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In this work we assess the effectiveness of Electrical Impedance Tomography for determining the 
presence and the location of an interior crack from boundary measurements. Electrical Impedance 
Tomography uses boundary voltages and currents to image the interior of a region. We collect the 
data needed for this nondestructive evaluation technique by laboratory experiments and apply two 
numerical inversion algorithms to the data. Our experiments show that the data collected are 
sufficient to give good estimates of crack locations and crack sizes. 
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1. I N T R O D U C T I O N  

The goal of this work is to demonstrate that Elec- 
trical Impedance Tomography is a viable approach to 
crack determination. Our findings, together with those 
of other researchers, <2,3,6,s) lead us to conclude that this 
alternative procedure compares well with other more 
standard techniques of nondestructive testing31°~ With 
Electrical Impedance Tomography, one attempts to im- 
age the interior of  a object by performing steady state 
electrical measurements on its boundary. The image pro- 
duced corresponds to the conductivity distribution inside 
the object; the data used are current and voltage mea- 
surements. 

To be precise, let us consider the following two- 
dimensional model problem. A circular specimen is to 
be inspected, the goal is to detect the presence of a single 
interior crack, and if a crack is present, to determine its 
location and size. To perform the inspection, we attach 
n electrodes to the surface of the specimen, as shown in 
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Fig. 1. To generate the data needed we let steady state 
current in through electrode i and out through electrode 
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Fig. 1. A schematic diagram of the experimental setup (cross-section). 
The object has an interior crack, which is to be determined. A total 
of n = 12 electrodes are attached to the boundary of the object. In 
this example, current is flowing in at electrode i = 1 and out at 
electrodej = 3. Voltage drops across adjacent electrodes, Vk+ 1 - Vk 
are collected for k = 1,...,12. 
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j .  Voltage drops across all adjacent pairs of electrodes 
are measured. Thus for a single set of measurements, 
the collected data consist of 

1. Indices i and j 
2. Current passing through i and j ,  I 
3. Voltage drops AV~ = Vk+ 1 --  Vk ,  for k = 

1,2, . . . ,n. 

Several different sets of measurements will be carried 
out to aid in the reconstruction (we know theoretically 
that we should perform at least two sets of measure- 
ments.(9)) 

In this work we will study the performance of two 
reconstruction algorithms. The first algorithm recon- 
structs a smooth conductivity distribution from the ex- 
perimental data. It is based on a backprojection procedure, 
first developed by Barber and Brown. (2,3~ The second 
algorithm (iteratively) reconstructs a crack in the shape 
of a line segment. This iterative algorithm was first de- 
veloped by Santosa and Vogelius for the reconstruction 
of a single linear crack, (13~ it has since been extended 
by Bryan and Vogelius to perform the reconstruction any 
number of linear cracks9 Both the backprojection al- 
gorithm and the crack finding algorithm will be de- 
scribed in some detail in Sections 2 and 3 of this paper. 

For the first of our reconstruction algorithms we 
view the entire conductivity distribution inside the do- 
main 12 as the unknown; let us denote it by tr(x). For 
the second reconstruction algorithm we formally take 
o-(x) of the form 

% if x E 1~\~ (r(x) [ i fx  E ~/ 

where % is known and we view the line segment ",/C f~ 
as the unknown. The line segment 3, represents a "per- 
fectly conducting" crack. We can also treat the case of 
a "perfectly insulating" crack which formally corre- 
sponds to the conductivity distribution 

/ 0"1 if x E fI\~/ 
6(x) 

t o i fx  E 3' 

Indeed, if o1 = 1/Cro (in numerical value), it is very easy 
to see that the measured data corresponding to ~r and 6" 
are related by a simple duality: the current data for 6" 
represent voltage drop data for o', the voltage drop data 
for 6" represent current data for or. (4) 

The reconstruction algorithms will be applied to ex- 
perimental data that are collected. A detailed description 
of the laboratory setup is given in Section 4. In a few 
words, the setup consists of a long cylindrical tank with 

12 electrodes on its side. The electrical field in the tank 
is thought of as being predominantly two dimensional. 
To simulate cracks we immerse strips of metal vertically 
in the tank when filled with a homogeneous solution 
(water). Section 5 contains the results of application of 
our reconstruction methods to the experimental data. 

We mention a third algorithm due to Andrieux and 
Ben Abda. (1) Their algorithm can be applied to locate a 
single linear crack (or a number of linear cracks that all 
lie on the same line). This novel approach is direct and 
very simple insofar as the location of the line is con- 
cerned. The determination of the exact location of the 
crack(s) on this line is still simple, but somewhat less 
direct, since it requires the determination of the support 
of a function given by an infinite series. One drawback 
of this algorithm is that it does not seem to have a natural 
extension for the reconstruction of multiple cracks that 
are not all lying on the same line. The direct determi- 
nation of a single line, by the method of Andrieux and 
Ben Abda, could however form a very effective initial- 
ization step for an iterative algorithm (such as ours), 
even when it comes to the determination of multiple 
cracks. We have not so far utilized their method on data 
generated by our experiments. The main purpose of this 
paper is to demonstrate that the data collected by Imped- 
ance Imaging is sufficient in order to allow effective 
reconstruction. We are planning to do a comparative 
study of the relative effectiveness of different techniques 
for the crack determination problem. 

2. A BACKPROJECTION IMAGING 
ALGORITHM 

With the backprojection algorithm, we attempt to 
reconstruct a smoothly varying conductivity distribution 
cr (x) from the boundary data. In contrast to the algorithm 
which will be discussed in the next section, this will not 
produce a line segment approximating the location of the 
crack. Rather, it will produce a variable conductivity 
distribution which has a high value for the conductivity 
near the crack. With this method, we can at best obtain 
a blurry image of the crack. However, the method is 
quite general and can, in principle, image more compli- 
cated internal structures. (2,3,12) Our interest in this al- 
gorithm is twofold: (1) we wish to assess the viability 
of such an algorithm for crack detection, and (2) since 
this algorithm is very efficient, we also wish to evaluate 
its usefulness as a tool to give a rough initial guess for 
the crack location. 

The model equation for our problem is a divergence 
form elliptic equation. Let u be a steady state voltage 
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Fig. 2. A diagram describing the conformal mapping W(~(z)) = U(x,y)+jV(x,y). The unit circle ~z[ <_ 1 is mapped to a strip IF] <_ 1/2. Lines of 
constant U in the W-plane correspond to equipotentials for the background field; lines of constant V are equi-current lines. In this diagram, current 
is flowing into the electrode at A and out of the electrode at B. The points A and B have been mapped to infinity as shown. 
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Fig. 3. Construction of the weight function wO)(x,y) is illustrated in 
this figure. The input electrode is at A, which is at angle 0 = 0e, and 
the output electrode is at B. The angle between A and B is kept fixed 
for our data collection. To calculate the weight wa)(x,y) at P,  we draw 
the tangent to the equipotential of the background field through P at 
the point P. The weighting w a) is dp/d0(0i). 

potential field in the domain 1) (which here is the unit 
disk). Then u satisfies 

V • o'Vu = 0 in gt (la) 

The type of potential we consider here is created by 
letting current flow in at electrode i and out at electrode 
j (see Fig. 1). We refer to these two electrodes as active. 

Let 0, and 0j be the angular locations of  these electrodes. 
The applied current is modelled by the Neumann bound- 
ary condition 

0u [ 
o r - -  (r, O) = X(0,Oi) - ×(O,Oj) ( lb) 

Or r=l 

(in polar coordinates (r,0)). The function X(0,0i) is de- 
fined to be 

l l / h  if 10 - 0it < h/2  
x(O,Oi) to else 

so that the angular extent of the electrode is h radians. 
The potential, u, is unique up to a constant. To make it 
unique we normalize it by the requirement that 

I ~  u(1,0)d0 = o 

Our additional data for this particular experiment consist 
of the voltage drops across all adjacent electrodes, i.e., 

u(1,0k+l) - U(1,0k) = &  for k = 1 , . . . , n  

We wish to find cr (r,0) given such measured voltage 
drops for some specified choices of active electrode pairs. 

We make two simplifying assumptions: 

(i) the conductivity o- has the form cr = 1 + 80" 
where 8o  is small in comparison to unity and 
vanishes in a neighborhood of the boundary 
{r = 1}; 

(ii) the angular width of  the electrode, h, is very 
small so that we may effectively model ×(O,Oi) 
in (lb) by a delta function. 
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Under these assumptions, the voltage potential u can be 
written in the form 

u(r,O) = U(r,O) + 8u(r, 0) with 8u << U 

The field U will be referred to as the background field, 
while the field 8u will be called the perturbational field. 
Inserting this decomposition into (la),(lb) and collecting 
terms of the same order of magnitude, we obtain 

AU = 0 r < 1 (2a) 

-~rU(1,0) = 8(0 - 0i) - -  8 ( 0  - -  0 j )  (2b) 

The perturbational field 8u satisfies 

ASu = - V g o ' ' V U  r < 1 (3a) 

08u 
07r (1,0) = 0 (3b) 

The background field is known from the locations of the 
active electrodes. The data for the experiment may there- 
fore be thought of as consisting of the voltage drops in 
the perturbational field at all adjacent electrodes, i.e., 

8u (1,Ok+,) - 8u (l,0k) = 
gk - [U(1,0k+l) - -  U(1,0k)] = :  8& (4) 

The problem is to determine 8o'(r,0) from knowledge of 
8& for a set of specified active electrode pairs i and j .  
For the backprojection method, we suppose that the ac- 
tive electrode pairs are 

i and j = i + m, for i = 1 , 2 , . , n  

with a fixed m, 1 _< m < n. This way, we cycle through 
all electrodes pairs with separation m. By assumption, 
8~ is only a perturbation. However, we do expect 8o" to 
achieve its largest values in a neighborhood of the crack. 

One important element which greatly simplifies the 
backprojection algorithm is the fact we can write the 
background field U in closed form. Consider a single 
experiment in which current comes in at electrode i and 
exits at electrode i + m. We can find U corresponding to 
this applied current pattern using complex variables. Let 
(x,y) be the physical coordinates and form the complex 
variable z = x + jy, where j denotes the imaginary 
unit. The active electrodes are at angles 0s and 0s+,, on 
the unit circle; a point midway between these points is 
O. = (0 i q- Oi+m)/2. These points correspond to the 
complex numbers 

zi = exp J 0 i ,  Z, = exp j 0 , ,  Zi+m = exp j 0 i +  m 

We construct a fractional linear transformation 4(') 
which takes the unit disk onto the unit disk and which 
maps these three points as follows (7) 

4(Zi) = 1, 4(Z,) = j ,  4(Zi+m) = -- 1 

Finally, in the 4-unit disk we define the complex func- 
tion 

1 1 + 4  
W(0 = g log 7 -- 4 

It is fairly easy to see that the background potential, U, 
is given by U(x,y) = ReW(4(z)). Let V denote the har- 
monic conjugate to U, i.e., the function given by V(x,y) 
= lmW(~(z)). Consider the conformal transformation 
W(4(z)) = U(x,y) + jV(x,y) .  The unit disk {x 2 "Jr" y2 < 
1} is mapped onto the horizontal strip {[1~ _< 1/2} in the 
(U, V)-plane. The points corresponding to the electrode 
locations are mapped as follows 

1 
z = exp j0 i+  ~ W =  ® + j  

1 
z = expj0  i -  - - ~ W =  ~ j 2  

1 
z = exp j O i +  m - -  -- '> W --- - 00 + j }  

1 
z = expjOi+~+ --> W = - ®  - j~  

(see Fig. 2). 
In (U, V) coordinates, the perturbational problem (3) 

becomes 

08o. 1 
ASu - OU for Ivl < (5a) 

0)_u[I = 0 (Sb) 
OV I lv l=  112 

The electrodes, located in the z-plane at 

Zk = expj0k, k = 1...n 

have been mapped to locations along II,1 = 1/2. The 
electrodes located on the counterclockwise arc from z i 
to Zi+m have been mapped to V = 1/2. The electrodes 
located on the clockwise arc from zi to Zi+m have been 
mapped to V = - 1/2. Interpolation of the data in (4) 
provides an approximation to 08u/OU along II/] = 1/2. 
We shall pretend that this approximation represents the 
exact derivative, i.e., we shall pretend that we have 

08u 
(U, V = __ 1/2) = S+(U) (6) 

where S.(U) are calculated from the data of this single 
experiment (Sgk for k = 1 .. . . .  n). 
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For a single experiment, it is now possible to con- 
struct a consistent conductivity perturbation g(r which 
satisfies both the governing Eq. (5) and the data Eq. (6). 
Clearly, such a consistent conductivity perturbation, go-, 
is not unique. To construct go,, we choose gu to be of 
the form 

gu(U,V) = S+(U)h(V) + S_(U)h(-V)  

where h(V) is chosen such that 

h ( ~ )  : l and  h ' ( ~ ) :  h ( - ~ )  

A most natural choice is to take h in the form of a cubic 
polynomial. The above gu clearly satisfies the Neumann 
boundary condition in (5). Inserting (7) in (5) we find 
the following formula for a consistent g~r 

g~r(U, V) = - S" (U)h (V) - S'_ (U)h ( - V) 

[ [US+((y)d(#]h,,(V) 
- L J  r u - ,  

- L f  S_([_])d(JJh"(-V) (8) 

This image, obtained from the single experiment with 
input electrode at 0i and output electrode at Oi÷m, may 
now, by the inverse of the transformation z ~ W(~(z)), 
be mapped back to the (x,y) coordinates; the result will 
be denoted 

g#°(x,y) 

The idea behind backprojection is to construct the de- 
sired conductivity image as a superposition of images 
obtained from different single experiments. After cy- 
cling through the n electrode pairs (Oi,Oi+m) , the recon- 
structed conductivity perturbation is 

gfr .~ ~ w(i)(x,y)gcr(i)(x,y) 
i-1 

where w(i)(x,y) are appropriate weight functions. If the 
weights were all chosen equal (=  1/n), then the sweep 
of the input (or the output) electrode would be uniform. 
This would result in a very distorted image near the 
boundary of the domain. Instead we choose 

w(i)(x,y) = ~O0 (Oi) 

where we have used the notation 0 for the variable input 
electrode location, and where the angle p is as shown in 

Fig. 3. With this choice the sweep of the arcs along 
which we "backproject," to obtain the image at the 
point P(x,y), is uniform. 

The backprojection procedure, for a fixed m, can 
algorithmicly be described as follows: 

for /  = 1, . . . ,n 
1. Compute the maps ~(z) and W(~) 
2. Interpolate boundary data ggk to obtain S+(U) 
3. For the given point P(x,y), find its image W(~(P)) 
4. Compute the weight w(i)(x,y) 
5. Compute gcr(0(x,y), using (8) 
6. gc~(x,y)~g~r(x,y) + w(i)(x,y)g(#)(x,y) 

next i. 
The backprojection method presented here is purely 

heuristic. However, in the special case of dipole sources, 
the backprojection algorithm may be justified as an in- 
verse of a generalized Radon transform.(lz~ A dipole source 
is the limit that is obtained when the output electrode 
approaches the input electrode while the currents are 
scaled by the inverse of the electrode separation. An 
analogous theoretical investigation of the case with finite 
electrode separation is currently being carried out and 
will be reported elsewhere. 

3. A CRACK FINDING ALGORITHM 

We now give a brief description of an algorithm to 
determine certain parameters that characterize a crack 
(based on the same boundary measurements as before). 
We simplify the problem (reduce the number of param- 
eters) by assuming that the crack is a line segment. In 
this case the crack is completely characterized by four 
parameters: the coordinates of the endpoints of the line 
segment. 

Our algorithm is constructed to determine cracks 
that are perfectly conducting. By simple manipulations 
of the boundary data it may also be used to determine 
cracks that are perfectly insulating. As mentioned in Sec- 
tion 1, the conductivity distribution in the domain l~ (the 
unit disk) with a crack is formally given by 

if 
or(x) = if x @'y 

where the line segment -,/represents the crack. What this 
means more specifically is that the potential field, u, 
caused by sources at electrodes i and j ,  satisfies 

Au = 0 for x~f~ \ ' , /  (9a) 

u = constant x E "y (9b) 
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with the Neumann boundary condition, expressed in po- 
lar coordinates, 

~ro~r(1,0 ) = ×(0,0i) - ×(0,0j) (9c) 

As before, we use the normalization f0nu = 0. Suppose 
a and 13 represent the coordinates of the endpoints, so 
that the crack is given by 

"/ = { x : x  = a + t(13 - c0 ,0  < t < 1} 

The data for a single experiment are the voltage 
drops across the adjacent electrodes 

u ( 1 , 0k+ l ) -  u (1 ,0k)=gk  for k = 1 ..... n 

(we could also have worked with the data for u - U as 
in the backprojection algorithm, indeed we do so in our 
later implementation). The problem is to find ~x and 13, 
the coordinates of the endpoints of the crack ",/. For con- 
venience, we define a map F in terms of the relationship 
between the parameters of the crack, a and 13, and the 
voltage drops, u(1,O~+l)-u(1,Ok) for k = 1 .... ,n. In 
other words F = (F1,...,Fn) is given by 

F(',"~Oi,Oj) : IR4 "--> IR n Fk(O~,13"~Oi,Oj) : =  U(1,0k+x) 
-- U(1,0k), k = 1 , . . . , n  

Notice that this map depends on the choice of the elec- 
trodes through which current is passed. To evaluate F 
for any given oL and [3, we solve (9) and evaluate the 
voltage drops u(1,0k+~)- u(1,0k). The crack reconstruc- 
tion problem can now be posed as follows: find ot and 
13 that satisfies 

F~(~x ,~;Oi ,Oj)  = gk  for k = 1 . . . .  , n 

for an optimal pair of electrodes (0i,0j). The optimal 
electrode locations are also functions of ~x and 13. 

The outline of the computational strategy is: 

0. Make an initial guess for a and 13. 
While II~all 2 + 11~13112 > tolerance: 

1. Find an optimal pair of electrodes, 0i and 0j, for the 
current crack location. 

2. Evaluate the functions F~(oL,13,0i,Oj) , k = 1,...,n. 
3. Measure voltage drop datag k for k = 1,...,n, using 

the above electrode locations. 
4. Compute the residuals gk - Fk(a,13;0i,0j), k = 

1,...,n. 
5. Find increments g~x and g13 based on the residuals. 
6. Update a <--a + ~oL, 13 <---13 + 813. 

We next provide some details of how the steps 1- 
5 are carried out. 

Optimal Electrodes. The choice of the active pair 

of electrodes is very important for the success of the 
crack determination algorithm. Our algorithm relies on 
a strategy first presented in Ref. 13. We briefly describe 
this strategy below. 

For some fixed oL and 13, we denote the angle be- 
tween the line segment ~/and the horizontal axis by p. 
We consider the functional 

J(Oi,Oj) = ~ Fk(OL,13"~Oi,Oj)~bk 
k = l  

for a particular choice of the constants +k, and we select 

0i and 0j so as to make ~-J(0i,0i) as large as possible (in 

reality ~b k are also chosen to be functions of ~x and [3). 
Please consult Ref. 13 for details. 

This selection can be interpreted as one that makes 
the functional J maximally sensitive to small rotations 
(and small transverse translations) of the crack -y. Having 
F (or J) depend sensitively on 3, is desirable because it 
leads to a large mismatch in the residual gk - Fk(cx,13; 
0i,0j) when the true crack is markedly different from the 
crack described by the current values of ~x and 13. This 
is discussed in more detail in Ref. 13, where we also 
observed that this selection seems to generically create 
a field u whose equipotential curves are almost orthog- 
onal to the crack ",/. It turns out that the optimal electrode 
locations can be determined from the solution to an aux- 
iliary elliptic boundary value problem. In our present 
implementation we use a boundary element method to 
find an approximate solution. 

Evaluation of the Map F. To evaluate the map F(~x,13; 
0i,0j), we need to solve the boundary value problem (9). 
In our present implementation we find an approximate 
solution to (9) by a boundary element method. A bound- 
ary element method is feasible and very efficient, since 
the medium is homogeneous except for the crack. We 
refer the reader to Ref. 5 for a detailed discussion of the 
implementation of a boundary element method for the 
(multiple) crack problem (see also Ref. 11). 

Measurement of Voltage Drops. Once the optimal 
electrode locations are determined, we measure (rather: 
we extract from measurements) the voltage drops corre- 
sponding to the potential with current sources at these 
optimal locations. See the later section about the exper- 
imental setup for more details. 

Increments for Updates. The scheme for updating 
the crack locations is based on the solution of a con- 
strained linear least squares problem. Given the present 
values of cx and 13, and the optimal electrode locations 
0i and 01-, we compute the Jacobian of the map F, i.e., 
we compute 
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Of k (OL,~;Oi,Oj) and Of k 
00/.rn 0 ~ m  (O/'' ~ ; 0 i  ' 0 j )  

for m - 1,2; k = 1 . . . .  , n  

We seek to minimize the expression 

- - 

k = l  m = l  OOl.m m = l  ~t..m ~ m  

(with respect to ~a and ~[3) subject to the bound 

II o [I z + I1  1[ 2 _< x2 

The number X is chosen conservatively small to make 
the ultimate convergence of the algorithm less dependent 
on the initial guess. The minimization is reminiscent of 
the trust region method; one notable difference is that 
we change the electrode locations after each update of 
the crack. We keep the "trust radius" h constant. 

In the present implementation, the Jacobian was 
computed by a finite difference approximation. This in- 
volves solving four additional boundary value problems 
like (9). A boundary element method is again employed 
to obtain approximate solutions. For other possible ways 
of calculating the Jacobian see Refs. 13 and 5. 

4. THE LABORATORY SETUP 

We now briefly describe the laboratory experiments 
that were performed to generate " rea l"  data in order to 
test the feasibility of Electrical Impedance Tomography. 

23.5 in 

_ _ _ 

/ I ~ grounding wire 
/ 

II 

0.25 in wide 
er eIectrodes 

0.25 in thick acrylic 
(plexiglass) 

- 10.5into - i £  

Fig. 4. The design of the tank. 

A cylindrical tank with 12 electrodes was constructed. 
Measurements were performed using an automated data 
acquisition system consisting of a PC, an alternating cur- 
rent source, a digital voltmeter, a digital ammeter, and 
a switching network. 

In the mathematical model for the problem, we have 
assumed that the voltage potential behaves like that of 
static direct current. We found that the use of a static 
(DC) current source was impractical in the actual ex- 
periments. The reason being that the use of a DC current 
source causes an electrolysis effect in the system. A 
consequence of the electrolysis is an alteration of the 
surface properties of the electrodes. Our method requires 
the collection of many measurements, and it is crucial 
that the properties of the system remain constant during 
the time it takes to collect these measurements. There- 
fore we use an AC source, operating at 1 kHz. This 
frequency is sufficiently low that the AC field may be 
thought of as a DC field times a harmonic modulation. 
The measured voltage drops for the AC field, up to a 
sign, gives the voltage drops for the DC field. 

Figure 4 shows the lay-out of the tank. It is made 
of 0.25 inch thick clear acrylic (plexiglass), has an inside 
diameter of 10.5 inches and is 23.5 inches high. At- 
tached to the inside surface of the cylinder are 12 vertical 
and equally spaced copper tape electrodes, each 0.25 
inches wide and 0.001 inches thick. 

At the top, each electrode strip is attached to a 
binding post. These binding posts are connected with 
wires to the data acquisition system. Next to the elec- 
trode binding posts is a second set of binding posts. The 
posts in the second set are all interconnected to form a 
common ground to which the shields for the data wires 
are connected. When the tank is filled with electrolyte 
(a slightly conducting water), the tank is believed to 
simulate a two-dimensional geometry as far as conduct- 
ance between the electrodes is concerned. 

A block diagram of the data acquisition system is 
shown in Fig. 5. It consists of an alternating current 
(AC) voltage source, two digital multimeters used as a 
voltmeter and an ammeter, a bank of relay cards, and a 
PC for control and data acquisition. The design concept 
of the system was to be able to apply a voltage drop 
across any two electrodes and then measure the voltage 
drop across any other two electrodes, including the ones 
to which voltage is applied. The drive, or input, current 
is measured with a digital ammeter connected in series 
with the source. To achieve this versatility, four relay 
switches are used at each tank electrode to connect either 
to a + / -  source, or to a + / -  voltmeter lead. A total 
of 48 relays are switched via an A-bus interface (Alpha 
Products) by the PC (HP Vectra). The PC also collects 
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12 electrodes 

lays 

1 m~m 
i (II~M88 lines) 
i , 

total of 48 relays, 
4 for each electrode ~ - ]  ~ 7 ]  

Fig. 5. Block diagram of the data acquisition system. 

data via the IEEE-488 bus (Hewlett-Packard HP-IB) from 
the voltmeter and the ammeter. 

The data acquisition software was written in BASIC 
and can be run in either manual or automatic mode. In 
the manual mode, the user specifies the active (source) 
electrode pair, and the measurement electrode pair. The 
measured voltage drop and the current are displayed on 
the monitor. This mode is used mostly for set-up and 
troubleshooting. The automatic mode collects data in the 
so-called "dipole" mode. Here a voltage drop is applied 
to a pair of adjacent electrodes, starting with electrodes 
1 and 2, and voltage drops are measured across all the 
other adjacent electrodes. Voltage is then applied to the 
next pair of electrodes, and the process is repeated until 
voltage has been applied to all the electrodes. At each 
active electrode pair, current is also measured. Since we 
are using an AC source, only absolute voltage drops are 
readily measurable. The DC voltage field generated by 
a "dipole" source in the homogeneous tank has the 
property that all the voltage drops are of one sign except 
for the drop across the active electrodes (which is of the 
opposite sign). We added signs to our data by insisting 
that the same property hold. It is possible to build a 
system which can measure the voltage drops in phase so 
that the sign will also be available. This would eliminate 
the need for the above somewhat ad hoc approach. 

The measured data are best displayed in the matrix 
form 

[ v~ - v~ v ~ - v ~  • -- V~ - V~2 
• .- Vl - v~2 

• -- V~ - V~2 

12,1 q 

132 
(10) 

I1 12 

where V~ represents the voltage at electrode i, and IJ+w 

represents the current flowing from electrode j to elec- 
trode j + 1. The order in which we cycle through the 
active electrode pairs is indicated by the indices in the 
last column of the matrix. 

To make the measurements, the tank was first filled 
with distilled water. Then we added approximately a cup 
of tap water to produce an impedance of about 1 kfL 
The applied voltage drop were set to about 5 V (rms), 1 
kHz sinusoidal. 

The tank with the electrolyte simulates a homoge- 
neous medium. Crack discontinuities are introduced by 
placing metal strips of various widths vertically in the 
tank. In the results presented in the next section, only a 
single flat strip was used. The data can just as easily be 
obtained for multiple strips, flat and curved. 

5. RECONSTRUCTION FROM EXPERIMENTAL 
DATA 

We now present the results we obtained by applying 
the algorithms discussed in Sections 2 and 3 to experi- 
mental data collected by the system described in Section 
4. 

The data collected correspond to the "dipole" mode. 
That is, we applied a fixed voltage drop across an ad- 
jacent pair of electrodes to generate a voltage potential 
in the tank. Then we measured the voltage drops across 
all other electrode pairs as well as the current flowing 
across the electrodes at which voltage is applied. Our 
data set is most conveniently viewed as the matrix (10) 
in the previous section. We found the currents to be of 
nearly the same size. 

In order to use the measured data for reconstruction, 
we need to know the value of %. Alternatively, we need 
to know the scaling factor that transforms the data into 
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Fig. 6. The images obtained by applying the backprojection algorithm 
on the measured data. The exact locations of the cracks are shown for 
reference. 

data for a tank corresponding to o" o = 1 and unit applied 
current. To obtain this scaling factor we computed the 
voltage drop across the active (adjacent) electrodes for 
a homogeneous tank with o o = 1 and unit applied cur- 
rent. This number turned out to be 0.067514. We scaled 
all the voltage drop entries of the data matrix by the 
factor 0 . 0 6 7 5 1 4 / ( I / 2  - I/1) (that is the V2 - I/1 coming 
from the first row of the data matrix). The scaled voltage 
data are now well approximated by our mathematical 
model corresponding to o- o = 1 and unit applied current. 
A particularly good fit was found using an electrode 
width of h -- 4 °. 

For the backprojection algorithm, the data we need 
are the difference in the voltage drops between the in- 
homogeneous experiment and the homogeneous one. 
Subtraction has the desirable property that some of the 
irregularities in the data set could be eliminated, since 
we expect the same irregularities to be present whether 
there is a crack or not. We will also use the difference 
as data for our crack finding algorithm. This requires 
only a small modification of the algorithm described be- 
fore. In a real application, we may not always have the 
measured data for a homogeneous specimen. In that case, 
knowledge of % must be available to numerically gen- 
erate the homogeneous data. 

Recall that the crack finding algorithm determines 
best electrodes across which a voltage drop should be 
applied at each iteration. We have not measured data 
corresponding to these electrodes, rather the data we 
have measured correspond to dipole sources. As a con- 
sequence, some simple processing is needed to extract 
the required data from the matrix above. Note that all 
possible independent information has been recorded in 
the data matrix. To obtain the data needed, we just have 

to take appropriate linear combinations of the rows of 
the data matrix. 

We shall report on the results of two experiments. 
To generate the data required for the two experiments, 
we make three sets of measurements. The first set of 
measurements is done with a homogeneous tank (no 
crack). The second and the third set of measurements 
are done with a crack inside the tank. As mentioned 
previously, a crack is simulated by immersing a metal 
strip vertically at some location. For the second set of 
measurements, we immersed a 4-inch strip to simulate 
a crack whose endpoints are 

( - 0 . 3 8 ,  0.38) and (0.38, 0.38) 

(in units of the cross section radius). The third set of 
measurements involve a 2-inch strip simulating a crack 
with endpoints at 

(0.24, 0.50) and (0.62, 0.50) 

The collected data are normalized in the way we men- 
tioned above. We compute the differences by subtracting 
the data matrix corresponding to the homogeneous tank 
from the second and the third data matrices we collected. 
The two datasets are now ready for the reconstruction 
algorithms. 

The results of the backprojection algorithm applied 
to the datasets are shown in Figs. 6a and b. In each 
figure, we superposed the actual locations of the crack 
for reference. In viewing these results, we must keep in 
mind that there is a substantial amount of noise in the 
data in the form of measurement errors, as well as some 
modeling errors. These results do however indicate that 
the data are sufficiently accurate for the backprojection 
algorithm to reconstruct a rough image of the cracks. 
However, the images are too blurry to give good esti- 
mates, for instance of the crack sizes. In general, even 
with perfect data, this is probably the best we can hope 
for with the backprojection algorithm. (2,3,12) 

The result of application of the crack finding al- 
gorithm on the experimental data gave a more satisfac- 
tory estimate of the exact locations and lengths of the 
cracks. In applying it to the first data set, we took the 
initial guess to be a crack whose endpoints are ( -  0.5, 
0) and (0.5,0). The algorithm converged in four itera- 
tions. The result of this calculation is summarized in 
Figs. 7a--c. In Fig. 7a, we give a comparison of the 
measured data with the computed data corresponding to 
the initial guess. The active electrodes are electrodes 6 
and 12. Shown in Fig. 7b is a comparison of the mea- 
sured data with the computed data corresponding to the 
solution obtained by the algorithm. At convergence of 
the iterative method, current is flowing from electrode 
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Fig. 7. (a) The comparison of the measured data with the data corresponding to the initial guess. Sources are applied at electrodes 6 and 12. (b) 
The comparison of the measured data with the data corresponding to the crack reconstructed by our algorithm. Sources are applied at electrodes 1 
and 5. In both figures, the measured data are shown in O, the computed data are shown in D. (c) A comparison of the actual crack with the crack 

reconstructed by our algorithm. The active electrodes are indicated by the symbol + .  The algorithm took four iterations to reconstruct the crack 
shown in solid line. The actual crack is shown in dashes. 

1 to electrode 5. Figure 7c gives a comparison of the 
actual crack (shown in dashes) with the crack found by 
the algorithm. The active electrodes at convergence are 
indicated by use of the symbol ÷ .  The reconstruction 
yielded a crack whose endpoints are ( - 0.3402, 0.3173) 
and (0.3885, 0.3341). 

An initial guess in the form of a crack with end- 
points at (0,0) and (0.5,0) was used when applying the 
algorithm to the second dataset. The result of this cal- 
culation is displayed in Figs. 8a-c. In Fig. 8a the mea- 
sured dataset is compared to the computed dataset 
corresponding to the initial guess. At this stage, current 
is applied at electrodes 6 and 12. In Fig. 8b, we compare 
the measured dataset with the computed dataset corre- 
sponding to the crack reconstructed by our algorithm 

(convergence occurs after five steps). At convergence, 
sources are applied at electrodes 1 and 4 as indicated in 
Fig. 8c. A comparison of the actual location of the crack 
with the reconstructed crack is made in Fig. 8c. The 
reconstruction yielded a crack whose endpoints are 
(0.1964, 0.4666) and (0.5703, 0.4773). 

Based on these results, we propose an inspection 
strategy which consists of first using the backprojection 
algorithm to detect the presence of a crack. If a crack is 
detected, we use the result from the backprojection al- 
gorithm to obtain an initial guess for the crack finding 
algorithm. These initial findings seem to indicate that 
Electrical Impedance Tomography may prove to be a 
promising nondestructive evaluation technique for cer- 
tain applications. 
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Fig. 8. (a) The comparison of the measured data with the data corresponding to the initial guess. Sources are applied at electrodes 6 and 12. (b) 
The comparison of the measured data with the data corresponding to the crack found by our method. Sources are applied at electrodes 1 and 4. In 
both figures, the measured data are shown in O, the computed data are shown in [Z]. (c) A comparison of the actual crack with the crack 

reconstructed by the algorithm. The active electrodes are indicated by the symbol + .  The algorithm took five iterations to reconstruct the crack 
shown in solid line. The actual crack is shown in dashes. 
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