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Abstract 

During the condition monitoring of a planetary gearbox, features are extracted from raw data for a fault diagnosis. 

However, different features have different sensitivity for identifying different fault types, and thus, the selection of a 

sensitive feature subset from an entire feature set and retaining as much of the class discriminatory information as 

possible has a directly effect on the accuracy of the classification results. In this paper, an improved hybrid feature 

selection technique (IHFST) that combines a distance evaluation technique (DET), Pearson’s correlation analysis, and 

an ad hoc technique is proposed. In IHFST, a temporary feature subset without irrelevant features is first selected 

according to the distance evaluation criterion of DET, and the Pearson’s correlation analysis and ad hoc technique 

are then employed to find and remove redundant features in the temporary feature subset, respectively, and hence, 

a sensitive feature subset without irrelevant or redundant features is selected from the entire feature set. Further, the 

k-means clustering method is applied to classify the different kinds of health conditions. The effectiveness of the pro-

posed method was validated through several experiments carried out on a planetary gearbox with incipient cracks 

seeded in the tooth root of the sun gear, planet gear, and ring gear. The results show that the proposed method can 

successfully distinguish the different health conditions of a planetary gearbox, and achieves a better classification 

performance than other methods. This study proposes a sensitive feature subset selection method that achieves an 

obvious improvement in terms of the accuracy of the fault classification.
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1 Introduction
Owing to its advantages of a compact structure, large 

transmission ratio, and high load capacity, a planetary 

gear transmission system is widely used in large-scale 

and complex mechanical equipment [1, 2], e.g., wind tur-

bines, helicopters, and automobiles.

A planetary gearbox typically consists of some key 

components: a sun gear, planet gear, ring gear, carrier, 

and bearing, and faults may occur in these components 

owing to fatigue or tough working conditions. Accord-

ing to a condition-monitoring report on wind turbines, a 

gearbox failure is the leading contributor to all wind tur-

bine failures [3]. A vibration-based method was proven 

to be one of the most popular techniques in the fault 

diagnosis of rotating machinery, and it has been deter-

mined that certain changes to the vibration signals can be 

seen when a fault occurs, e.g., crack or spalling [4–6]. �e 

commonly used vibration signal processing methods can 

be divided into three categories: time domain methods, 

frequency domain methods, and time–frequency domain 

methods. Time domain methods refer to the analysis of 

a signal with respect to time, and are relatively easy and 

direct compared to both frequency and time–frequency 

domain methods. Statistical indicators, the time synchro-

nous averaging (TSA) method, and an autoregressive 

(AR) model are typically used in the fault diagnosis of 

rotating machinery [4, 7–9]. Frequency domain methods 

refer to an analysis of the signals with respect to the fre-

quency, and a periodic signal in the time domain can be 

converted into a frequency component through a Fourier 
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transformation. In this way, researchers can identify the 

difference between the spectrum of a normal vibration 

signal and a fault vibration signal with commonly used 

methods that include a spectrum-based analysis, reso-

nance demodulation technique, and cepstrum analysis 

[10–12]. In contrast, time–frequency domain methods 

are used to study a signal in both the time and frequency 

domains simultaneously, allowing both the constituent 

frequency components and their time variation features 

to be revealed and analyzed. Researchers have devel-

oped various time–frequency domain methods includ-

ing a short-time Fourier transformation, Wigner–Ville 

distribution, continuous wavelet transform, and Hilbert-

Huang transformation [13–16]. Although vibration-

based methods have been successfully used in the fault 

diagnosis and condition monitoring of rotating machin-

ery, the appearance of faults in the analysis results has to 

be identified artificially, e.g., the identification of a fault 

characteristic frequency in the spectrum, the determina-

tion of a filter sub-band in a demodulation analysis, or the 

determination of a wavelet type, all of which require con-

siderable of experience and expertise [17–19]. �erefore, 

it is necessary to develop some intelligent techniques that 

can automatically determine the health conditions of a 

planetary gearbox.

Feature extraction is commonly the first important 

step in an intelligent technique. However, different fea-

tures display different sensitivity to fault advancements, 

and some of the features are redundant or irrelevant to 

the fault diagnosis or classification result [19–21]. Select-

ing a sensitive feature subset and retaining as much of the 

class discriminatory information as possible has a direct 

effect on the accuracy of the results. Kang et  al. [20] 

developed an outlier-insensitive hybrid feature selection 

methodology to reduce diagnostic performance deterio-

ration caused by outliers in data-driven diagnostics. Peng 

et al. [22] studied how to select good features according 

to the maximal statistical dependency criterion based 

on mutual information. Yang et al. [23] demonstrated an 

approach to the multi-criteria optimization problem of 

feature subset selection using a genetic algorithm. Li et al. 

[24] presented a two-stage feature selection approach 

combining filter and wrapper techniques to obtain a 

more compact feature subset for accurate classification of 

the hybrid faults of a gearbox. Liu et al. [25] introduced 

a hybrid dimension reduction method that combines 

kernel feature selection and a kernel Fisher discriminant 

analysis for a fault-level diagnosis of planetary gearboxes. 

Lei et al. [19, 26] and Shen et al. [27] proposed a feature 

subset selection method based on a distance evaluation 

technique (DET) for fault classification of a roller bearing 

and gear reducer. Among these feature subset selection 

methods, DET is relatively simpler and more efficient 

than the other methods, and has thus been widely used 

in fault diagnosis [28–30]. However, DET tends to select 

redundant features because it does not consider the rela-

tionships between features; one relevant feature selected 

by DET may be redundant in the presence of another 

relevant feature with which it is strongly correlated. To 

address this problem, an improved hybrid feature selec-

tion technique (IHFST) combining DET, Pearson’s cor-

relation analysis, and an ad hoc technique is proposed. 

Using IHFST, the relevant features are selected accord-

ing to the distance evaluation criterion of DET, and the 

redundant features are then further suppressed based on 

the Pearson’s correlation analysis and ad hoc technique. 

Hence, not only irrelevant features, but also redundant 

features, are removed from the entire feature set based 

on the proposed IHFST.

Once a sensitive feature subset is selected, it can be 

classified into several classifications based on some 

machine learning (ML) methods. �e k-means clustering 

method is a widely used unsupervised pattern recogni-

tion algorithm that aims to partition n observations into 

k clusters, where each observation belongs to the cluster 

with the nearest mean [31–34]. �erefore, the k-means 

clustering method is further employed to validate the 

effectiveness of the proposed IHFST method.

�e rest of this paper is organized as follows: Section 2 

briefly introduces the feature-subset selection based on 

DET. Section  3 presents the fault classification process 

based on the proposed IHFST and k-means method. Sec-

tion  4 describes the experiment system and data acqui-

sition. �e effectiveness of the proposed method as 

validated using various datasets is then described in Sec-

tion 5. Finally, some concluding remarks are provided in 

Section 6.

2  Brief Review of DET
In fault diagnosis, different features can reflect differ-

ent aspects of the vibration properties of the machinery, 

and certain features are sensitive to certain changes in 

machine conditions [19–21, 25]. If all features are applied 

to a fault diagnosis without a careful selection, the com-

putation complexity of the algorithm will increase with 

little gain [26]. �erefore, a feature selection process is 

necessary to reduce the computation complexity and 

improve the accuracy of the fault diagnosis. �e feature 

selection process based on DET is briefly introduced.

�e basic concept of DET is to measure the ratio of the 

between-class distance to the within-class distance in the 

feature vector space, as illustrated in Figure  1, where a 

high DET value indicates high sensitivity or class separa-

bility of the feature.

�e detailed process of DET can be expressed as fol-

lows [19, 26, 27].
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Suppose that the entire feature set is obtained by

where qi,k,j is the feature value of the jth feature from the 

ith sample of the kth health condition, Ik is the total sam-

ple number of the kth condition, K represents the condi-

tion number, and J is the feature number in the feature 

vector of each sample. �e process of informative feature 

selection based on DET is as follows:

Step 1: Calculate the within-class average distance of 

the same condition samples,

and then obtain the average distance of K conditions,

Step 2: Calculate the average feature value of all sam-

ples under the same condition,

�en, obtain the average between-class distance 

between different condition samples,

Step 3: Calculate the ratio between d
(b)
j  and d

(w)
j , 

assigning the compensation factor εj = d
(b)
j /d

(w)
j , and 

then normalize it based on the maximum value and 

obtain the distance evaluation criterion αj = εj/max(εj).

Hence, a feature subset can be selected when the dis-

tance evaluation criterion αj is greater than a given 

threshold. However, the DET method only removes irrel-

evant features from the entire feature set. Although the 

(1){qi,k ,j , i = 1, 2, . . . , Ik; k = 1, 2, . . . ,K ; j = 1, 2, . . . , J },

(2)
dk ,j =

1

Ik(Ik − 1)

∑Ik

l,j=1

∣

∣qi,k ,j − ql,k ,j
∣

∣ ,

l, i = 1, 2, . . . , Ik , l �= i,

(3)d
(w)
j =

1

K

∑K

k=1
dk ,j .

(4)µk ,j =

1

Ik

∑Ik

i=1
qi,j,k .

(5)
d

(b)
j =

1

K (K − 1)

∑K

k ,e=1

∣

∣ue,j − uk ,j
∣

∣ ,

k , e = 1, 2, . . . ,K , k �= e.

features selected by DET carry good classification infor-

mation when treated separately, there may be little gain if 

they are combined into a feature vector because of a high 

mutual correlation [21–25].

3  Fault Classi�cation Based on the Proposed IHFST 
and K-means

Figure  2 shows a flow chart of fault classification based 

on the proposed IHFST and k-means classification 

method. �e entire feature set is first extracted from 

time domain signal, frequency domain signal, and differ-

ence signal. A sensitive feature subset without irrelevant 

features or redundant features is then selected based on 

the proposed IHFST. �e feature subset is then classified 

using the k-means clustering method.

3.1  Feature Extraction

Feature extraction is the first important step of the pro-

posed method. Before calculating the features, the raw 

vibration signals are divided into several segments by 

multiplying a sliding Hanning window owing to its good 

properties, e.g., better side-lobe behavior shown in the 

spectrum [35], as indicated in Figure 3. �e sliding Han-

ning window equation is given as follows:

where M = k × fs is the width of the sliding Hanning win-

dow, k is the time length of the window, fs is the sampling 

frequency, δ =  j ×  fs is the sliding distance, and j is the 

time length of the sliding step. Here, M and δ are both 

(6)

W (m) =











0.5

�

1 − cos

�

2π(m−δ)
M−1

��

, δ ≤ m ≤ M + δ − 1 ,

0, otherwise,

Figure 1 Schematic of DET

Figure 2 Flow chart of the proposed planetary gearbox fault clas-

sification method
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integers, and the values of k and j were chosen as 4 and 

0.5, respectively.

�ree types of features are extracted from time domain sig-

nal, frequency domain signal, and difference signal, respec-

tively, as given in Table 1. �e difference signal is defined as 

Ref. [4] kept and act as feature weights of the selected

where x is the raw vibration signal, yd is the signal containing 

the mesh frequencies, their harmonics, and their first-order 

sidebands. �us, d is composed of higher-order sidebands 

and Gaussian noise.

(7)d = x − yd ,

Here, x is the original time domain signal; N is the 

number of samples; Sk is the spectrum of x for k = 1, 2,…, 

K; K is the number of spectrum lines; ȳd and d̄ are the 

mean values of yd and d, respectively; PPx indicates the 

maximum peak-to-peak amplitude of signal x; Ph is the 

amplitude of the hth harmonic; H is the total number of 

harmonics within the frequency ranges.

In this study, eight features are calculated from time 

domain signal, four features from frequency domain sig-

nal, and four from difference signal. In addition, because 

the rotating speed is low, the calculated gear mesh fre-

quency [36] and its harmonics are concentrated at a low 

frequency range, and thus, a low-pass digital filter is used 

to cover the main gear mesh components of the vibra-

tion signals, and cut-off frequencies of 650 and 900 Hz are 

chosen for the low-pass digital filter at 300 and 400 r/min, 

respectively. �us, another sixteen features are calculated 

from the filtered vibration signals, and a total of thirty-

two features are obtained within the entire feature set.

3.2  IHFST

To remove both irrelevant and redundant features from 

the entire feature set, the IHFST method combining DET, 

Pearson’s correlation analysis, and the ad hoc technique 

is proposed, as shown in Figure  4. �e distance evalua-

tion criterion αj of each feature is obtained based on DET, 

and the entire feature set is then sorted in descending 

order according to αj. Next, the mean correlation coeffi-

cient of the sorted feature set can be computed based on 

the Pearson’s correlation analysis.

Figure 3 Data segmentation based on sliding window

Table 1 Calculated features

No. Feature name Equation

1 Mean x̄ =
1

N

∑
N

n=1
xn

2 Peak to peak xp−p = max(x) − min(x)

3 Variation xvar =
1

N

∑
N

n=1
(xn − x̄)2

4 Root mean square
xrms =

√

1

N

∑

N

n=1
x2n

5 Skewness
xskew = 1

N

∑

N

n=1

(

xn−x̄√
xvar

)3

6 Kurtosis
xkurtosis = 1

N

∑

N

n=1

(

xn−x̄√
xvar

)4

7 Crestor factor xcf =
max(|x|)

xrms

8 Impulse factor xif =
max(|x|)

1/N
∑

N

n=1
|xn|

9 Mean of frequency
fp1 =

∑K
k=1

Sk
K

10 Variation of frequency
fp2 =

∑K
k=1

(Sk−fp1)
2

K−1

11 3rd moment of frequency
fp3 =

∑K
k=1

(Sk−fp1)
3

K(
√

fp2)3

12 4th moment of frequency
fp4 =

∑K
k=1

(Sk−fp1)
4

K(fp2)2

13 Energy ratio
ER =

√

1/N
∑N

n=1
(dn−d̄)2

√

1/N
∑N

n=1
(ydn−ȳd )2

14 FM0 FM0 =
PPx∑
H

h=0
Ph

15 FM4
FM4 =

N
∑

N

n=1
(dn−d̄)4

[
∑

N

n=1
(dn−d̄)2]2

16 M6A
M6A =

N
2
∑

N

n=1
(dn−d̄)6

[
∑

N

n=1
(dn−d̄)2]3 Figure 4 Scheme of the proposed IHFST
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where, ρ̄j is the mean correlation coefficient of the jth fea-

ture, M is the ranking index of the jth feature according to 

αj, Jm is the feature index of the top informative feature for 

m = 1, 2,…, M − 1, qk ,Jm = [q1,k ,Jm , q2,k ,Jm , . . . , qIk ,k ,Jm ] 

and qk ,j = [q1,k ,j , q2,k ,j , . . . , qIk ,k ,j] are two feature vec-

tors, and q̄k ,Jm and q̄k ,j are the mean values of these two 

features, respectively. �e correlation coefficient ranges 

from − 1 to + 1, which indicates a high degree of nega-

tive or positive linear correlation between qk ,Jm and qk ,j .

Finally, the ad hoc technique associated with the mean cor-

relation coefficient is applied to reevaluate the distance eval-

uation criteria αj, and a feature that is highly correlated with 

the top informative features will be suppressed or removed. 

�e new distance evaluation criterion βj is obtained, i.e.,

where, θ1 and θ2 are two weighting factors that determine 

the relative importance of the informative and the correla-

tion terms, respectively. A large θ1 factor emphasizes the 

informative term, and a relatively larger θ2 factor weights the 

correlation term more heavily, and can thus produce a fea-

ture subset with less redundancy [25]. In this paper, when the 

mean correlation coefficient is higher than 0.7, the feature 

will be recognized as a severe redundant feature, and will 

thus be removed. In another situation described herein, the 

two factors are chosen as θ1 = 1 and θ2 = 0.2.

Hence, a feature subset without irrelevant or redundant 

features can be selected according to the value of the new 

distance evaluation criteria βj.

3.3  Normalization and Weighting

Before classification, all features are normalized as 

follows:

where FEj is the feature to be normalized, mean() is 

the mean function, and std() is the standard variance 

function.

Although the feature subset is selected based on the 

IHFST, different features in the feature subset have dif-

ferent sensitivities during the fault diagnosis process. 

�us, to emphasize the importance of sensitive features, 

(8)
ρ̄j =

1

M − 1

∑M−1

m=1

∣

∣ρ(qk ,Jm , qk ,j)
∣

∣ and

(9)

ρ(qk ,Jm , qk ,j) =

∑Ik
i=1

(qi,k ,Jm − q̄k ,Jm )(qi,k ,j − q̄k ,j)
√

∑Ik
i=1

(qi,k ,Jm − q̄k ,Jm )2
√

∑Ik
i=1

(qi,k ,j − q̄k ,j)
2

,

Jm �= j

(10)βj =

{

αj , when M = 1,

θ1αj − θ2ρ̄j , when M ≥ 2,

(11)nFEj =

FEj − mean(FEj)

std(FEj)
, j = 1, 2, . . . , J ,

a feature-weighting step is needed to guarantee a more 

accurate classification result. Supposing there are L fea-

tures selected by IHFST, described in Section 3.2, the new 

distance evaluation criteria βj of these selected features are 

also kept and act as feature weights of the selected features.

3.4  K‑means Clustering Method

As an unsupervised clustering method, k-means is com-

monly used to automatically partition samples into k 

clusters [31]. �e purpose of the k-means clustering 

method is to assign all N samples into k clusters by mini-

mizing the sum of point-to-centroid distances as follows:

where C = {C1,C2, . . . ,Ck} indicates k clusters, �x is an 

N × R feature matrix, R represents the dimensions of the 

matrix, each row is a single observation or sample, and 

�µi indicates the cluster centroid of the ith cluster. �e 

detailed process of the k-means clustering method is 

given as follows.

Step 1: Initialization

Randomly choose k cluster centroids for all feature 

samples.

Step 2: Assignation

Assign each sample to the nearest cluster centroid by 

measuring the distance between the sample and each 

centroid as follows:

Step 3: Update

Find all samples in each cluster, and determine the new 

cluster centroid using

where N t

i
 is the sample number of the ith cluster at the 

tth iteration.

Step 4: Repeat Steps 2 and 3 until the cluster cen-

troid remains unchanged or the function achieves 

convergence.

4  Experimental System
Figure  5 illustrates the “back-to-back” planetary gear-

box experiment setup, which consists of two planetary 

gearboxes (PGB), two motors, an industrial computer, a 

control box, and a set of vibration acquisition systems. 

�e test bed is symmetrically arranged, PGB 1 and PGB 

2 have the same structure and two motors each, and the 

(12)J = arg min
C

k
∑

i=1

∑

x∈Ci

∥

∥�x − �µi

∥

∥,

(13)

Ct
i = {xp :

∥

∥xp − µ
t
i

∥

∥

2
≤

∥

∥

∥
xp − µ

t
j

∥

∥

∥

2

∀j, 1 ≤ j ≤ k}.

(14)
µ
t+1

i
=

1

N t
i

∑

xj∈C
t
i

xj ,
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four components are connected using three teeth-shaft 

couplings.

�e design parameters of the PGB are given in Table 2, 

where the PGB is comprised of an inner sun gear sur-

rounded by four planet gears and a standstill ring gear, 

and the gear ratio of the PGB is 6.25. It should be noted 

that the simulated faults are located in PGB 1. �e two 

motors are SIEMENS three-phase 15  kW induction 

motors, where motor 1 is for driving and motor 2 is for 

loading; in addition, the range of the motor speed is 

0–1450 r/min, and the two motors are controlled using 

an industrial computer through a control box. To meas-

ure the vibration signals, five Kistler integrated circuit 

piezoelectric accelerometers, denoted as #1, #2, #3, #4, 

and #5, are placed in the test bed. Here, #1 is placed in 

the motor base, #2 is placed in the housing of the input 

bearing, #3 is placed in the housing of the planetary gear-

box, #4 is placed in the ring gear of the planetary gearbox, 

and #5 is placed in the housing of the output bearing, as 

illustrated in Figure 5a. An LMS SCADAS system and a 

computer are used for data acquisition, the sampling fre-

quency of which is 20,480 Hz, and the sampling length is 

11 s.

Figure  6a–c illustrate seeded incipient cracks located 

at the tooth root of the sun gear, planet gear, and ring, 

respectively. �e parameters of the seeded crack are 

defined as (q0, q1, Wc, αc), as shown in Figure 7. As is well 

known, it may be more difficult to detect gear faults at 

low speed because low-frequency characteristics are eas-

ily masked by heavy noise [18]. To verify the effective-

ness of the proposed method, vibration datasets were 

collected under two relatively low rotating speeds of 

300/400  r/min and four loading conditions of 0, 20, 40, 

and 60  Nm, as listed in Table  3. Altogether, there were 

eight vibration datasets collected, each of which includes 

four types of health conditions: normal, cracked sun gear 

(CS), cracked planet gear (CP), and cracked ring gear 

(CR). In addition, the vibration signals of accelerometer 

#4 mounted on the outer ring gear of PGB 1 were ana-

lyzed in this study.

In addition, Figure 8a, b show an example of vibration 

signals for each health condition in dataset 1 and their 

spectrum, respectively. It can be observed there are few 

differences in the raw vibration signals and their spec-

trum for the four health conditions: normal, CS, CP, and 

CR, and it is difficult to distinguish the three types of 

faults from the normal condition.

5  Results and Discussion
�e distance evaluation criteria α and β, and the cor-

responding feature weights of dataset 2, are shown in 

Figure  9a, b, respectively. It can be observed that three 

features (Nos. 19, 20, and 26) with higher mean cor-

relation coefficients in the DET method are suppressed 

according to the new distance evaluation criteria β. 

Twelve sensitive features are selected from the entire 

feature set using the DET method with a given thresh-

old, �r(α)  =  mean(αj), and eight sensitive features are 

selected using the IHFST method with a given thresh-

old, �r(β) = mean(βj), where j = 1, 2,…, 32 denotes the 

feature index. It should be noted that dataset 2 is taken 

as an example to show the effectiveness of the proposed 

method, and the other datasets are also analyzed.

In this study, three types of feature selection meth-

ods are employed to analyze the same dataset using the 

proposed method for comparison, which are denoted as 

Method 1, Method 2, and Method 3. In Method 1, two 

commonly used features, the root mean square and kur-

tosis, are selected from the entire feature set. In Method 

2, the dimensions of the entire feature set are directly 

reduced based on a principle component analysis (PCA) 

[37] without feature selection. In Method 3, features are 

Figure 5 “Back-to-back” planetary gearbox experiment setup: a 

schematic of experimental setup and b photograph of the data 

acquisition

Table 2 Design parameters of planetary gear

Parameters Sun Planet Ring

Number of teeth 16 33 84

Modulus/mm 4 4 4

Pressure angle/(°) 20 20 20

Tooth thickness/mm 70 70 70

Planet number 4
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selected based on DET. Finally, the proposed method is 

referred to as Method 4.

�e classification performances of these four meth-

ods are shown in Figure  10a–d. In addition, it should 

be noted that, for visualization, the PCA method is 

implemented based on the clustering results produced 

through Method 3 and Method 4, and the plots of the 

first two PCs are shown in Figure 10c, d. Many misclas-

sification samples can be found in Figure 10a, b, which 

are based on Method 1 and Method 2, and the samples 

have a loose distribution. In Figure 10c, CS and CP can 

be clearly discriminated, but it is difficult to discrimi-

nate the CR from normal conditions, and there are 

five misclassification samples. In Figure  10d, the four 

health conditions can be clearly discriminated, and all 

four clusters have small within-class distances and large 

between-class distances.

To compare the classification performance of the 

four methods, the silhouette value (SV) is adopted in 

this study. �e SV is defined as a measure of how simi-

lar a point is to other points in its own cluster compared 

to points in other clusters, and ranges from − 1 to + 1, 

where a value close to + 1 indicates a better classification 

performance [38]. �e SV can therefore be obtained:

(15)S(i) =

min(b(i, :), 2) − a(i)

max(a(i), min(b(i, :)))
,

Figure 6 A seeded tooth root crack in a a sun gear, b planet gear, and c ring gear

Figure 7 Parameters of manufactured tooth root crack

Table 3 Working conditions of the experiments

Dataset No. Working conditions Crack parameters

1 300 r/min, 0 Nm Each dataset includes four types 
of health conditions: (1) normal 
conditions, (2) cracked sun gear 
(3.5 mm, 1 mm, 3.5 mm, 60°), 
(3) cracked planet gear (4 mm, 
1 mm, 4 mm, 60°), and (4) 
cracked ring gear (6 mm, 1 mm, 
4 mm, 80°)

2 300 r/min, 20 Nm

3 300 r/min, 40 Nm

4 300 r/min, 60 Nm

5 400 r/min, 0 Nm

6 400 r/min, 20 Nm

7 400 r/min, 40 Nm

8 400 r/min, 60 Nm

Figure 8 Vibration signals for dataset 1: in a the time and b fre-

quency domains
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where a(i) is the average distance from the ith point to 

other points in its cluster, and b(i, k) is the average dis-

tance from the ith point to points in another cluster k. 

�e SV of the classification is obtained based on the aver-

age of all S(i).

Table  4 presents the classification results of different 

datasets based on the four methods, along with their mis-

classification error and SV. �ere are 36 misclassification 

errors with Method 1, 44 misclassification errors with 

Method 2, 7 misclassification errors with Method 3, and 

zero misclassification errors with Method 4. In addition, 

the SV of Method 4 is greater than that of the other three 

methods for all datasets.

�e improvement of Method 4 over the other three 

methods is considered to be as follows:

where SVM4 denotes the silhouette values of the classifi-

cation using Method 4, and SVMk denotes these values for 

the other three methods, for k = 1, 2, and 3.

Figure 11 shows a comparison of the classification per-

formance between Method 4 and the other three meth-

ods. It can be observed that Method 4 consistently yields 

a better classification performance than the other three 

(16)�Sk =

SVM4 − SVMk

SVM4

× 100%, k = 1, 2, 3,

methods for the different datasets. Method 4 achieves a 

30.51% to 51.74% improvement over Method 1, 30.92% 

to 42.43% improvement over Method 2, and 0.89% to 

16.45% improvement over Method 3.

As mentioned in Section 3.1, feature extraction is one 

of the most important steps in the proposed method, and 

the parameters of the sliding Hanning window have a 

Figure 9 Comparisons between a distance evaluation criteria α and 

β based on DET and IHFST and b the corresponding feature weights 

of dataset 2

Figure 10 Classification performance of dataset 2 based on a 

Method 1, b Method 2, c Method 3, and d Method 4
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direct influence on the classification performance. �ere-

fore, the effects of the Hanning window width and slid-

ing distance on the classification performance of the four 

methods are illustrated in Figures 12 and 13, respectively.

Figure 12a–h display the effect of the window width on 

eight datasets, 1 to 8. �e window width ranges from 1 

to 6 s, and the sliding distance is fixed to 0.5 s. It can be 

seen that, as the window width increases, the SVs of the 

four methods show an increasing trend, which may result 

from too little fault-related information in each segment 

when the window width is small. In addition, Method 4 

shows a higher SV than Method 1 and Method 2 for each 

dataset, and shows a higher SV than Method 3 for data-

sets 1 to 4, and dataset 6.

Figures 13a–h display the effect of the sliding distance 

on the eight datasets, 1 to 8. �e sliding distance ranges 

from 0.1 to 0.9 s, and the window width is fixed to 4 s. It 

can be seen that, as the sliding distance increases, the SVs 

of Method 3 and Method 4 remain nearly unchanged, 

and the SVs of Method 1 and Method 2 have a small 

range of fluctuations. In addition, Method 4 shows a 

higher SV than Method 1 and Method 2 for each dataset, 

and a higher SV than Method 3 for most of the datasets.

For Method 3 and Method 4, a feature subset is selected 

from the entire feature set with a given threshold, and it is 

important to clarify the relationship between the thresh-

old and the classification performance. Hence, the effect 

of the feature selection threshold on the classification 

performance for Method 3 and Method 4 is also studied, 

as shown in Figure 14. �e thresholds for Method 3 and 

Table 4 Classi�cation performance of the four methods

Dataset
No.

Method 1 Method 2 Method 3 Method 4

Error SV Error SV Error SV Error SV

1 5 0.5618 0 0.6466 0 0.8112 0 0.8871

2 3 0.5702 7 0.5262 5 0.7343 0 0.8435

3 8 0.5610 7 0.5453 0 0.6974 0 0.8073

4 5 0.5213 14 0.4662 2 0.6766 0 0.8098

5 0 0.5688 7 0.5868 0 0.8972 0 0.9172

6 2 0.5754 1 0.6342 0 0.8729 0 0.9180

7 3 0.5224 2 0.5810 0 0.9110 0 0.9192

8 10 0.4417 6 0.5260 0 0.9028 0 0.9153

Figure 11 Comparison of classification performance between 

Method 4 and the other three methods

Figure 12 Effect of Hanning window width on classification perfor-

mance of the four methods with sliding distance of 0.5 s
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Method 4 range from 0.5 × �r(α) to 2.0 × �r(α), and 

from 0.5 × �r(β) to 2.0 × �r(β), respectively. It can be 

seen that, as the threshold increases, the SVs of Method 

3 and Method 4 have a small range of fluctuation, and 

Method 4 shows a higher SV than Method 3 for each 

dataset.

6  Conclusions
In this paper, an IHFST method combining DET, Pear-

son’s correlation analysis, and an ad hoc technique was 

proposed. A sensitive feature subset without irrelevant or 

redundant features was selected from the entire feature 

set based on the proposed IHFST method. �e k-means 

clustering method was further employed to automati-

cally partition the vibration data acquired from a plan-

etary gearbox with crack faults into several different 

classifications. To validate the effectiveness of the pro-

posed method, three types of feature selection methods 

were employed to analyze the same dataset using the pro-

posed method for comparison. �e results indicate that 

the proposed method can discriminate the four types of 

health conditions of a planetary gearbox clearly for all the 

datasets used, and no misclassifications were found. �e 

proposed method achieves a 30.51% to 51.74% improve-

ment over Method 1, 30.92% to 42.43% improvement 

over Method 2, and 0.89% to 16.45% improvement over 

Method 3. In addition, the influence of the sliding Han-

ning window and feature selection threshold on the clas-

sification performance was investigated, and the proposed 

method again achieved a better classification performance 

than the other three methods.
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