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In order to accurately identify and quantitatively calculate the surface cracks of rock mass under SHPB impact loading, an
automatic crack detection algorithm was proposed and evaluated by the experiment. In SHPB experiment, cracks on the rock
surface can effectively reflect its current state and better analyze the damage process. Firstly, the SHPB system was used to impact
12 groups of rock specimens under different impact velocities. A high-frame camera with 50,000 FPS was used to capture the
damage process of the rock mass; using the manual annotation method, we got a dataset of SHPB damage images including a total
of 310 original images and 310 corresponding cracked annotations. Secondly, a deep convolution network model named
CrackSHPB was designed based on a deep learning algorithm. ,e algorithm can automatically identify the crack on the rock
surface during impact damage process and further provide a quantitative result of cracks, crack area. Finally, after the crack on the
rock surface in each frame image was identified automatically through the model, cracks were quantitatively analyzed by the
proposed algorithm, the growth rate of cracks was calculated, and their evolution law was concluded. ,e crack identification
algorithm proposed in this paper can provide a more accurate quantitative method for rock damage by cracks on the rock surface,
and evolution law can further explain the failure process of rock at high strain rate.

1. Introduction

Split-Hopkinson pressure bar (SHPB), developed by Kolsky
in 1950, is an experimental device that can effectively study
the constitutive relations of materials and effectively analyze
the dynamic mechanical properties of rock materials [1, 2].
By using a waveform collector to record the incident, re-
flected, and transmitted waves on the input and output rods,
the dynamic mechanical stress-strain relationship of the
experimental materials is obtained via a theoretical formula.
Many researchers have employed this method to study the
dynamic mechanical properties of rock specimens and
achieved great research results [3–6].

In recent years, with the development of microelectronics
technology, high-frame camera technology has become
popularized, and more and more researchers have adopted
high-speed camera to record the entire process of rock failure.
,ey studied the fracture characteristics of rock mass by the
law of surface crack propagation. Zhao et al. [7, 8] studied the
characteristics of dynamic tensile failure of coal body by a

Brazilian disk splitting experiment on an SHPB impact-
loaded coal specimen. ,rough digital speckle image tech-
nology and a high-speed camera, the tensile strain field of the
rupture of the rock specimen was analyzed preliminarily.
Huang et al. [9] carried out a series of uniaxial compression
tests about rock-like material with two unparallel fissures, in
order to research the effects of preexisting fissures on the
mechanical properties and crack coalescence process. ,e
photographic monitoring was adopted to capture images to
investigate the crack initiation, propagation, and coalescence
process. Blair and Cook [10] proposed a new nonlinear rule-
basedmodel for the fracture in compression of heterogeneous
brittle materials such as rock is presented, and the model
produces nonlinear stress-strain behavior similar to that
observed in laboratory tests through the image. Pan et al. [11]
invented an algorithm of a rock discontinuous cellular au-
tomaton (RDCA) for modeling rock fracturing processes
from continuous to discontinuous deformation under me-
chanical loading. ,e stability of the method is confirmed by
the observation of crack propagation in several mechanical
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experiments. Li et al. [12] presented experimental and nu-
merical studies on the feasibility and validity of using pris-
matic rock specimens in the split-Hopkinson pressure bar
(SHPB) test. ,e research results show that it will be possible
to investigate the crack propagation and failure mechanisms
from the flat side surface of the prismatic specimens by high-
speed imaging technique in SHPB tests. Bai and Liu [13] used
the algorithm of Wavelet transform to detect the edge of CT
image and quantitatively measured the growth of rock crack
to forecast the status of mine roof.,ey all identified cracks in
rocks with digital image processing technology and studied
the mechanical properties of rock.

However, the identification of surface cracks in rock mass
is very challenging: (1) the gray value of a crack is very close to
the gray value of the surface of the rock mass, which makes it
very difficult for us to use the traditional method, which is
based on threshold segmentation in traditional image pro-
cessing algorithms for crack identification; (2) the surface of
rockmass often contains a large amount of background noise,
making the texture structure very complicated to analyze; (3)
when the rock mass is damaged by impact, the crack mor-
phology that is produced varies in topological structure, and it
is very difficult to provide an exact definition of a crack.

In recent years, deep learning technology has made
breakthrough progress in many fields [14]. Especially in the
field of computer vision, the deep learning method has
achieved satisfactory results in many image recognition
competitions and even exceeded the level of human recog-
nition. In short, deep learning is a specific subfield of machine
learning and is vaguely inspired by information processing
and communication patterns in biological nervous systems. It
has the flowing features: (1) use a cascade of multiple layers of
nonlinear activation units for feature extraction and trans-
formation; (2) learn multiple levels of representations that
correspond to different levels of abstraction. From a whole
prepositive, deep learning can be classified into the flowing
three categories: supervised, semisupervised, or unsupervised.
Compared with other traditional image processing algorithms,
it can better handle complex problems under real conditions
[15]. For the identification of sandstone surface cracks, due to
the impact damage of SHPB, the cracks in each frame of
sandstone specimen are changing, and the surface cracks have
thousands of morphological characteristics. ,erefore, the
traditional crack detection algorithm cannot perform an ac-
ceptable result for identifying cracks on rock surface under
impact loading. ,erefore, in this paper, a CrackSHPB model
was proposed and evaluated by the experiment data captured
by the camera. Finally, we study the damage law of rock under
impact loading by using the identified cracks.

2. Experiment Work

2.1. Experimental System. ,e experimental system used the
ϕ50mm SHPB dynamic load system device in the State Key
Laboratory for Geo Mechanics and Deep Underground
Engineering at China University of Mining and Technology
(Beijing). As shown in Figure 1, the SHPB experimental test
systemmainly includes the following parts: an impact power
system (mainly high-pressure gas cylinders and bullets),

impact rods, input rods, output rods, absorption rods,
dampers, speed test systems, parallel light sources, strain
gauges, highly dynamic strain gauges, waveform recorders,
high-frame-rate cameras, and video storage systems. ,e
experimental camera model used in the lab was Photron
FASTCAM SA-5 with a resolution of 512∗ 272 with an FPS
setting of 50,000. ,e bar used in this SHPB system is a steel
pressure bar with 206GPa elastic modulus. In addition, the
length and diameter of the input and the output bar in the
system are both 2000mm and 50mm, respectively.

2.2. Rock Samples. A picture of the test specimens is shown
in Figure 2, and the damage image of a specimen after SHPB
impact loading is shown in Figure 3. According to the
method of production recommended by the ISRM [16], the
test piece is made into cylindrical plugs with a size of
ϕ50 × 25mm. ,e rock specimens used in this experiment
were made from a large piece of rock by core, cutting and
grinding process. And the large rock is produced in a quarry,
Fangshan district, Beijing. In addition, in order to best satisfy
the assumption of uniformity and remove friction, the end
face and the circumference of each sample were precision
machined and polished to make the ends nonparallel to be
less than 0.02mm and perpendicular to the longitudinal axis
within 0.25°. Finally, the Vaseline lubricant is evenly applied
to the contact surface of the test piece and the bar.

As illustrated in Figure 3, it is a postmortem of fractured
image of rock specimen under 4.687m/s. It can be found that
the crack first appeared in the center of the specimen and
propagated along loading axis direction. It is subjected to the
tensile failure, and the crack is called main crack. Besides that,
there are some cracks near the contact of the specimen which
is called secondary crack. And it caused by the shear failure
due to the further compression between the bar and speci-
men. Finally, the rock specimen is split into two parts along
the impact loading direction (center line of specimen).

In the study, RatSnake software was used to mark the
cracks in the image at the pixel level, which was an efficient
software for image annotation [17, 18]. It can help users to
quickly collect the regions of interest in the image, then export
the complementary images of these regions to the computer,
and annotate the different regions at the same time. First, we
import an image to the software and set grid size. ,en, we
manually select the pixel values that belong to the crack and
marked them with green color. Finally, we export the
binarized image of cracks which is shown in Figure 4.

After labeling the image for the impact damage of each
specimen, the recorded data need to be divided. In the ex-
periment, 12 impact fracture experiments were performed on
the same kind of rock samples, and 11 were successfully
completed. In a traditional machine learning or deep learning
application, the dataset usually splits into training dataset and
testing dataset [19]. Specifically, the model is initially fit on a
training dataset which used to fit the parameters. ,e testing
dataset is, therefore, a set of examples used only to assess the
performance.,erefore, three sets of videos are selected as the
training set, and the remaining eight sets are used as test sets.
Dataset establishment process is shown in Figure 5.
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Specifically, taking three videos as input data for the model
training allows the model to learn complex patterns of cracks
like humans. In a traditional machine learning task, the
training dataset is used for fitting the parameters of the deep
neural network and testing dataset is used for verify themodel
capability. As illustrated in Figure 6, the loss curve can reflect
the training process; while exceeding a certain number of
training steps, the decline rate of the curve becomes very slow
which means the model has been well trained. Since the

annotation process is very time-consuming, we want to utilize
minimal data to train a model. According to the method
discussed above, a total of 74,206 images represent cracks, and
58,467 images represent noncrack images. ,e size of all
images is set up to be 28× 28 pixels.

2.3. Experimental Procedures. ,e detailed experimental
steps are as follows. (1) Cut, polish, and process the collected

Parallel light source

DamperStrain gauges

Speed test system

Impact power system

TTL in

Waveform acquisition system

Video capture system

Figure 1: Schematic diagram of the SHPB experimental system.

(a) (b)

Figure 2: Diagram of the rock specimens.

Figure 3: Destruction process images for rock specimen under SHPB impact damage.

Figure 4: Labeling result for rock surface.
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test pieces into standard patterns. (2) Affix the strain gauges
on the input and output rods and connect the highly dy-
namic strain gauges to the waveform recorders. (3) Fix the
position of the rock specimens. Because the rock specimens
are susceptible to slipping when subjected to an SHPB
impact; it is necessary to evenly apply Vaseline to the contact
portion of the SHBP rod and the rock specimens before the
experiment. (4) Connect the trigger to the speed test system
and the video acquisition system. (5) Adjust the power
system and perform the first impact damage. When the
destruction is complete, check the data in the waveform
recorder and video acquisition system. (6) According to
the previous steps, the impact destruction experiment is
performed in sequence and the impact velocity of the bullet
changes with the different impact volume of the bullet. ,e
experimental process was repeated several times.

As shown in Figure 7, we present six sets (bxy1 to
bxy6) of experimental data including incident, trans-
mitted, and reflected waves according to the following
equation:

K �
ε

U
, (1)

where ε is the strain, U is the voltage measured by the
waveform recorders, and K is the calibration coefficient. In
specific, before the experiment, we perform an impact
calibration test without the test piece, obtain the strain ε
according to the impact velocity v, and compare with the
voltage value U. And the K value obtained by experimental
measurement is 0.000194792.

3. Methodology

3.1. Image Filtering for Rock Surface. As illustrated in the
Figure 8(a), the lower half of the image has many discrete
calibration points (as shown in the red region). In our work,
we use a nonlocal mean filtering method [20] to remove
these points and remain original cracks as much as possible.
And the filtering result is shown in Figure 8(a).

I(i, j) �
1

9
∑1
m�−1

∑1
n�−1

I(i +m, j + n), (2)

where I is the image and i and j represent the location of the
center pixels of each block (in this paper, we set block 5 × 5
pixels).

3.2. CrackSHPBModel. ,e overall structure of CrackSHPB
designed in this paper is shown in Figure 9. Each section will
be described in detail below. For an input image with 272 ∗
512 pixels, we perform a sequential scan from left to right
and top to bottom for each pixel and select a block with 28 ∗
28 pixels (Figure 9 yellow block), and then we input this
block to the CrackSHPB model. If this block belongs to
crack, the model will output “1,” otherwise it will give “0.”
,erefore, we sum all pixels with “1” as the crack area and
mark them with red color.

,e largest part of CrackSHPB is the convolution kernel.
,e convolution operation is a kind of local operation, which
can effectively extract various local information of a two-
dimensional image [21]. ,e traditional crack identification
method is mainlymanual design of convolution kernels. After
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Figure 5: Dataset creation process.
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Figure 6: Loss curve in training process for CrackSHPB model.
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the convolution operation is performed on the image, the
crack recognition effect is achieved. However, the disad-
vantage of this method is that the performance of the algo-
rithm depends entirely on the design of the convolution
kernel because not all cracks can be recognized by manually
designed convolution kernels. Not only can we learn a single
feature, but similar information such as texture, direction, and
gray value can be well represented. For a 2-dimensional input
image I, we use a convolution kernel K that is also 2-

dimensional, and the calculation formula for image convo-
lution is

S(i, j) �∑
m

∑
n

I(m, n) · K(i−m, j− n). (3)

,e activation function is mainly used to increase the
nonlinear expression capability of CrackSHPB. Since the
linear layer is added after the linear mapping, it cannot be
fitted to a higher-order function. ,erefore, the activation
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Figure 7: Incident, transmitted, and reflected wave signals of bxy1 to bxy6.
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function layer is sometimes referred to as a nonlinear
mapping layer. ,e traditional activation function uses
Sigmoid. However, in recent years, ReLU has been proved to
be able to better train the model.,e CrackSHPBmodel uses
ReLU as an activation function [22].

ReLU: y � max(0, x). (4)

,emain role of the loss function is to address the case in
which the forecast output of the sample training output
deviates from the actual result [23]. ,e deviation is eval-
uated, and the optimization algorithm uses it to learn the
parameters that minimize the value of the loss function. In
general, the smaller the value of the loss function, the higher
the robustness of the model that we develop. ,e loss
function is usually expressed by the following formula:

θ∗ � argmin
θ

1

N
∑N
i�1

L yi, f xi; θ( )( ) + λΦ(θ), (5)

whereN is sample numbers, yi and f(xi; θ) are the true and
predict values, and λΦ(θ) is a regularization parameter that
prevents overfitting.

In the design of the CrackSHPB model, the cross-
entropy loss function is chosen (cross-entropy) [24]:

Lcrossntropy � −
1

N
∑N
i�1

log
ehyi∑mj�1ehj . (6)

After the objective function has been designed, the
optimization method must be chosen for solving the
above equations. Because the definition of the damage
function in the deep learning network is very complicated
and there is no analytical solution to the optimization
problem, we must find the optimal solution using nu-
merical analysis methods. ,e stochastic gradient descent
(SGD) is a simple but very effective method. For a tra-
ditional optimization problem, it can quickly find the
minimum value of the function. In addition, SGD has
been successfully applied to large-scale and sparse ma-
chine learning problems often encountered in text cat-
egorization and image classification [25]. ,erefore, in
this paper, we use the SGD method to train the
CrackSHPB model.

(a) (b)

Figure 8: Image result after nonlocal mean filtering.
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Figure 9: CrackSHPB model and crack identification flow chart.
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3.3. Training Result. After designing the structure of the
model, the training data that were prepared in the first step
are input into the model for training. When evaluating the
CrackSHPB model, the value of Lcross−entropy in equation (5)
needs to be observed at each time. When Lcrossntropy falls
below a specified threshold, the CrackSHPB model is con-
sidered to be converged. To prevent overfitting during
training, the original data are divided into training set (76
images with 272× 512 pixels) and testing set (234 images
with 272× 512 pixels). ,e curve of the training set and the
set-loss function of the entire training process are shown in
Figure 6.

From Figure 6, it can be concluded that the error values
of the CrackSHPB model in the training set and the veri-
fication set all stabilize at approximately 5%, indicating that
the CrackSHPB model has converged.

3.4. Parameter Visualization. As shown in Figure 10, to
better analyze the calculations that were performed by each
layer of the convolution kernel in the CrackSHPB model, a
set of convolutions are randomly selected for visualization.
On the left side of Figure 10 is the input image of a group of
cracks. ,e information that is extracted from each con-
volution layer is different: some layers focus on the ex-
traction of crack morphology, whereas other layers focus on
the feature extraction of crack gray values.

4. Results and Discussion

4.1. Evaluation Index. In the field of artificial intelligence or
machine learning, the confusion matrix [26] is a table layout
that is used to visualize the results of predictive classification.
Table 1 shows a confusion matrix which each row represents
the label of the prediction instance, and each column

represents the label of the actual sample that allows visu-
alization of the performance for a crack detection algorithm.

We can think of the identification of surface cracks in
rock as the two-category problem of judging each pixel in the
image, whether the current pixel belongs to a crack or not.
,erefore, there are 4 different cases for each pixel: (1) this
pixel belongs to a crack, and the test result is also a crack.,e
judgment result is true positive (TP); (2) this pixel belongs to
a crack, but the detection result is noncrack. ,e judgment
result is false negative (FN); (3) this pixel belongs to non-
crack, and the detection result is also noncrack. ,e judg-
ment result is true negative (TN); (4) this pixel belongs to
noncrack, but the detection result is a crack. ,e judgment
result is false positive (FP)

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1score �
2 × precision × recall

precison + recall
.

(7)

Among them, Precision indicates how many of the
identified cracks are real failure cracks, and Recall indicates
how many cracks we detected from the actual rock mass
destruction images that accounted for the actual crack ratio.
In general, Precision and Recall are contradictory indicators.
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Table 1: Confusion matrix for crack identification.

Actual crack Actual noncrack

Predicted crack TP FP
Predicted noncrack FN TN
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For example, identifying all pixels as cracks in the recog-
nition process will make Recall reach 100%; however, this
will make Precision very low. In contrast, if only a few cracks
are identified, this will result in a very high Precision;
however, Recall will be very low. Since errors will inevitably
result in the labeling process, it may be appropriate to in-
crease the allowable error from 1 to 5 pixels in the actual
calculation.,at is used to determine when the current pixel
is predicted to be a crack. If the real image has a crack in its 1

to 5 pixels range, the current pixel’s prediction result is a true
result. ,erefore, this article set the allowable error to 3
pixels for testing.

4.2. Crack Detection Results. In the experiment, there were
11 groups of sandstone specimens obtained for impact
destruction video, and 3 sets (bxy1, bxy3, and bxy5) were
used as training data to obtain the CrackSHPB model.

Table 2: ,e crack detection result of CrackSHPB model.

Number Precision Recall F1score

bxy2 0.872 0.902 0.884
bxy4 0.966 0.845 0.900
bxy6 0.821 0.853 0.834
bxy7 0.907 0.872 0.888
bxy8 0.936 0.878 0.905
bxy9 0.912 0.863 0.887
bxy10 0.940 0.864 0.899
bxy11 0.808 0.913 0.853
AVG 0.895 0.874 0.881

Figure 11: Example of crack identification results.
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,erefore, the remaining 8 sets of video images are used as
test sets to verify the recognition effect of the CrackSHPB
model. ,e detection results are shown in Table 2.

Due to space limitations, a set of SHPB impact video
recognition results at different stages are given. As shown in
Figure 11, the left column represents the original image of
the specimen when damaged by the dynamic impact, the
right column is the corresponding recognition result, and
the corresponding frame number and the current crack
quantification result are, respectively, given. ,erefore,
cracks can be quantified by using the number of recording
pixels.

To visually demonstrate the effect of identifying cracks
by CrackSHPB, some identification images with the quan-
tized result in pixel-level are presented in Figure 11.

Besides the above evaluation index, we also compute the
area under the receiver operating characteristic curve (ROC
AUC). ROC curve is a commonly used graph that sum-
marizes the performance of a classifier overall possible
thresholds. For a ROC curve, the closer it is to the upper left
corner, that is, the closer the AUC value is to 1, the better the
classifier is [27].

As shown in Figure 12, we can obviously find that the
curves are all in the upper left of the coordinates and the
mean of ROC AUC is close to 0.840, suggesting that the
model has a good classification effect for crack pixel and
noncrack pixel.

4.3. Crack Propagation Rate. After cracks are identified and
quantified, and it is possible to accurately analyze the rate of
increase of cracks in rock specimens when subjected to
impact damage. Figure 13 shows the variation curve of the
crack quantification result when bxy10 is broken.

From Figure 13, we can see that the cracks grow fastest in
the 6th to 7th frames of the specimen, and the cracking
occurs at that time; after that, the crack growth trend of each
frame meets the linear condition, and the growth rate is
371.42 pixels/frame. In specific, the blue scatter point rep-
resents the crack area of frames, and then we employ a linear
regression technique (y� ax+ b) to fit these points. ,ere-
fore, we adopt the slope “a” as the propagation rate of the
crack area. Table 3 shows the results of crack recognition and
quantification of cracks by the CrackSHPB model
throughout the experiment.

4.4. Crack Evolution Law. In the process of impact failure,
with the increase of strain, cracks appear at the center of the
disc when its maximum stress value reaches the tensile
strength of the rock mass. As the strain of the test piece
continues to increase, the crack in the center of the test
piece continues to expand in the axial direction and the
main crack develops. Before the main crack penetrated,
secondary cracks began to appear at both ends of the test
piece due to the compressive and shear stresses acting on
the contact part between the test piece and the rod. ,e
secondary crack propagates along the two ends of the test
piece to the inside, and finally breaks through with the main

crack to form a broken surface, leading to complete de-
struction of the test piece. And the image of the crack
penetrating and the image after impact damage are shown
in the Figures 14 and 15.

5. Conclusions

In this paper, we set a SHPB experiment test system with
high-frame-rate camera, and 12 groups of rock specimens
was damaged under different impact velocities and the
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damage process video of the rock mass was captured by the
camera. ,en, we proposed a CrackSHPB model to detect
cracks on rock surface based on deep learning. Finally, we
analyze the evolution law and damage process of rock at high
strain rate. ,e following conclusions can be made through
our experimental study:

(1) ,e CrackSHPB model, established based on the
deep learning method, can effectively identify cracks
on the surface of sandstone. Accuracies of 89.5%,
87.4%, and 88.1% were obtained in terms of
Precision, Recall, and F1score, respectively.

(2) ,rough the CrackSHPB model, the cracks on the
surface of rock can be identified at the pixel level, and
the accurate crack quantification result can be ob-
tained by counting the pixels.

(3) When the sandstone specimen is damaged by impact,
the crack growth rate of the sandstone specimen after
crack initiation accords with the linear model.

(4) In the impact damage process, the main crack first
appeared in the center of rock specimen and then
expanded to the two ends with secondary cracks
which randomly distributed.

Table 3: Crack quantitative results.

Number
Impact

velocity (m/s)
Captured

frames (frame)
Started

crack frame (frame)
Crack propagation
rate (pixels/frame)

R2

bxy1 4.687 26 6 299.50 0.98
bxy2 5.150 26 11 332.30 0.99
bxy3 4.443 23 11 417.29 0.96
bxy4 4.385 23 10 348.49 0.99
bxy5 3.377 27 15 209.85 0.99
bxy6 3.167 82 47 59.75 0.94
bxy7 3.511 19 6 295.40 0.99
bxy8 3.246 32 21 370.22 0.99
bxy9 3.869 20 8 423.64 0.99
bxy10 4.307 16 6 371.42 0.98
bxy11 5.502 16 11 676.14 0.99

Figure 14: Images of the crack penetrating.
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