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ABSTRACT: Edge-notched eccentrically compressed fracture specimens made of aggregate of reduced size are 
loaded in standard creep test frames. Measurements of the time rate of crack mouth opening in notched concrete 
specimens subjected to constant load of almost one month duration are reported and analyzed. To reveal the 
size effect, geometrically similar specimens of four sizes in the ratio I :2:4:8 are tested. The results are success­
fully described by a previously proposed time-dependent generalization of the R-curve model, in which the rate 
of crack growth is a function of the ratio of the stress intensity factor to the R-curve, and linear aging viscoelastic 
creep in the bulk of the specimen is treated according to the operator method. Good predictions are also obtained 
with a simplified method in which the R-curve is replaced by a constant asymptotic value of the critical stress 
intensity factor and creep is handled in similarity to the effective modulus method, neglecting the history effect. 
The time curves of crack opening terminate with an infinite slope, indicating the lifetime. The finiteness of the 
lifetime is not caused by creep, but by time-dependent crack growth, which dominates the final stage of crack 
opening. The initial stage of crack opening, on the other hand, is dominated by creep. Tests are conducted both 
for concretes of normal strength of 33.4 MPa (4,847 psi) in compression and relatively high strength of 46.4 
MPa (6,442 psi). For the stronger concrete, the lifetimes are found to be longer. An increase of specimen size 
is found to decrease the lifetime. Since the same type of model was previously shown capable of describing all 
other known time-dependent fracture phenomena in concrete, a rather general applicability may be expected. 

INTRODUCTION 

During the last several decades, the time dependence of 
fracture and damage has been of key interest for many mate­
rials, including concrete, and much has been learned about the 
influence of the rate of loading [e.g., Shah and Chandra 
(1970); Wittmann and Zaistev (1972); Hughes and Watson 
(1978); Bazant and Oh (1982); Mindess (1985); Reinhardt 
(1985); Wittmann (1985); Darwin and Attiogbe (1986); Liu et 
al. (1989); Ross and Kuennen (1989); Harsh et al. (1990); 
Bazant and linisek (1993)]. However, most previous studies 
were limited in various respects. They were focused mainly 
on the loading rate effect on fracture in the dynamic range. In 
the static range, this effect was recently studied experimentally 
by Bazant and Gettu (1992) for concrete and by Bazant et al. 
(1993) for rock, with loading duration ranging from 1 s to 
almost three days. 

The modeling of rate effect in the static range is in one 
respect easier than in the dynamic range, because the inertia 
effects and the wave propagation effects need not be consid­
ered, but in another respect it is more difficult, because creep 
phenomena in the bulk of material become significant. Un­
derstanding of the effect of loading rate and load duration of 
many years is important for many concrete structures, for ex­
ample dams. The fracture parameters governing the slow 
growth of cracking in dams, which take many years to de­
velop, are very different from the fracture parameters govern­
ing the additional rapid crack growth under an earthquake. 

For quasi-brittle materials such as concrete, the modeling of 
fracture, including its time-dependent aspects, is complicated 
by the existence of a large fracture process zone. This causes 
a size effect representing a transition from plasticity-like be­
havior for small sizes to linear elastic fracture mechanics 
(LEFM) for large sizes. The size effect aspect of fracture, 
which is important for practical applications, has been studied 
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extensively during the last decade [e.g., BaZant (1984); BaZant 
and Kazemi (1990); BaZant (1995)]. 

The size effect needs to be taken into account in studies of 
rate and time dependence of fracture. Conversely, the size ef­
fect plot, that is, the plot of the nominal strength of structure 
versus the characteristic structure size, must be considered to 
depend on the loading rate or duration. This effect was ex­
perimentally explored and quantified by BaZant and Gettu 
(1989, 1992) and Bazant et al. (1993). These studies revealed 
that the loading rate significantly influences the brittleness of 
concrete, but not of rock, the brittleness being understood as 
the proximity of the response to LEFM (with changes of brit­
tleness being manifested by horizontal shift of the size effect 
plot toward LEFM). In Bazant et al. (1993), the influence of 
the loading rate on the size effect has been approximately de­
scribed by quasi-elastic analysis, in which the behavior at each 
loading rate for different specimen sizes is tested according to 
time-independent LEFM using an elastic modulus that in effect 
represents the well-known effective modulus for creep. Such 
a simplification is practically valuable but cannot be used in 
a general model, since it cannot distinguish among different 
loading histories. 

The effect of a sudden change in the loading rate in the 
static range was experimentally studied by BaZant et al. (1995) 
and Tandon et al. (in press 1997). These studies revealed a 
new phenomenon, namely a reversal of softening to hardening 
when the loading rate is increased suddenly. The test results 
on static fracture of specimens of various sizes loaded at dif­
ferent rates or with a sudden change of loading rate were suc­
cessfully described by Bazant and linisek (1993) by an exten­
sion of the R-curve model. The rate of crack length increase 
was assumed proportional to a power function of the ratio of 
the stress intensity factor to its critical value given by the R­
curve, and the creep in the bulk of the specimen was consid­
ered according to linear viscoelasticity. 

A more fundamental model of these phenomena, consisting 
of an extension of the cohesive (fictitious) crack model for 
concrete originally proposed by Hillerborg (1976) as an ad­
aptation of Barenblatt's (1959) model, has recently been pre­
sented by Bazant (1983), Wu and Bazant (1993), Bazant and 
Li (1996), and Li and Bazant (1996). In those studies, the 
activation energy theory was used to formulate a relationship 
between the cohesive (crack-bridging) stress and the crack 
opening displacement, and the operator method of linear vis-



coelasticity was applied to handle creep in the bulk of the 
structure. It was shown that the relaxation of support reaction 
of a cracked specimen as well as the shift of brittleness toward 
LEFM at a decreasing loading rate is caused by the visco­
elasticity of the material, and that the reversal of softening to 
hardening at a sudden increase of loading rate is caused by 
the activation-energy -controlled process of bond ruptures. 
Also, crack face compliance functions were used to formulate 
an efficient numerical method for the time dependence of the 
cohesive crack model. 

Although the law governing the time dependence of crack 
growth over a period of many years is of considerable practical 
interest, no tests of time dependence of fracture growth appear 
to have had durations exceeding three days. Also, no tests of 
crack growth in concrete under constant load seem to be avail­
able in the literature. This paper will report tests of crack 
growth at constant load for load duration up to almost one 
month. The tests involve concrete of normal as well as rela­
tively high strength. The previously formulated time-depen­
dent R-curve model (Bazant and linisek 1993) is adopted to 
model the results, and a method to calculate the lifetime of a 
structure based on time-dependent crack growth is presented. 

TEST SPECIMENS AND PROCEDURE 

The test specimens were eccentrically loaded fracture spec­
imens of load eccentricities e = D/8 [Figs. l(b,c)]. The reason 
for choosing a compression specimen is that this is the easiest 
specimen to subject to long-time loading. This kind of speci­
men can be loaded by means of the standard creep testing 
frames (which have already been available for this project). 
With other types of specimens, special loading frames would 
have to be built. (Loading by a testing machine over a very 
long period of time can hardly be afforded because it makes 
the testing machine unavailable for other projects.) 

Two groups of specimens were cast, with one concrete of 
normal strength and another concrete of a relatively high 
strength [Fig. lea)]. The specimens were geometrically similar 
in two dimensions, with the same thickness b = 76.2 mm (3 
in.). They were rectangular prisms of the same length-to-depth 
ratio, 8:3. The heights of the cross sections were D = 38.1, 
76.2, 152.4, and 304.8 mm (or 1.5, 3, 6, and 12 in.). For each 
specimen size and each type of concrete, three specimens were 
cast, with a side of depth D in vertical position during casting. 
Two symmetrical notches of depth DI6 and thickness 2.5 mm 
(0.1 in.) were cut by a diamond saw when the specimens 
reached the age of 28 days [Figs. l(a,c)]. 

The normal concrete was the same as that used by Bazant 
and Pfeiffer (1987), for which the fracture characteristics were 
determined in detail. The ratio of water, cement, sand, and 
gravel was 0.6: I :2:2 (by weight). The maximum aggregate 
size was da = 12.7 mm (0.5 in.) and the maximum grain size 
of sand was 12.8 mm (0.19 in.). Mineralogically, the aggregate 
consisted of crushed limestone and siliceous river sand. The 
aggregate and sand were air dried prior to mixing. Portland 
Cement 150, ASTM Type I, with no admixtures, was used. 

For the concrete of higher strength, the ratio of water, ce­
ment, sand, and gravel was 0.35: 1 : 1.4:2.4. Both a retarder 
(naphthalene based) and a high-range water reducer were used. 
The maximum aggregate size was again 12.7 mm (0.5 in.). 
Dundee Cement of ASTM Type I was used. The dosages by 
weight were 475 kg (1,047 Ib) of cement, 641 kg (1,414 Ib) 
of sand FA2, 1,152 kg (2,540 Ib) of crushed limestone gravel 
CAI5, 166 kg (366 lb) of water, 119 kg (272 lb) of fly ash 
Class C, 21 kg (46 Ib) of microsilica (W.R. Grace Force 
10,000), 1.31 L (46 oz) of naphthalene based retarder, and 6.9 
L (236 oz) of high-range water reducer (Pozzolieth 100 XR) 
per cubic meter (1.31 cu yd) of concrete. To determine the 
strength, companion cylinders of diameter 76.2 mm (3 in.) and 
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FIG. 1. Creep Specimens: (a) Edge-Notched Fracture Speci­
mens Tested; (b) Instrumented Specimen in Loading Frame (d= 
3 in.); (c) Eccentric Compression Loading and Fracture Process 
Zone; and (d) Equivalent Crack of Length a 
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height 152.4 mm (6 in.) were cast from concrete of each type. 
After the standard 28-d moist curing, the mean compression 
strength was t; = 33.4 MPa (4,847 psi) for normal concrete, 
with standard deviation 2.26 MPa (327 psi), and t; = 44.4 
MPa (6,442 psi) for the higher strength concrete with standard 
deviation 3.05 MPa (442 psi). (The latter compression strength 
value is not enough for what is today called high-strength con­
crete.) 

The specimens were cast in plywood forms and stripped one 
day after casting for the normal strength concrete, and two 
days after casting for the higher strength concrete. Subse­
quently the specimens were cured in water for 27 days at tem­
perature 25°C (77°F). After that, the specimens were placed in 
a test chamber of relative humidity 50% and 25°C (77°F). One 
day before the test the specimens were sealed by silicon poly­
mer. The ages of specimens at the start of the test were to = 
66, 31, 46, 80 (normal concrete, 50% of peak load); 99, 96, 
93, 110 (normal concrete, 70% of peak load); 177, 172, 186, 
179 (normal concrete, 90% of peak load); 549, 543,573,591 
(concrete of higher strength, 70% of peak load); and 577,561, 
621,630 (concrete of higher strength, 90% of peak load) days. 
The specimens under constant long-time load were tested in 
spring-loaded frames standardized by ASTM, as shown in Fig. 
l(b). The spring constants of all the springs were 14 kN/m 

(800 Ib/in.). One spring was used for the specimens of depth 
D = 38.1 and 76.2 mm (1.5 and 3 in.), and three springs were 
used for the specimens of D = 152.4 and 304.8 mm (6 and 12 
in.). 

For the concrete of normal strength, the applied loads under 
short-time loading were 50%, 70%, and 90% of the estimated 
short-time peak load. Because of the similarity of the concrete 
with that used before by Bazant and Pfeiffer (1987), it was 
possible to estimate the peak load using the size effect law 
UN = Bt:[1 + (DIAoda)r"2

, in which UN = nominal strength 
of specimen = PlbD, P = peak load, b = specimen thickness, 
and B, Ao = two empirical constants, which are B = 1.239 and 
Au = 4.561 according to the tests of Bazant and Pfeiffer. 
The tensile strength was estimated from the formula t: IMPa 
= OSVt;/MPa (equivalent to t:lpsi = 6Yt;/psi). 

For the concrete of higher strength, there was no prior in­
formation, and so one specimen of each size had to be used 
to determine the short-time peak loads experimentally. This 
was done by a monotonic loading test of duration about 10 
min, conducted in a servocontrolled closed-loop Materials Ser­
vice Corporation (MTS) testing machine. The results of these 
short-time monotonic loading tests are shown in Fig. 2, along 
with an optimal fit by the size effect law. After determining 
the peak loads, the aforementioned size effect law was again 
applied to smooth out the results and thus suppress the test 
errors, which provided the estimates of the short-time peak 
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FIG. 2. Logarithmic Size Effect Plot Used to Smooth Out Pre­
dictions of Peak Loads under Monotonic Short-Time Loading 
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loads. The remaining specimens were then tested under per­
manent loads representing 70% and 90% of the peak loads of 
the specimens for monotonic short-time loading. 

The specimens for the long-time tests in spring-loaded test 
frames were loaded by placing a jack at the top of the frame. 
The loading took about 15 min. The load was measured by a 
load cell. The springs were sufficiently soft to keep the load 
almost constant between any two readings. During the test, the 
crack mouth opening displacement a was measured by an in­
ductive gauge. The readings were taken at the following times 
after the end of the initial loading procedure: lOs, 20 s, 40 s, 
1 min, 2 min, 4 min, 6 min, 10 min, 20 min, 40 min, 1 h, 2 
h, 4 h, 6 h, 10 h, one day, and then every subsequent day. 
Before taking the readings, the load level was always checked 
by the load cell. Occasionally, when necessary, the load had 
to be slightly jacked up, and in that case the reading was taken 
1 min after jacking. 

TEST RESULTS AND TRENDS OBSERVED 

The test results are reported in Fig. 3 for the concrete of 
normal strength and in Fig. 4 for the concrete of higher 
strength. The scales of time as well as crack mouth opening 
displacement (CMOD) are logarithmic. The test results are 
represented by the data points. The fits shown by the curves 
have been obtained by the theory explained later. As we see, 
initially the rate of CMOD tends to increase roughly as a 
power law of time (which corresponds to the initial straight 
line portions in Fig. 3), but later this rate progressively in­
creases. In theory, it eventually approaches infinity, which 
means the lifetime is reached and the specimen breaks. 

The recorded crack mouth openings a increase relatively 
smoothly for the specimens of normal strength (Fig. 3), but 
show occasional sudden jumps for the specimens of higher 
strength (Fig. 4). This phenomenon is probably caused by the 
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FIG. 5. Final Fracture Surfaces in Concrete of (a) Normal 
Strength and (b) Higher Strength 

breaking of aggregate pieces in the concrete of higher strength. 

This is indicated by the pictures of the surface of the final 
break of the specimens (Fig. 5). In the concrete of higher 
strength, almost every aggregate piece on the crack surface is 
broken. The broken surfaces of the aggregates are seen as the 
white spots in Fig. 5(b) (located symmetrically on the sur­
faces). But in the normal strength concrete, there are only few 
such white spots. The black spots in Fig. 5(a) (which are not 
symmetrically located) are the aggregates. 

Another phenomenon that can be noticed without any math­
ematical analysis is that the specimens of higher strength tend 
to have a longer lifetime than the specimens of normal strength 
[this is probably explained by a small value of the exponent 
in (6), to be discussed later]. 

MODELING BY TIME-DEPENDENT R-CURVE AND 

CREEP IN BULK 

Fracture of quasi-brittle materials is nonlinear and can be 
modeled in three ways and with three levels of sophistication. 
The simplest model is to treat the fracture process zone as a 
point, using an adaptation of LEFM called the R-curve model. 
A more complicated but more realistic way is to treat the frac­
ture process zone as a region of a finite but variable length 
and a fixed width, zero or finite. This is done in the cohesive 
(or fictitious) crack model as well as the crack band model. 
The most realistic but also difficult way to model fracture is 
to describe it as a two-dimensional region with distributed mi­
crocracking and other inelastic phenomena, as done approxi­
mately in nonlocal models of fracture. In this study, only the 
first approach, that is, the R-curve, is used, although the re­
cently developed time-dependent formulation of the cohesive 
crack model based on crack face compliance function (Li and 
Bazant 1996) could also be used to describe the present data. 

The R-curve model has been generalized for time depen­
dence of crack growth and linear viscoelastic creep in the bulk 
material by Bazant and Jinisek (1993). That formulation is 
used to describe the present test results. For the reader's con­
venience, it is first briefly reviewed . 

Denote a = total crack length from the mouth of the notch, 
ao = DI6 = initial crack length equal to the notch length, 0: = 

aiD = relative total crack length, and 0:0 = aolD = 1/6. The 
LEFM expressions for the CMOD A and the mode I stress 
intensity factor may be written in terms of dimensionless func­
tions k(o:) and 8(0:) 

p P 
A = - 8(0:)' K = -- k(o:) 

E'b ' bVD (la,b) 

Here P = applied load, E' = E = Young's modulus for the case 
of plane stress, and E' = EI(1 - v2

) for the case of plane 
strain. The dimensionless functions 8(0:) and k(o:) characterize 
the structure or specimen geometry (its shape) but are inde­
pendent of the structure size D. Although for many situations 
these functions are listed in handbooks, for the present fracture 
specimen they do not seem to be available. These functions 
have been determined by the finite element method, using a 
procedure called the domain integral method (Moran and Shih 
(987), in which quarter-point quadrilateral elements (Barsoum 
1976) were used around the crack tip to enforce the correct 
stress singularity. This method makes it possible to obtain 
rather accurate results. Computations with 800 eight-node iso­
tropic elements and smoothing of the result by an analytical 
formula has led to the following expressions: 

8(0:) = (~~ 0:) -3/2 (0.2815 + 4.4560: + 1.6\00:2 

k(o:) = G ~ 0:) -3/2 ~(l.566 ~ 4.7380: + 7.1510:2 

~ 6.3510:3 + 2.4440:4
) 

(2) 

(3) 

In the R-curve approach, the critical value of the stress in­
tensity factor K is not a constant but is assumed to depend on 
the crack extension c = a - ao according to a certain increas­
ing function denoted KR(C). This function approximately re­
flects the gradual growth of the fracture process zone. Note 
that KR(c) = y'R(c)IE', in which R(c), called the resistance 
curve (R-curve), represents the critical energy release rate re­
quired for crack propagation. A convenient and, for the pre­
diction of maximum loads, realistic way to determine R(c) or 
KR(C) is through the knowledge of the size effect on the max­

imum loads of geometrically similar specimens. Based on the 
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size effect law, Bazant and Kazemi (1990) developed and Ba­
zant and linisek (1993) used the formula 

KR(e) = K;Vr;<;;) (4) 

in which 

pea) = [g(a) - (a - ao)g I (a)]/g(ao); g(a) = e(a) (5) 

The R-curve depends on the specimen geometry, which is re­
flected in (4) and (5). 

One important source of time dependence is a gradual 
breakage of bonds at the fracture front. In quasi-LEFM models 
such as the present R-curve model, this source of rate effect 
may be described as a dependence on the crack growth rate a 
on the applied stress intensity factor K (or the applied energy 
release rate). In similarity to a previous formulation for ceram­
ics (Thouless et al. 1983; Evans and Fu 1984), and in view of 
certain arguments based on the activation energy theory (Ba­
zant 1993, 1995), the following relation was proposed and 
justified by comparison with experiments (Bazant and Gettu 
1992; He et al. 1992): 

(6) 

where K and q = empirical material constants. By using a very 
high value of exponent q, it is possible to reach agreement 
with the fact that a change of several orders of magnitude in 
the loading rate causes the peak load to change less than by a 
factor of 2. 

The second important source of time dependence of fracture 
of concrete is the linear viscoelastic creep in the bulk material. 
The creep is characterized by compliance function J(t, to), rep­
resenting the strain in concrete at age t caused by a unit uni­
axial stress acting since age to. For creep durations not ex­
ceeding several months, the compliance function of concrete 
can be very well described by the double power law [see, e.g., 
Bazant and Cedolin (1991), Sec. 9.4] 

1 
J(t, t') = - {I + <1>1[t

,
-

m + al(t - t')"]} (7) 
Eo 

where <1>1' Eo, m, n, and al = empirical constants whose typical 
values are <1>1 between 2 and 6, Eo "" 1.5E, m "" 113, n = 118, 

and al = 0.05. 
The problem is now described by (1) with (2) and (3); (4) 

with (5); (6); and (7). This is a system of differential equations 
that is highly nonlinear, but it can be integrated as follows 
(Bazant and linisek 1993). Eq. (6) provides the time increment 
as dt = (D/K)(KR/K)q da, which achieves separation of varia­
bles t and a. Then, substituting (1b) and (4) into this equation 
and integrating, we obtain 

t = tea) = ijl-ql2 (" (/;~)q da
' 

(8) 

Tf )"" U'Nk(a ' ) 

with 

(9a,b) 

where t = a dimensionless time parameter;/: = tensile strength 
of concrete, which is introduced only for the purpose of ob­
taining a dimensionless variable; Tf = characteristic time; D = 
relative structure size; and If = (Kf //;)2 = material length for 
fatigue fracture; If is similar but not identical to the material 
length 10 = K~//: for short-time monotonic fracture (repre­
senting Irwin's characteristic size of fracture process zone, 
called by Hillerborg the characteristic length). 

The deflection at time t corresponding to a can be obtained 
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by replacing (lIE') in (la) with the viscoelastic creep operator 
corresponding to (7). This yields 

.:l(t) = i (' J(t, t') d[P8(a ' )] 

1 
(10) 

This memory integral expresses the effect of load history. Sub­
stituting P = bDU'N and dividing the equation by D, we obtain 
the following expression for the dimensionless (relative) de­
flection corresponding to t at which the relative crack length 
is a: 

- .:l(t) i' .:l(t) = - = J[t(a), t'Ca')] d[U'N 8(a ' )] 
D to 

(11) 

Eqs. (8) and (11) are valid for time-dependent U'N, although 
in the present test U'N was constant [in which case U'N can be 
brought in front of the integrals in (8) and (11)]. Eqs. (8) and 
(11) define the evolution of CMOD in time parametrically. We 
choose an increasing progression of a-values. For each of 
them, we can obtain the corresponding time by evaluating the 
integral in (8) and the corresponding CMOD by evaluating the 
integral in (11). 

In (11) we assume all the parameters to be fixed except <1>1' 

Thus according to (8) and (11), the curve of t versus .i at 
constant U'N depends only on three parameters, namely <1>1' Tf , 

and q (in comparisons to the test data, one also needs to fix 
Kf , which can be estimated according to Bazant size effect law 
and LEFM). 

For the purpose of numerical solution, we introduce discrete 
values ai (i = 0, 1, 2, 3, ... , N). Because, for most of the test 
duration, the curve of a(t) is nearly straight in the logarithmic 
scale, it is best to choose the intervals (ai, ai+l) to be approx­
imately constant in the logarithmic scale, that is, increasing as 
a power function. The subdivision a i = (5/54) + (2127)lO

iIN 

has been used. It yields a o = 1/6 and aN = 5/6, which agrees 
with the lengths of the notches in the present specimens. Ac­
cording to (8), the times ti + 1 corresponding to a i+ 1 can be cal­
culated by the recursive relation 

_ _ if It v pea) 

( )

q/2-1 ( I~ r-;-:-::)q 
t ,+ 1 = ti + D U'Nk(a) (a/+I - a,) (12) 

where c'i stands for (a, + a/+I)I2. Eq. (11) for CMOD can be 
numerically integrated as follows: 

COMPARISON OF THEORY TO EXPERIMENTAL 

RESULTS 

(13) 

To fit the test data presented here, the three parameters Tf' 

q, and <1>1 are first varied in a trial-and-error fashion until a 
qualitative agreement is found. Subsequently it is best to use 
the Levenberg-Marquardt nonlinear optimization algorithm (a 
standard library subroutine) to optimize the parameter values 
by minimizing the sum of squares of the deviations from the 
data points. In simulating the test results, it is assumed that 
the creep during the initial process of applying the load, of 
duration about 15 min, is negligible. Thus, the initial CMOD 
is calculated directly from the LEFM formula [(1a)]. 

The optimal fits of the calculation results to the test data are 
shown by the continuous curve in Figs. 3 and 4. The optimized 
parameters for the optimal fits are for the concrete of normal 
stength: Tf= 0.1842 s, q = 6.169, and <1>1 = 3.335, and for the 
concrete of higher strength: Tf = 0.5311 s, q = 5.930, and <1>1 

= 4.190. As can be seen, the calculation results agree with the 
test data reasonably well. 



ANALYSIS OF TIME-DEPENDENT BEHAVIOR AND ITS 
SOURCES 

A typical history of the relative crack length a = aiD is 
shown in Fig. 6(b), in conjunction with the corresponding 
CMOD history in Fig. 6(a). Fig. 7 shows typical calculated 
CMOD histories in the logarithmic and linear time scales, and 
illustrates how the history approaches a vertical asymptote rep­
resenting the end of lifetime. Fig. 7 further shows the CMOD 
histories when only creep is taken into account, or when only 
the time-dependent crack growth is taken into account. 

From these comparisons it becomes clear that the lifetime 
can approximately be divided into three stages. In stage I, the 
CMOD increase is primarily governed by creep in the bulk of 
the specimen. In stage 2, both the creep and the time-depen­
dent crack growth have a significant effect. In stage 3, the final 
one, the CMOD increase is primarily governed by the time­
dependent crack growth. In that stage the CMOD rate ap­
proaches infinity, which means the end of lifetime. Further it 
is observed that the lifetime is governed mainly by the time 
dependence of crack growth. The lifetime is not significantly 
affected by creep because the vertical asymptotes that are ap­
proached by the curve for time-dependent crack growth only 
and by the curve for the combined effect with creep are found 
to be virtually the same. 

Comparing Figs. 3 and 4, it further appears that the CMOD 
histories for the concrete of the higher strength have longer 
stages 1 and 2 and a shorter stage 3 than the CMOD histories 
for concrete of normal strength. Furthermore, it transpires from 
the comparison that the lifetime is longer for the concrete of 
higher strength. Actually, with Tf and q known, one can easily 
evaluate K = 48.1 mmls (18.9 in.ls) for the concrete of normal 
strength and 17.6 mmls (6.95 in.ls) for the concrete of higher 
strength. Because coefficient K and exponent q in (6) are 
smaller, the specimens made of concrete of higher strength 
have a more prolonged stage II, which mainly determines the 
lifetime. 

The experimentally observed lifetimes are listed for all the 
specimens in Table 1. Although the initial CMOD curves for 
specimens of the same concrete loaded to the same percentage 
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TABLE 1. Lifetimes from Experiments and R-Curve 

Life Span (d) 

Specimen and load" Experimental 

(1 ) (2) 

N3 x 1.5 x 4 50% -
N3 x 3 x 8 50% -
N3 x 6 x 16 50% -
N3 x 12 x 32 50% -
N3 x 1.5 x 4 70% 9 
N3 x 3 x 8 70% 2 
N3 x 6 x 16 70% 2 
N3 x 12 x 32 70% 4.5 
H3 x 1.5 x 4 90% Failed during loading 
N3 X 3 x 8 90% 0.21 
N3 X 6 X 16 90% 2 
N3 X 12 X 32 90% 3 
H3 X 1.5 X 4 70% 22 
H3X3X8 70% 14.21 
H3 X 6 X 16 70% 17 
H3 X 12 X 32 70% 28.13 
H3 X 1.5 X 4 90% 9 
H3 X 3 X 8 90% 14 
H3 X 6 X 16 90% 7.21 
H3 X 12 X 32 90% 7 

Note: N. normal concrete; H. high-strength concrete. 
'Percentage of peak load . 

Theoretical 

(3) 

123 
81 
76 
76 
15 
10 
9.5 
9.5 
3.3 
2.3 
2.2 
2.1 

18 
17 
16 
16 
4.9 
4.7 
4.6 
4.6 

of the peak load are quite different, they tend to have about 
the same lifetime; for example, note the four specimens of 
higher strength concrete under 70% of their peak load, which 
all have failed between 14 and 21 days of loading despite 
rather different initial responses (the periods of 14 days and 
21 days are quite close in the logarithmic time scale). Fig. 7 
also provides visual evidence that the creep alone cannot cause 
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failure within a finite lifetime, but the time-dependent crack 
growth alone, without creep, can. 

The calculated lifetimes in Table 1 are plotted in Fig. 8 as 
a function of specimen size D (solid lines), separately for var­
ious load levels and concrete types. The measured data points 
are also plotted. As we see, although there is a slight decrease 
of the calculated lifetimes with increasing size D, the decrease 
is negligible compared to the scatter of test results. One can 
conclude only that, for a given constant percentage of peak 
load for monotonic loading, the calculated lifetimes are ap­
proximately independent of specimen size D. The test data are 
highly scattered and do not disagree with this conclusion. 

At the last ConCreep Conference in Barcelona, Spain (Ba­
zant 1993), a provocative unorthodox proposition was made: 
The nonlinearity of concrete creep due to high stress is only 
apparent. In reality, nonlinear creep does not exist. Nonlinear 
creep realIy represents nothing but a manifestation of time­
dependent growth of microcracks. The present findings tend 
to confirm this proposition. The crack opening increases with 
the load level in a highly nonlinear fashion, much faster than 
proportionalIy. This is due to the high value of exponent q in 
(12) [or in (16)], which tends to shorten the times correspond­
ing to the linear portion of the deflection curve in (11). Func­
tion Sea) in (11) also contributes to this nonlinearity. 

SIMPLIFIED SOLUTION NEGLECTING HISTORY 
EFFECT 

As is welI known from linear viscoelasticity, without or with 
aging, good solutions can often be obtained by using the ef­
fective modulus method in which the details of the stress his­
tory are neglected and its effect on creep is lumped into one 
parameter. The creep strain is calculated as if the creep-pro­
ducing variable (which is stress) were constant in time and 
equal to its current value. According to (10), the creep-pro-
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ducing variable is here the product O'NS(a), and the effective 
modulus is the inverse of J(t, to). Therefore, in analogy with 
the effective modulus method, one may expect that the equation 

(14) 

should give good estimates of the relative crack opening due 
to creep in the bulk of the specimen. 

As for the crack growth law, neglecting the effect of history 
essentially means neglecting the R-curve and taking the critical 
value of the stress intensity factor to be constant. For the life­
time, as already commented on, the rate of crack growth in 
the final stage of the test is most important. In the final stage, 
the crack has already grown significantly and the value of KR 

must already have closely the approached K" the final critical 
stress intensity factor. Thus, omitting the history effect, the 
following relation appears appropriate: 

(15) 

The foregoing approach greatly simplifies numerical solu­
tion, making it superfluous to evaluate the creep integrals over 
time. This reduces the programmer's effort and computer time. 
By discretizing (14) and (15) in the same manner as before, 
we get for the times corresponding to various crack lengths 
ai+1 the recursive relation 

(

I )q/2-1 ( )q 
(i+1 = (i + i (J'~(a) (ai+1 - ai) (16) 

The corresponding CMOD, according to (14), then is 

(17) 

This simplified solution is shown in Fig. 9 by the dashed 
curve for one typical case of response. The exact solution ac­
cording to the present model with R-curve and a memory-type 
creep law is shown by the solid curve. The two solutions are 
seen to be extremely close. Thus, for practical purposes, the 
simplified solution that neglects the history effect is sufficient. 
In fact, it is even on the safe side, giving a slightly shorter 
lifetime than the exact solution. 

Like the preceding accurate solution, the simplified solution 
shows that the lifetime depends on both the crack growth law 
and the law of creep. 

CONCLUSIONS 

1. The effect of long-time loading on fracture growth in 
concrete can be effectively measured on edged-notched eccen­
trically loaded compression fracture specimens, using the same 
loading frames as for long-time compression creep tests. 



2. The time-dependent fracture model developed previously 
(BaZant and linisek 1993) was verified by test data up to only 
three days of duration. which included constant displacement 
rate tests, tests with a sudden change of displacement rate, and 
stress relaxation tests. The present test results confirm that this 
model can also successfully describe time-dependent fracture 
behavior up to about one month duration. There are two es­
sential aspects of the model: (1) a power law relating the crack 
growth rate to the applied stress intensity factor; and (2) a 
linearly viscoelastic creep in the bulk of the structure. The 
crack growth model is properly formulated as a generalization 
of the R-curve model. 

3. The description of the test results for sustained load does 
not get significantly worse if one uses a simplified model in 
which creep is handled in the sense of the effective modulus, 
neglecting the effect of variable stress history, and the R-curve 
is replaced by a constant critical stress intensity factor equal 
to the final value of the R-curve. 

4. The time curve of crack mouth opening displacement can 
be subdivided into three stages. In the first stage, in which the 
rate of crack opening is decreasing with time, the response is 
governed mainly by viscoelastic behavior in the bulk. In the 
second stage. the time-dependent crack growth law becomes 
also important. The third stage. which leads to an infinite 
opening rate (failure, end of lifetime), is dominated by the 
time-dependent crack growth law reflecting the rate of bond 
breakages, while the creep becomes unimportant. 

5. For a material without creep (e.g., rocks or ceramics). 
the theory also predicts a finite lifetime. But for a hypothetical 
material without time-dependent crack growth. the lifetime 
would be predicted as infinite. 

6. In a concrete of higher strength, the stage dominated by 
creep lasts longer and the time-dependent crack growth is 
manifested later. This causes that, for the same ratio of the 
applied load to the peak load at short-time monotonic loading. 
the specimens of the stronger concrete have a longer lifetime. 

7. Although the lifetime, as calculated for geometrically 
similar specimens of different sizes loaded to the same per­
centage of the monotonic peak load, slightly decreases with 
increasing size, this effect is hardly discernible from the test 
results, due to scatter. Approximately, the same load ratio 
means about the same lifetime, regardless of structure size. 

8. The measured time curves of crack mouth opening dis­
placement are relatively smooth for concrete of normal 
strength but exhibit sudden jumps for concrete of higher 
strengths. These jumps may be explained by the fact that, in 
a concrete of high strength, the crack tends to cut in sudden 
jumps through the aggregate pieces rather than pass around 
them. 
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