06 

'" '" 04 

~I~ 
~ I, 
P"~~L.. 

- Nonlinear Theory 

- - - L.ln_ar Theory 

a Q ~. Weeharatana and Shah (1980) 

4 8 12 
ReI. Crack Ellten510n (A lWeI 

2.0,----------------- 20r--------------

(d) (e) 

I~ .. ,.,. 
---~. 

e 
.... 

1.0 Z 
::I! 

r--:-:l\ T I i 
! _ -1111 12b 

~'l 
~ 

- Nonlinear TI't.or~ 

--- Llneor Theory i-:--'I~ I 
- Nonlinear il't..,t'y 

- - - Llneaf iheory 

a Entov and YQQust ( 197') 

'" " O.~ 

o Bro .. n (1972) 

o~---~--~----~--~---~ 
o 10 1$ 20 2~ 

l::,-n<;< 
"or. o.~t 8 f ' 

• I 
oL--------------~-~ oL--------------------~ o 4 0 4 ~ 

ReI. Crack ExtenlSlon (A/wel ReI. Crack Length (i/we) ReI. Crack Length (j lWei 

Fig. 9. - Comparison of theory with R-<lI1'Ye data of: (a) Sok, Baron and Franc;ois (1979); 
(b) Wec\llaratana and Shah (1980); (e) Brown (1972); (Ii, e) Enlov and Yagust (1975). 

(22) 



The foregoin$ result refers to an effective wc·value 
obtained under Ithe assumption of uniform strain over 

the width WC,~' implying a uniform distribution of 
microcracks. T e actual width of the microcracked 
zone, in which t e density of microcracks varies across 
the zone (being the highest in the center), would no 
doubt be some hat different. 

The width wc:b 3 da is about the minimum admissible 
from the viewppint of continuum smoothing of the 
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randomly inhomogeneous material. i. e., about the 
minimum acceptable as the dimension of the represen­
tative volume (e. g., Wc = da would not justify treating 
the crack band as a homogeneously strained region). 
However, from the viewpoint of data fitting, the results 

for, say, Wc = I . 5d •• would not be much worse, provided 
the same value of fracture energy '§ f would be 
preserved. To preserve it, however, the downward slope 
E, of the strain-softening segment would have to be 
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unreasonably small in comparison with measurements 
such as the direct tensile tests <!)f Evans and Marathe [181-
If their specimens were indeed homogeneously deformed 
on the macroscale (i. e., disregarding concentrations and 
scatter within distances less than 3 da), then the value 
We ~ 3 da is a physical reality; if not, then this value may 
be adjusted. 

The constancy of Welda is doubtless applicable only as 
an approximation. We may expect the ratio Welda to be 
a function of concrete strength. When the difference 
between the elastic moduli of the large aggregate pieces 
and of the mortar between them becomes less, as e. g. 
for high strength concrete, the material becomes more 
homogeneous, and so Welda should decrease. The 
opposite should happen when a concrete of very low 
strength is considered, or when the aggregate-cement 
bond becomes weaker, reinforcing bars or fibers are 
used, etc. 

In figures 6-9 we show by the solid curves the fits of 
maximum load data obtained with our nonlinear theory. 
For comparison, we also sbow in all figures by the 
dashed lines the best fits based on linear fracture 
mechanics. These fits were calculated with the blunt 
smeared crack band approach on the basis of the energy 
flow into the front element (Equations 12-13 of Ref. [5] 
or Equations 8-10 of Ref. [7]), and with the assumption 
of a sudden stress drop. This hlethod of calculation was 
previously shown to yield results that deviate from the 
exact fracture mechanics solutions by no more than 
about 2%, provided the mesh is not too coarse. 

Figure 6 a, b shows a comparison of our theory with 
the well-known tests by Nau~ Kesler and Lott [26, 39], 
indicating a decrease of the maximum load P max as the 
initial flaw length ao increases. (In fig. 6 a, b, 

Po= WB j; where W=width of specimen, B=its 

thickness, J = crack advance, and j; = tensile strength; 
see Table I). Also shown are the best fits by a linear 
theory (dashed lines). It is rather interesting to note 
that, for the maximum load the fits for the linear theory 
are also acceptable and not much worse than those for 
our nonlinear theory. This observation agrees with a 
recent perspicacious reinterpretation of Naus' tests by 
Ingraffea [43]. He found that when a certain recently 
published more accurate analytical solution or an 
accurate finite element solution is used, then Naus' 
maximum load data, originally thought to disprove 
linear fracture mechanics, do not show large deviations. 

May we, therefore, conclude that tests of Naus, 
Kesler and Lott [26, 39] confirm linear fracture 
mechanics? We may not. Naus fortunately also 
measured the strains e= on axis x ahead of the crack 
front. The linear theory strongly disagrees with these 
strain measurements while our nonlinear theory comes 
reasonably close. So, after all, the tests of Naus, Kesler 
and Lott do confirm the need for a nonlinear fracture 
theory (see fig. 6 c). 

The reason that the maximum load data for these 
tests can be reconciled with a linear theory probably is 
(as T. Ingraffea also mentioned to the writers) that the 
maximum load is, for this type of specimen, reached at 
a very small crack extension so that fracture energy 
values for all cases tested correspond to the beginning 
of the R-curve, characterized by a single value of 
fracture energy (a rather low value, as noted by others 
before). 

The best test data on the size effect for geometrically 
similar specimens are perhaps those of Walsh [49], and 
the comparisons with them are shown in figure 6 d-i. 

For this figure Po=3Bdj;/8=maximum load based on 
the bending theory for an uncracked beam. and POI = Po 

TABLE I 

PARAMETERS FOR TEST DATA 

Test Series 
I r; E, "J, d. w, C§~n IJ, 
I 

(psi) (ksi) (lb./in.) (in.) (in.) (/b./in.) 
c, 

(lb./in.) 

1. Naus-No. 1 .................... 460· 4,450· 0.205 " 0.375 1.125· 0.430" 7.664 " 0.224" 
2 Naus-No.2 .................... 360· 4,500· 0.099 " 0.375 1.125 " 0.249 " 6.111" 0.113 • 
3. Walsh-No. 1 347· 3,299· 0.174 • 0.50 1.50 • 0.188 • 6.356 • 0.185 • ................... 
4. Walsh-No.2 430· 4,083 " 0.188 " 0.50 1.50 " 0.173 " 5.535 " 0.270 " ................... 
5. Walsh-No.3 273 " 2,593 • 0.126 " 0.50 1.50 · 0.158 " 

I 
5.845 • 0.123 • ................... 

6. Walsh-No.4 286" 2, 716· 0.133 " 0.50 1.50 • 0.162 " 5.888 " 0.133 • ................... 
7. Walsh-No.5 495 • 4,697" 0.224" 0.50 1.50 • 0.173* 5.725 " 0.348 • ................... 
8. Walsh-No.6 414· 3,928 • 0.193* 0.50 1.50 " 0.176" 5.897 " 0.253 • ................... 
9. Mindcss, Lawrence, Kesler . ......... 370" 6,260 0.088 " 0.375 1.125" 0.170" 7.154 " 0.087 " 

10. Shah, McGarry ................. 300" 3,000· 0.108 • 0.375 1.125 • 0.047 " 6.400" 0.103 • 
11. Gj~rv, S¢,rensen, Arnesen ........... 300" 3,000" 0.108 " 0.375 1.125 " 0.047 " 6.400" 0.103 • 
12. Kaplan 300" 4,190 0.101 0.50 1.50 • 0.177· 6.269 " 0.098 " ....................... 
13. Huang-No.1 360" 3,122 • 0.225 " 0.50 1.50 • 0.337 • 7.227 " 0.217· ................... 
14. Huang-No.2 360" 3,122 " 0.225 • 0.50 1.50 " 0.245 " 7.227 " 0.217" ................... 
15. Carpinteri-No. 1 ................. 313 " 2, 700" 0.207 " 0.375 1.125 • 0.147 " 10.14" 0.128 " 
16. Carpintcri-No. 2 ................. 356· 3,130 " 0.280" 0.752 2.256 " 0.201· 6.130 " 0.3\5" 
17. Hillerborg, Modeer, Pctersson ........ 400" 3,300· 0.100 • 0.157 0.471" 0.118 • 8.758 • 0.086" 
18. Sok, Baron, Fran~ois .............. 740" 3,000" 2800· 0.472 1.416 " 2910" 21.66 • 1.600· 

19. Brown ........................ 690" 2,200" 0.182 " 0.047 0.141" 0.185 " 11.93 " 0.178 • 
20. Wccharatana. Shah ............... 740· 3,000" 0.855 • 0.250 0.750" 0.860" 12.49 " 0.848 " 
21. Entov, Yagust-No. 1 .............. 450· 3,000" 0.746 " 0.787 2.360" 0.755 " 9.366" 0.657" 
22 Entov, Yagust-No. 2 .............. 440" 3,000" 0.640· 0.787 

1 
2.360" 0.630 " 8.405 " 0.617" 

Note: psi =6 895N/ml, lb./in. = 115.1 N/m, in. = 25.4mrn. ksi= 1000 psi. 

• asterisk indicates numbers cstim.ted by calculations; without asterisk-as reported. 
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for d=2in., Po]. f~r d==6in, and P03 for d= lOin. Here 
(and also in fig. 8 d) the linear theory lines (dashed) 
were made to pass through the data point for the 
largest specimen <l>f each series because linear fracture 
mechanics shouldl apply on a sufficiently large scale. 
Note that the str~ngth criterion would for these tests 
predict horizontal lines, obviously disagreeing with 
tests. 

Figure 7 a shows a comparison with the data by 
Mindess, Lawren¢ and K~sler [38] on the dependence 
of the maximum Ifad on the crack length in four-point 
bent specimens, a~d figure 7 b shows a comparison with 
similar classical ~ests of Kaplan [25], indicating a 
decrease of the m.ximum load of notched beams with 
the crack length. Fjigure 7 c, d shows a comparison with 
similar data for notched and precracked beams by 
Huang [21]. Figure 8 a, b also shows the comparisons 
with the maximwh load data for notched beams by 
Carpinteri [14, 15]. For these tests, Po is defined as the 
maximum load of uncracked beam based on the 
bending theory. 

Figure 8 c shows a comparison with the data of Shah 
and McGarry [44] and of Gj~rv, Sorensen and 
Arnesen [19] on the maximum bending moment of 
three-point bent specimens as a function of the notch 
depth ao; QN=6MlllnjB(H-ao)l=nominal maximum 
bending stress calculated on the basis of notched cross 
section using the initial notch length ao (H = beam 
depth, B = beam width) Q~ = 6 M~aJ BH2 = nominal 
maximum bending stress of unnotched beam (i. e., for 
ao=O); Mmu =P",*"L/4=measured maximum bending 
moment for notched beam,M~"=POma,, L/4=maximum 
bending moment for ao = 0, L = span of beam. 

Figure 8 d shows a comparison with the data of 
Hillerborg, Modeer and Petersson [20], indicating how 
the bending strength of unnotched, initially un cracked, 
beams increases as the beam depth H increases. 
According to linear fracture mechanics, this effect is 
nonexistent if no Botch or flaw exists near the tensile 
face; therefore, a horizontal, dashed line, is drawn in' 
figure 8 d. The value of I'§JD in table I is in this case 
determined from the optimum fit of the maximum load 
data for the specimen of the largest depth. The relative 
bending strength is here defined as the ratio between the 
bending strength at the various beam depths and the 
bending strength at the largest beam depth. 

Figure 9 shows comparisons with the recent data on 
the so-called R-curves (resistance curves) [13, 17, 45, 
50], which represent the dependence of fracture energy 
on the crack length in slow stable crack growth. The 
test specimens of Sok, Baron and Franc;ois (fig. 9 a) 

were probably the ,largest specimens ever used (length 
up to 2.5 m). Thest specimens were prestressed in the 
direction parallel to the crack, in order to prevent a 
curved crack path. the prestress was modeled as applied 
loads (fig.9a) and the tensile strength limit was 
reduced according to Equation 17. To simulate these 
tests, it was necessary to calculate in the finite element 
program the energy release rate I'§ (from which the 
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stress intensity factor K follows as .J~). This was 
done by approximating C§ at midstep as A Wi(b Ja) 

where A W = r Pi LlUi -.1 U; b = thickness of plate, 
Pi = values of the loads (i= 1,2, ... ) at midstep, 
.1a = crack length increment during the loading step. 
.1Ui = increments of displacements under the loads, and 
.1 U = change from one load state to the next in the sum 
of the strain energies of all finite elements, both those 
inside and those outside the crack band. (Note that the 
contribution of loads and of the Iinearily behaving 
elements to Ll W may be more efficiently calculated as 
the work that the forces applied upon the boundary 
nodes of the nonlinear zone from the surrounding 
elements do on the displacements of these boundary 
nodes.) The transverse groove used by the experimen­
talists to stabilize the crack in the straight direction is 
taken into account. The horizontal dashed lines for the 
linear theory are made to fit the results for the longest 
cracks since these should agree with the linear theory. 

In fitting the data by Entov and Yagust [17], the 
value of Eo reported by them appeared too high. They 
did not indicate whether Eo was measured at roughly 
the same strain rate as that during the fracture tests (the 
fracture specimens were different), whether possibly 
unloading or reloading was used, etc. Such differences 
could explain why the present fitting of their data 
required a lower value of Eo than they reported (as 
given in table I). Furthermore, the f; values for Entov 
and Yagust's tests, as well as those for Naus' tests, were 
also adjusted (see table I) since they did not come from 
direct tension tests. 

The values of I'§~n listed in Table I often markedly 
differ from I'§ f values. Different values were necessary 
to obtain least-square optimum fits of test data with the 
linear theory. If I'§~n = C§ f were assumed, the deviations 
of the linear theory would have been much larger. 

The curves in figures 6-9 all exhibit the type of size 
effect illustrated at the outset in figure I a. We may now 
explain this behavior. When the structure is small 
compared to the aggregate size. the fracture process 
zone cannot develop its full size, and almost the entire 
specimen belongs to it. Thus, there is no energy flux 
into the fracture process zone from the outside, and the 
energy consumption in this zone is small. Hence. 
nothing but surpassing the strength limit can cause 
failure. When the structure is very large compared to 
the aggregate size, the crack band is relatively very 
narrow and the fracture process zone is negligibly small, 
which satisfies the assumptions of linear fracture 
mechanics. The strength limit does not matter since it 
can always be exceeded, in view of the stress 
concentration at crack front, and so only fracture 
energy matters. The intermediate case should represent 
a gradual transition between these extremes, as shown 
in figure I a. 

It is instructive to extract from the finite element 
outputs the profiles of q. along axis x. This is done in 
figure 4 f for the case of figure 9 c at one loading stage, 
and in figure 4 g for the case of figure 9 a at successive 
loading stages. The length of the fracture process zone, 
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If, is the distance from the point where the IT:-profile 
starts to rise to the point of maximum fT~: see figure 4 f 
As the crack begins to grow. there is. at first. a nonzero 

stress at the notch surface (0"= profiles 1. 2. 3. 4 in 
fig. 4 g). and the strain is then less than the terminal 

strain &0 of strain-softeni~g (point C in fig. 4 g). The 

fracture energy is the energy that cannot be recovered 

upon sudden unloading. Noting that the unloading 

slopes at the point on the notch surface for profiles I. 

2, 3, 4 are the lines PO, 3 A and 4 B, we see that the 

fracture energy for the profiles I. 2, 3, 4 of figure 4g 

corresponds to incomplete areas under the stress-strain 

curve (zero areas for profiks 1, 2 of fig. 4 g, and areas 

OP3 A or OP4 B for profiles 3 or 4). When the 0":­

profile begins smoothly from a zero stress (profiles 5. 

6, 7), the unrecoverable energy corresponds to the 

complete area under the stlless-strain curve (area OPe). 
This is the case of a fully developed fracture process 

zone. The finite element results indicate for this case 

that I, is generally between 2 We and 6 We' and the 

typical value is: 

(23) 

This result agrees with the observed R-curves. We may 

expect that the crack extension Lla required to reach a 

constant value of r§ f must be at least about I to 3 If. 
and indeed figure 9 indicates such Lla to be about 4 to 
12 We. Note also that the fracture process zone is much 

more elongated than the yielding zone in metal fracture; 

see figure I c, d. 

It is helpful to also explain how the model works for 

the R-curves. At the beginmng of crack extension from 

a notch, the fracture proce$S zone is not yet developed 

to its full length and width, and so the energy 

consumption in the fracture process zone is less than 

the fracture energy, while the crack extends due to 

surpassing the strength limit; For a long crack extension, 

the fracture process zone develops fully in size, and the 
energy consumption in it can reach the critical value. 

This explains that the apparent fracture energy should 

depend on the crack extension. increasing at the 
beginning and then stabilizing at its critical value. This 

dependence is called the lIesistance curve (R-curve). 

Numerical examples in the sequel confirm this 

explanation. 

The success in determining the R-curves from the 

stress-strain relation makes it unnecessary to consider 

the R-curve as the basic material property. It is well 

known that the R-curve can 'be a material property only 

in the asymptotic sense - when the crack extension from 
a notch is short enough. Fot metals this condition may 

often be met, but not quite for concrete, due to large 

fracture process zone. Helle the R-curves exhibit a 

significant variation over a distance that is not very 
small compared to the cross section dimension, and 

then the R-curve cannot be a material property, 

independent of the crack direction, crack path, and 

specimen geometry. 

It must be noted that the foregoing analyses of all 

test data have been carried out under the assumption 

170 

that the displacement at the loading points is controlled. 
This is assured if the loading frame is sufficiently stiff 
compared to the stiffness of the spec:men, so as to 

prevent an instability which involves a sudden 

displacement at the loading point and allows a release 

of strain energy from the frame into t.he specimen. 

Anyhow. analysis of such instabilities is impossible since 

the experimentalists did not report the stiffness of the 
loading frame. 

STATISTICAL ANALYSIS OF ERRORS 

To determine statistical characteristics of errors. we 

construct in figure 10 a. b the plot of Y = P ",/ P 0 versus 

X=P,/Po where P",=measured Pm.., P,=theoretical 

P max. Po = failure load based on strength as defined 
before for each figure (in case of the data from fig. 8 c, 

we use O"./O"~ instead of Pma./PO). This plot, based on 
M = 68 data points taken from figures 6-8, is shown in 

figure lOa. For comparison. we also show the same 

plot for the linear theory (fig. lOb). In these plots, the 

points at top right correspond to relatively small 

specimens, which are governed essentially by the 

strength criterion, and those at bottom left correspond 

to relatively large specimens, which are governed 

essentially by fracture energy. 

If the material behaved deterministically, and if our 

theory were perfect. the plot in figure 10 a would have 

to be a straight line Y = a + b X with a = O. b = 1. So, a 
linear regression analysis may be applied to this plot. 

The difference of a from 0 and of b from I then 

indicates possible improvement in the optimum 

calibration of our theory [which is seen to be negligible 

for figure 10 a]. The errors. i. e .• the vertical deviations 

of data points Y i from the regression line Y' = a + b X, 

indicate how good the theory is. The coefficient of 

variation of the errors, defined as w = s/ Y where 
s=standard error, s2=E(Yj - y,)2/(n-2), Y=L" Yi/n, 

i= 1,2 •...• n (s=0.039 for nonlinear theory and 
s=0.159 for linear theory), is found to be: 

for our fracture theory (2jig. 10 a): 

Wp = 0.066, 

for linear fracture theory (fig. lOb): 

wp=0.267, 

for strength criterion: 

wp=0.650. 

(24) 

The above value for the strength criterion follows as the 

standard deviation of Y i divided by mean of Y j (since 

the strength criterion predicts constant P/Po). 

Figure 10 a, b has the disadvantage that too many 

data points crowd at low P/Po values. To remedy it, 
one may plot Y=(P",/PO)1/2 versus X=(pr/PO)1/2. The 

coefficient of variation of errors in this type of 

regression is w = 0.035 for our theory (fig. 11 a), 

compared to w=O.120 for the linear fracture theory. 

Both this plot and the plot in figure lOa have further 

the disadvantage that the confidence limits based on w 



are, for very small PjPo, too large compared to P; e. g. 
a deviation of 0.05 Po in the value of P is small when 
P=0.9Po but large when P=0.05Po. This may be 
remedied by plotting In(P",/P o) versus In(P,/Po), for 
which the standard deviation of errors (relative to the 
regression line) is w=0.085 for our theory (fig. II b) 

and w=0.220 for the linear fracture theory. Note also 
that the 95~~ confidence limits in figure 11 b are much 
closer, relative to the magnitude of P, than those in 
figure lOa when PIPo is small. while the opposite is 
true when PIPo is not small. 

Another useful statistical measure is the coefficient of 
variation of the population of all P",I P, values; it is 
found to be: 

for our fracture theory: 

wPIII =0.080, 

for linear fracture theory: 

w",,=0.268. 

(25) 

We must remember that P, itself is random, depending 
on the random values of f; and '§ J. 

The errors in figure 10c, d for the R-curves may be 
analyzed similarly. To this end, it is appropriate to 
normalize the fracture energy with regard to the internal 
force transmitted by the fracture process zone, which is 
roughly proportional to f; da , da being the size of 
aggregate. Thus, we plot in figure 10 c, d the values of 
In('§JIf;da) from figure 9 using the measured value '§", 

of '§ J on the Y-axis, and the theoretical value '§, of '§ f 

on the X-axis. Again, if everything were perfect, this 
plot would have to be a straight line Y = a + b X, with 
a = 0, b = 1, and so a linear regression is applicable. The 
standard error for the vertical deviations from the 
regression line has been calculated to be: 

for our fracture theory (fig. 10 c): 

s=0.083, 

for linear fracture theory (fig. 10 d): 

s=0.317 

(26) 

(Note that it would not make much sense to calculate 
the coefficient of variation for figure 10 c, d because the 
logarithmic scales used in this figure already characterize 
relative values.) 

The 95~~ confidence limits corresponding to Wp or s 
from Equations 24 and 26 are plotted as the dashed 
curves in figures 10 and 11. These curves are hyperbolas, 
but due to the large size of our statistical samples they 
are almost straight, and so the 95~~ confidence limits 
relative to mean Yare approximately 1.96 Wp or 1.96 s. 

We see from figures 10 and 11, as well as Equations 24 
and 26, that our theory brings about a significant 
improvement. Note however that this is strictly an 
improvement in predicting the relative changes pi Po of 
failure load P due to the size effects (size of structure, 
of crack, of initial notch, etc.). The value of Po is of 
course random, too, due to the well-known random 
variation of the tensile strength. 
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The coefficient of variation of Po may be considered 

to be roughly the same as the coefficient of variation w, 

of the tensile strength I;. Assuming that the random 

errors of plPO and of Po are uncorrelated, and noting 

that the coefficient of variation Wp of deviations 

LlP from the regression line is the coefficient of variation 

of the product LJ P' Po) Po. we may get: 

wp==(w; +0.0662 +0.066 2 
(1);)1 2 

=( 1.004w; +0.066 2
)112. 

The standard error of P then is Sp == Po Wp. This would 

represent, however, unreasonably large an error when 

PIPo is small. For such cases, it is preferable to set up 

a similar statistical estimate on the basis of the standard 

deviation s;' of errors in the plot of In(P/P,) (fig. II b). 

The standard deviation of the deviations from PiP, is 

then roughly also s;., and since P, itself is randomly 

scattered, being proportional to j7i;, one must again 

properly combine Sp with the coefficient of variation of 

'§ J to get the coefficient of variation of P. 

PREDICTION OF FRACTURE ENERGY AND SOFTENING 
MODULUS 

The 22 data sets collected in table I allow us to verify 
a simple prediction formula for '§ J' Denoting the 
predicted value of t:§ J as i§ f, we get from Equation 16 
i§J= 1.5cJ da /;2jE where cJ= l-E(E, (E,<O). Now. 
calculating from Equation 16 the values of Er from the 
values of '§ J' f;, E and da (E = Eo We = 3 da), as listed 
in table I, we obtain for coefficient cJ the values listed 
in table l. They are not the same for various data, 
which is partly due to inevitable statistical scatter. A 
least-square regression analysis shows, however, that 

the values of C f in table I may be approximated by the 
simple formula cf= 1.811 +0.0143 r;. This yields: 

r§ J == (2. 72 + 0.0214 f;) f? da
; 

E 

-69.9 E 
E,== . 

56.7+ f; 
(27) 

in which f; must be in psi (psi=6895Pa). 

For all 22 data sets listed in table I, the errors of 
Equation 27, i. e., r§ J - t:§ J (with r§ f and '§ J listed in 
table. have the coefficient of variation: 

(28) 

which seems acceptable. This is however only the error 
relative to the theoretical value '§ J, which itself has a 
statistical error. What is then the total coefficient of 
variation Wp of experimental failure loads compared to 
predictions of our theory based on Equation 27? We 
may estimate it by noting that, since p2 is proportional 
to '§ J, the coefficient of variation of '§ J is about 

Wp fi (as it follows by attributing the X2-distribution 
to '§J). Because t§J='§J+(t§J-'§f)' we then have 
2 w~ == 2 w~ + w}, and substituting our previous estimate 
for Wp we have 
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Wp~(0.1622/2) + L004w; +0.0662]1/2 

=(0.1322 + L004w;)1IZ, 

provided that experimental values of /; and E are 
substituted in Equation 27. If these are unavailable, one 
may further introduce in Equation 27 the well-known 

.~mpirical approximate relations /; = 6 -I7c and 

E = 57,000 -I7c where /; = standard cylindrical com­
lpression strength in psi. This, however, increases 
Ithe error, causing that, roughly, 
• iJp ~ [0.1322 + 1.004(w~ + wic + w?)P/~\ where 
w. = coefficient of variation for compression strength, 
and W,., WEe = coefficients of variation of the deviations 
from the ratios /;1/; and E/ /~ according to the 
c~pirical relations. 

Equation 27 seems to succeed where previous 
attempts failed. The reason is, probably, that we use as 
a parameter the aggregate size, which becomes logical 
only when a crack band of finite width is considered; 
and secondly, that instead of trying to predict the 
apparent fracture energy values (corresponping to a 
certain point on the R-curve) including the initial ones, 
as measured e. g. by Naus, we interpret i§ f in 
Equation 27 strictly as the limiting fracture energy (the 
asympote of the R-curve) at which the fracture process 
zone becomes developed fully. 

Equation 27 should be particularly useful for dam 
c:oncretes. Their very large aggregate size would require 
too large fracture specimens, which has so far prevented 
measuring the fracture energy for these concretes 
directly. Yet, at the same time, dams belong to structures 
for which the use of fracture mechanics is needed most. 

<:ONCLUSIONS 

1. Fracture of a heterogeneous aggregate material 
such as concrete may be assumed to occur in the form 
of a blunt smeared crack band in which the material 
undergoes progressive microcracking characterized by 
at stress-strain relation that exhibits strain-softening. 
This hypothesis is justified by the macroscopic 
continuum smoothing of the randomly inhomogeneous 
microstructure. At the same time, this hypothesis is 
rather convenient for finite element analysis, especially 
when the fracture path is not known in advance. 

2. To model the formation and opening of micro­
cracks normal to axis z (partial cracking), it suffices to 
adjust only one term of the elastic compliance matrix, 
namely, the normal compliance for the z-direction. The 
adjustment factor, the inverse of which may be called 
the cracking parameter, varies from 1 at the start of 
microcracking (or of strain-softening) to 00 when 
continuous cracks develop (complete cracking). 

3. The inverse of the foregoing compliance matrix 
for the limiting case of complete cracking is the well­
known stiffness matrix of cracked concrete, as currently 
UlSed. However this stiffness m&trix is more complicated 
since all of the terms of the elastic stiffness matrix 
r'cquire adjustment to model complete cracking. 
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Furthermore, partial cracking (microcracking) or 
strain-softening cannot be introduced into the stiffness 
matrix directly, i. e., other than through the compliance 
matrix and its inversion. 

4. The present strain-softening formulation is a total 
stress-strain relation which is applicable only when the 
direction of the principal stress within the fracture 
process zone does not rotate significantly during the 
passage of the fracture front through a given station 
(the same assumption is implied in the i-integral 
approach) . 

5. The fracture energy is a function of the strain­
softening tangent modulus, the peak stress (tensile 
strength), and the width of the fracture process zone. 
One of the first two variables may alternatively be 
replaced by the area under the stress-strain diagram. 

6. By virtue of modeling fracture through stress­
strain relations, the triaxial effect of compression 
stresses parallel to the crack plane can be easily taken 
into account. 

7. Fractures of arbitrary direction can be modeled as 
a zig-zag crack band in a square mesh of finite elements. 
A formula for the effective width of such a band is 
given. 

8. The present theory is capable of satisfactorily 
representing essentially all fracture test data available 
in the literature, for various types and sizes of test 
specimens. The theory fits not only the maximum load 
data but also the R-curve (resistance curve) data and 
the data on strains near the crack front. 

9. For the present theory, the optimum effective 
width of the crack band front is about three-times the 
maximum aggregate size. This value corresponds to the 
size of the representative volume used in statistical 
theory of heterogeneous media, and is about the 
minimum admissible from the viewpoint of continuum 
smoothing of the random inhomogeneities (aggregate). 

10. Knowing the effective crack band width, it is 
possible to determine the fracture energy by measuring 
the uniaxial tensile stress-strain curve, including the 
strain-softening segment. 

11. For computational purposes, the width of the 
element-wide band may be adjusted if the strain­
softening modulus is adjusted so as to preserve the same 
fracture energy. Objectivity of the model with regard to 
the analyst's choice of the element size is then verified. 
However, adjustment of the strain-softening modulus is 
possible only if the element size is less than 2 r§ f E/ /;Z. 
Elements much larger than this can be used, but then 
a reduced strength limit and a sudden stress drop must 
be assumed. 

12. The length of a fully developed fracture process 
zone is about 12-times the maximum aggregate size. 

13. For very large structures (compared to aggregate 
size), the present theory assures that the energy 
consumed per unit crack band advancement equals the 
critical value of the energy release rate, and so the 
theory is, in the limit, equivalent to linear fracture 
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mechanics. For small structures, the energy release rate 
for fracture propagation is less because the full fracture 

process zone cannot develop and the strength has 

influence, too. The values of fracture energy obtained 

by fitting test data with the present method differ from 

those obtained by other methods. These fracture energy 

values for various concretes can be predicted by an 

approximate formula from the tensile strength and the 

aggregate size. The value of the strain-softening modulus 

then follows also. 

14. Based on a combined regression analysis of 17 

test series from the literature, involving 68 data points, 

the coefficient of variation of the deviations of the 

normalized maximum load data from our theory is as 

low as 6.6%, while for the linear fracture theory it is 

27%, and for the strength criterion 65%. For R-curve 

test data, the standard error of log <J' f is 8% for our 

theory, as compared to 32% for the linear fracture 

theory. Thus, a significant improvement is achieved. 
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APPENDIX I. PROOF OF THEOREM I 

The compliance relation ~ = ~ ~ for uncracked 

concrete may be written in a partitioned form: 

(29) 

Since ~ = l! -1, matrix ~ l! must be a unit matrix, and 

so: 

(30) 

in which ! =(2 x 2) unit matrix. From this relation, 

1J!+l!D33=2 or l!=-11fOil. Also 

1 q+l! 1fT = I or 1 q-11f 1fT Oi31 
= I which yields: 

(31) 

Further we need to invert Equation 29. From this 

equation, e: = l!T ~"+ C 33 Jl- 1 (1: and substituting: 

~ .. = 1- 1 ( ~ .. -l! (1 :) 

we may solve: 

(1:=Pd~:_l!T 1- 1 ~") 

Z P Bazan! - B H. Oh 

with 

PI = ( C 33 Jl - 1 -l! T 1- 1 l!) - I. 

Substituting this again into the foregoing expression for 

e:, we find: 

~a=~-l ~a_PI1-1l!(ez-l!T,2-1 ~a). 

Together with the foregoing expression for (1., this may 

be written as: 

which is the inverted form of the compliance 

formulation. The case of fully cracked concrete IS 

obtained for Jl-+ O. In this case PI -- 0, and so: 

(33) 

in which Ofr is the stiffness matrix of fully cracked 

concrete. This matrix must coincide with the stiffness 

matrix in Equation 9. Equation 31 confirms that this is 

indeed so, which completes the proof. 

APPENDIX II. TENSORIAL GENERALIZATION 
AND SMOOTH STRESS-STRAIN CURVE 

The stress-strain relations which we developed are 

applicable only when the coordinate axes are oriented 

in principal stress directions. It is however possible to 

write Equation 3 in a general tensorial form applicable 

in any cartesian coordinates. For this purpose we need 

to define a new tensor, Wij, the elements of which are 

in the principal coordinates as follows: Wij for i"# j is 0; 

Wij for i = j is 1 if (1ij is the maximum principal stress 

and is tensile, and if ep < ei}:<:;; eo; while Wij for i = j is 0 

if all the foregoing conditions are not met. Obviously 

tensor Wi) is the same as a uniaxial stress of unit value 

(and it of course transforms with coordinate rotations 

in the same manner as a uniaxial stress). As an example, 

for cracking in planes normal to X3, the 6 x 6 form of 

Wi} is: 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 I 0 0 0 
wij= 

0 0 0 0 0 0 
(34) 

0 0 0 0 0 0 

0 0 0 0 0 0 

In 
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The tangent compliance tensor from Equation 3 may 
now be generally represented as follows: 

(35) 

in which the presence of four subscripts indicates that 

C ijk ... is now treated as a tensor (of 4th rank) rather than 

a matrix, and Crjk", represents the elastic compliance 
tensor. Equation 3 may then be written in the general 
tensorial form: 

(36) 

By substituting 1, 2, 3 for i and j, one can verify that, 

in principal coordinates, this equation reduces to 

Equation 3, which proves the correctness of Equa­

tion 35. 

It is rather interesting to note that the order of 

indices ik-jm in the w-product cannot be obtained, with 
the help of the normality rule, from some loading 

mrfaces. Indeed, a quadratic loading surface would 

.illways lead to terms of the type WijWl ... , as in plasticity. 

Thus, Equation 35 (or 6 or 12) cannot be obtained as 

a special case of plasticity or plastic-fracturing theory. 

An alternative to Equation 35 which gives a smoothly 

curved stress-strain diagram was given in Reference [3]. 

Numerical calculations indicate that the representa­

lion of fracture test data is not very sensitive to the 

detailed shape of the uniaxial tensile stress-strain curve 

(Tz=F(e,J Certain types of smooth curves could 
probably be used with equal success. One suitable curve 

is: 

(37) 

in which n~2, k=8;njn, 8p =strain 8 at peak tensile 

stress j;. 
A smooth expression for J.L seems to have both 

advantages and disadvantages. While it may be more 
r,ealistic, and may also allow better convergence of 

iterations in step-by-step loading, it is unwieldy when 

tllte element size has to be larger than We since the 

downward slope cannot be easily adjusted. Moreover, 
the question of fracture energy is more difficult since 

t§ f/we may be less than the area under the uniaxial 

tc:nsile curve; see Reference [3]. 

Equation 37 may be obtained by integration of the 

evolution law: 

(38) 

This law, which is of a similar type as the damage 

evolution law used in continuous damage mechanics, 

can be directly applil:u in a finite element program for 

incremental loading (in conjunction with the differen­

tiated form of Equation 6). 
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APPENDIX III. INTERPRETATION OFDlRECf TENSILE TEST 

The fracture formation may be regarded as a strain­

localization instability. In the direct tensile test, a state 

of uniform strain in the strain-softening range is stable 

(i. e., remains uniform) if, and only if, the following 

stability condition is satisfied: 

(39) 

or: 

- [I (L ) I J- 1 

-E,(8=)< =-- - -I +-C 
E. (e%) We We 

(40) 

(see Equations (51), (52) of Reference [3], or Refer­

ences [4] and [11]). Here L = length of the tensile 

specimen, C = stiffness constant of the loading frame; 

E" E. = tangent moduli for further loading (increasing 
er) and for unloading (decreasing eo) from the same 

point P on the strain-softening branch; E" E.=mean 

moduli for further loading and for unloading from 

point P, characterizing the slopes of the straight lines 

that average the curves of further loading and of 

unloading [3]. Inequality, (39) governs incremental 

stability (stability in the small) and inequality (40) 

governs stability in the large. If inequality (39) is 

violated, small strain localization into a segment of 

length We suddenly occurs, however, complete failure 
does not occur unless inequality (40) is also violated. 

When the stress-strain diagram is bilinear and the 

unloading diagrams are straight lines with the -same 

constant slope E., instability according to both 
inequalities (39) and (40) can happen either at the peak 

stress point or never. The situation is more involved 

when the actual, curved response diagrams are 

considered. As the strain e: is increased, either 

inequality (39) or inequality (40) becomes first to be 
violated. If (39) is first, the strain-localization (failure) 

is gradual, static. If inequality (40) is first to be violated, 

and inequality (39) is still satisfied, failure cannot 
happen statically; however, if inequality (39) becomes 

satisfied later, failure happens dynamically, as an 
instability of snap-through type. This is what is usually 

observed in tensile tests. The precise point of instability 

and the nature of instability (static, or dynamic snap-

through) depends on the four functions E (8:), E (e=), 

E. (e=) and E (e:). 

From (39) and (40) we see that instability is impossible 

if C -> 00 (very stiff loading frame) and L = We' Under 

these two conditions the complete tensile stress-strain 
diagram can be always measured, and the strain will 

not localize within a portion of the specimen length 

(except for the statistical scatter of the microstrain). In 

practice. one might not know in advance the value of 
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We and the necessary frame stiffness C. However, as 
long as the measurements can be carried out one is 
certain that stability condition (40) holds, which means 
that no large strain localization can be taking place. 

Consequently, the strain obtained from the elongation 
of the whole specimen is, essentially, the strain 
corresponding to the tensile stress-strain diagram even 
when L> We. Essentially so, because a small strain 
localization increment could have happened, unnoticed, 
statically, due to violation of inequality (39). However, 
such strain localizations can be only small since 
otherwise failure would have occurred. 

If one accepts that a stress-strain relation, rather than 
a stress-separation displacement relation, is a basic 
material property, then the line crack models, such as 
that of Hillerborg, et at.'s, are equivalent to w. - O. In 
that case, the right-hand side of Equation (39) is zero, 
which means that this stability condition is violated for 
any negative Et • This further means that strain-softening 
would be unobservable, would not exist. From the fact 
that it does exist and can be measured in uniaxial 
tension. we must therefore conclude that either (1) We 

is finite and the line crack models are not quite realistic, 
or (2) a stress-separation displacement relation, rather 
than a stress-strain relation, is a basic material property. 

NOTATION 

ao, a, 

Lla, 

B, 

~, 

C/o 
g, 
d., 

EC1 

E" 
f~, 

H, 

h, 

K. 
L, 

if' 

initial and current crack length, respectively; 

extension of crack; 

thickness of specimen; 

compliance matrix; 

slope of 0'= - e f curve; 

material stiffness matrix; 

maximum aggregate size; 

Young's modulus of concrete; 

tangent strain-softening modulus; 

tensile strength of concrete; 

strain energy release rate; 

strain energy release rate based on linear 
theory; 

beam depth; 

finite element size; 

stress intensity factor; 

span of beam; 

length of fracture process zone; 

maximum bending moment; 

bending moment for uncracked section 
based on strength; 

measured P max; 

maximum applied load; 

theoretical P max; 

failure load based on strength criterion 
applied to uncracked cross section; 

Z. P Bazant - B. H. Oh 

s, standard error for vertical deviations from 
the regression line; 

We, width of fracture process zone; 

:1, overall direction of zig-zag crack band; 

I> f, crack opening; 

w, coefficient of variation of the errors I vertic~d 
deviations from regression line); 

ef' fracture strain (the additional strain caused 
by the opening of microcracks); 

e", e}., e:, principal strains; 

eo, strain where the stress is reduced to zero; 

0'., nominal maximum bending stress for the 
net cross section; 

0'", O'y, 0':, principal stresses; 

v, Poisson's ratio; 

/J., cracking parameter. 
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REsUME 

Theorie de bande de fissuration pour la rupture du 
beton. - a n presence une theorie de la rupture pour un 
materiau heterogene Ii granulats qui montre une 

deformation avec radoucissement cause par microfissu­
ration et qui renferme des granulats dont les dimensions 
peuvent n' etre pas petites par rapport Ii celles de la 

structure. On ne considere que Ie mode /, La rupture est 
modelisee comme une bande de microfissures paralleles 

Ii front abrus, ce qui se justifie par Ie caractere aleatoire 
de la microfissuration. On deduit des relations simples de 

contrainte/deformation triaxiales qui modelisent des 

deformations Ii radoucissement et decrivent r effet de la 
microfissuration graduelle dans la zone de fissures 
paralleles. On demontre qu'U est plus facile d'utiliser les 
matrices de compliance que de rigidite et qu'j[ suffit 

d' ajuster un simple element diagonal de la matrice de 
compliance. On verra qu'li la limite cette matrice pour 
une fissuration continue est identique Ii finverse de la bien 
connue matrice de rigidite pour un materiau parfaitement 
fissure. Les proprietes de rupture du materiau ne sont 
caracterisees que par trois parametres: energie de 

rupture, limite de resistance uniaxiale et largeur de la 
bande de fissuration (zone au intervient la rupture), Ie 

module de radoucissement de deformation etant une 
fonction de ces parametres. On donne aussi une methode 
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pour determiner l' energie de rupture d' apres les relations 

completes contrainte/deformation mesurees. On peut 
prendre en compte les effets sur la rupture des contraintes 
triaxiales. 

La theorie se veri fie au moyen de comparaisons avec 
les nombreux resultats experimencaux pub lies. On obtient 
de bonnes concordances tant pour les donnees de charges 
maxim ales que pour les courbes de resistance; les valeurs 
des trois parametres de materiau en jeu, soit r energie de 
rupture, la resistance, la largeur du front de la bande 
fissuration sont determinees d' apres les resultats d' essai. 

II apparait que la valeur optimale du dernier parametre est 

d' environ trois fois la dimension d' un granulat, ce qui se 
justifie egalernent comme Ie minimum acceptable pour 

une modelisation d'un milieu homogene continuo On 
indique aussi la methode pour utiliser la theorie dans un 
code d' elements finis et les regles pour atteindre Ii 

r objectivite des resultats Ii regard du choix de la 
dimension d'un element par ranalyste. Enfin, on derive 
une formule simple de prevision de r energie de rupture 
d' apres la resistance en traction et la dimension du 
granulat, ainsi que du module d' attenuation de deforma­
tion. L' analyse statistique des erreurs met en evidence un 

progres radical sur la theorie de la rupture linea ire, ainsi 
que sur la tMorie de la resistance. Ainsi etabLit-on 

solidement La possibilite d' appliquer au beton la mecanique 
de la rupture. 
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