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Destemming fresh chilli fruit (Capsicum) in large productivity is necessary, especially in the Mekong Delta region. Several studies
have been done to solve this problem with high applicability, but a certain percentage of the output consisted of cracked fruits, thus
reducing the quality of the system. The manual sorting results in high costs and low quality, so it is necessary that automatic grading
is performed after destemming. This research focused on developing a method to identify and classify cracked chilli fruits caused by
the destemming process. The convolution neural network (CNN) model was built and trained to identify cracks; then, appropriate
control signals were sent to the actuator for classification. Image processing operations are supported by the OpenCV library, while
the TensorFlow data structure is used as a database and the Keras application programming interface supports the construction and
training of neural network models. Experiments were carried out in both the static and working conditions, which, respectively,
achieved an accurate identification rate of 97 and 95.3%. In addition, a success rate of 93% was found even when the chilli body
is wrinkled due to drying after storage time at 120 hours. Practical results demonstrate that the reliability of the model was
useful and acceptable.

1. Introduction

Chilli (Capsicum) is an important crop and is considered an
almost indispensable spice in daily life [1]. The trace ele-
ments, minerals, and nutrients in their fruits have good
health properties [2–5]. This crop is grown year-round, sea-
sonally independent [6]; particularly, in the Mekong Delta
(MD), high-yield species often grow, such as ChanhPhong
F1, ChanhPhong F4, DongtienVang, and MuiTen 207.

Chilli products on the market are very diverse [7], and
their value in Vietnam’s agricultural value chain is enhanced
through processing processes [8, 9]. Drying steps are usually
done using solar energy due to its low cost and ease of imple-
mentation [10, 11]. The stem removing systems have been
studied with the goal of increasing productivity and automa-

tion, reducing the dependence on manual labor [12–18].
These automated systems often cause cracking on the fruit
body, while manual sorting reduces quality and increases
cost; so, an automatic identification and sorting system of
damaged fruits is needed to improve quality.

Several works have been done to detect outer surface
defects of fruits and seeds [19–22]. In recent years, the
computer vision used in combination with artificial neural
networks (ANN) has become a very successful method in
many fields [23–30]. With structures such as biological neu-
ral networks, ANN can be trained to identify desired objects
[31–33]. Using ANN, a model was built to detect, locate, and
estimate fruit sizes [34–38]. Combined with the image
threshold method to detect the direction of the chilli stem,
the ANNmodel has been developed on CUDA (GPU), which
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obtained 79 times faster than the CPU that allows real-time
deployment due to outstanding processing speed [17].

The research in mango cultivating and grading has been
studied [39, 40]. They have proved the strength of combining
computer vision with ANN in complex identification appli-
cations. Moreover, nondestructive classification and size-
based sorting technology using computer vision and artificial
neural networks were built [41–43]. By using YOLOv3 and
the deep learning process, a model was built up to detect
lychee fruits in low-light environments at night [44]. Another
algorithm using an RGB-depth camera together with Dee-
pLabv3 was also built to detect and to position the litchi fruit
on the branch [45].

Computer vision has also been developed as a multivision
solution in a complex and dynamic environment [46–48].
General reviews on fruit classification and identification of
spoiled agricultural products using computer vision, in com-
bination with a straight propagation neural network and
deep learning process, were evaluated [49–51]. They all show
that ANN has much strength and is perfectly suitable for
identification applications.

In order to remove the stemwith less damage, it is better to
rely on the separation method—a method in which the stems
are clamped and pulled away from the fruit body until they are
separated [52]. This method obtained good results. However,
it also led to fruits cracking at the position adjacent to the stem
as described in Figure 1, thus reducing quality as well as pro-
ductivity. Cracked chilli in the finished product will reduce
the quality and affect other intact fruits during storage.

This research focuses on developing an identification
model to classify fresh chilli fruits that have cracks caused
by the destemming process (Figure 1). This system is placed
right after the stem separation system to eliminate cracked
ones, increasing the quality and uniformity of the finished
chilli group after splitting. Computer vision was used to pro-
cess input images, and the propagation artificial neural net-
work has been trained to determine whether cracks appear
on the chilli fruit or not. Then, the appropriate signals were
sent to the actuator to push them into the appropriate group.

2. Materials and Methods

2.1. ConvolutionNeural Network, Input Library, andTraining
Process. To carry out the crack identification process, a linear
forward propagation convolution neural network model was
chosen for application because its simplicity will help speed
up processing in real-time applications. The network defined
in this study consisted of three layers, as shown in Figure 2:

(i) One input layer included 1024 neurons. An original
image in dimension 32 × 32 pixels, through the con-
volution 32, 64, 128, and 256 kernels with dropout
rate ½, will reduce the size accordingly to 32 × 32,
16 × 16, 8 × 8, and 4 × 4 pixels. The final was a
matrix with 1 column and 4 × 4 × 256 = 1024 rows.
This was the input of the neural network. To achieve
a good matching, the number of input neurons was
selected as 1024

(ii) One hidden layer included 64 neurons. All of them
were fully connected and linked to all outputs in
the next layer

(iii) One output layer had 2 neurons corresponding to 2

outputs. They were defined as O1 =
“
0
” in the case of

input images without cracks and O2 =
“
1
” in the case

of input images with cracks

Python was the most popular language used in image
processing, identification, and object detection applications.
With friendly programming interface, large open-source
library, and strong communication features, it was chosen
as the main programming language for this study.

OpenCV and TensorFlow were used as the main library
for performing image processing tasks and data structure.
Convolutional layers were used to process and extract fea-
tures of the input image, while the dropout method was used
to reduce the size of the input image or, in other words, to
reduce the required physical memory used in processes.
The Keras application programming interface (API) is used
to build and train a sequential neural network model.

The image processing sequence and neural network
model training are depicted in Figure 3. The original data
includes 6000 gray images in the size of 32 × 32 pixels
through 4 transformed operations: rotate 45°, flip, enlarge,
and stretch, which will create a dataset of 30,000 images.
They were then resized to 32 × 32 pixels. After four convolu-
tion operations with pixel reduction ratio ½ and one image
flatten operation, each 32 × 32 image was transformed to a
data matrix in grayscale of size 1024 × 1. The neural network
training was performed in batch size 32 images, and the
maximum number of epochs was set to 20. The training
result is a model saved in .h5 format.

To train the neural network, the set of 6000 images in size
32 × 32 pixels was collected selectively. This was divided into
two groups:

(i) The crack group consisted of 3000 images, wherein
2400 images were used for training and other 600
ones were used for validation

(ii) The noncrack group also consisted of 3000 images
with the same division percentage

The image conversion process is described in Figure 4. A
noncrack image with 32 × 32 pixels through convolution 32
kernels (sizes 3 × 3) created a three-dimensional data matrix
in size 32 × 32 × 32 as presented in Figure 4. Similarly,
through the convolution 64, 128, and 256 kernels with drop-
out rate ½, tensors in size 16 × 16 × 64, 8 × 8 × 128, and 4 ×

4 × 256 were, respectively, generated. Finally, the flattening
step transferred the 4 × 4 × 256 three-dimensional matrix
into a 1024 × 1 one, which was suitable for the neural net-
work input.

2.2. Hardware Setup. A block diagram of the crack identifica-
tion process is shown in Figure 5. Details of the parts are pre-
sented in Figure 6:

Conveyor belt: used 8mm pitch timing belt;
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V-shaped slots: positioned and kept chilli fruits in the
grooves, with a properly calculated pitch of 24mm;

Main motor and transmission belt: drive the conveyor
belt;

Camera 5.5mm diameter with LED lighting attached;
Raspberry Pi 4 computer (or personal computer);
Arduino UNO R3 microcontroller: received control sig-

nals from Raspberry computers (or personal computers)
and controlled stepper motors via driver TB6600;

Cover box: eliminated external light, stabilizing the
brightness of the internal working environment around the
camera. The inner surface of the cover box was white and
translucent to reduce the reflective effect;

Pushing motor: rotated the elastic rods to push cracked
chilli out of the conveyor belt. The size and elasticity of the
rods, as well as the diameter, elevation, and rotation speed
of the rods, were carefully selected.

V-shaped slots were made of plastic and manufactured
by the 3D printing method. They were fixed onto the con-
veyor belt by countersunk head screws and adhesive simulta-
neously. The hardware assembly is described in Figure 7. The
motor position was designed to be adjustable in two linear
directions, while the camera could be moved in two transla-
tional directions and one rotational direction.

2.3. Control Flowchart. The identification flowchart of the
process is depicted in Figure 8. After starting (Start), the neu-
ral network model in .h5 format (obtained through the train-
ing process as described in Section 2.1) was loaded to the
working memory. After that, the “Set start position” opera-
tion needs to be carried out for both the conveyor belt and
the pushing motor. Every time the numeric keypad “1” was
inputted and “Enter,” the main motor was driven to rotate
at an angle of 1.8°. This step was repeated until the symmet-

rical plane of the V-shaped slot, the center of the camera, and
the position of the pushing rods were on the same surface as
the A-A section in Figure 6. At this position, fruits would
have appeared completely in the target area, as described in
Figure 9. Every time the numeric keypad “2” was inputted
and “Enter,” the pushing motor was controlled to rotate at
an angle of 1.8°. Continue this step until the pushing rods
were horizontal, as shown in Figure 7(a).

Once the initial position has been set correctly, press the
“S” key and “Enter,” and the identification process began
with the camera capturing the image and saving it to the
working memory. This image was converted to grayscale,
then cropped 160 × 160 pixels in the target area, where cracks
appeared. Next, its size was reduced to 32 × 32 and trans-
formed into a matrix of 1024 rows × 01 column in order to
make it compatible with the CNN input. Then, it was com-
pared with the crack model, which has been uploaded on
memory. CNN results returned the value “1” if there was a
crack in the input image; otherwise, the return value was
“0.” The actuators were operated as follows:

(i) If the return from CNN was “1,” the control signal
would be sent to rotate the pushing motor 180° to
push the chilli fruit away from the conveyor belt;
then, it continued to control the main motor to move
the conveyor forward 24mm step in order to bring
the new fruit into the target area

(ii) If the return from CNN is “0,” the pushing motor
rotation control signal was ignored, and only the
main motor control was performed

The steps from capturing, identifying, CNN comparing
to pushing were repeated until a stop signal (Stop) was
found.

Figure 1: Cracked chilli fruit bodies caused by the destemming process.
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Figure 2: The convolution neural network.
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2.4. Experimental Setup. To assess this model, three experi-
ments were set up to test the identification ability under
different working conditions.

2.4.1. Experiment I: Static Identification. This first experi-
ment was used to verify the model’s ability to identify under
the static condition. First, destemmed fruits (with or without
cracks) were placed in the target area on the V-shaped slot.
Then, the recognition algorithm was started while the entire
conveyor and the chilli were completely still. The display
observed on the computer is shown in Figure 9. Results on
the screen returned the word “Crack” if there were cracks
on the fruit; otherwise, it returned the word “Non_Crack.”
There were 200 fruits, each of which was identified five times,
corresponding to a total of 1000 tests, of which 500 times had
cracks and 500 times had no cracks.

2.4.2. Experiment II: On-Working Identification. This second
test helped verify the identification ability when the conveyor

belt was working, including moving parts that affected the
recognition accuracy.

A code was written to identify every batch of 10 fruits.
Initially, 10 fruits were placed in the V-shaped slot. When
the initial position has been set, the first fruit was moved
to the target area; the conveyor was stopped for 0.3 seconds
to carry out identification and push. Then, the next ones
were in turn taken to working position until finishing the
whole batch.

This experiment was done on 200 fruits, of which 50% of
fruits had cracks and others had no cracks. Each of them was
identified five times, corresponding to a total of 1000 tests or
equivalent to 100 batches.

2.4.3. Experiment III: Identification Ability during Storage
Time. Due to practical processing conditions, chilli fruits
were destemmed after a certain storage period from harvest.
This third experiment was designed to evaluate the model’s
identification ability at storage periods from 0 to 168 hours.

Load library: Opencv,
keras, tensorFlow
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Activation: “Elu”
Hidden neuron: 64

Flatten: input layer:
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Figure 3: The artificial neural network training process.
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There were 8 samples harvested at the same time, stored
in nylon bags, and placed in a well-ventilated room with tem-
peratures ranging from 25 to 30°C. Each sample of 50 fruits
was identified, similar to Experiment II described in Section
2.4.2. The first sample was identified right after being picked
from the tree (0 hours). After every 24 hours, samples were
used in turn to perform experiments until 168 hours.

Each fruit was identified four times; thus, there were a
total of 200 identities in every sample. Results were recorded
and analyzed to assess the effect of storage time on the iden-
tification quality of the algorithm.

3. Results and Discussions

3.1. Static Identification Results. Experimental results in the
static condition are presented in Table 1. The exact crack rec-
ognition rate reached 97.6% and was higher than 96.4% in
the case of noncrack. The difference was relatively small at
1.8%; thus, the model was considered to have the same iden-
tification ability for both the crack and noncrack fruits.

3.2. On-Working Identification Results. A comparison of the
identification rate in the working condition and the static

Non-crack orignal image

Convolution
32 kernels
(3×3)

Convolution
64 kernels
(3×3)

Convolution
128 kernels
(3×3)

Convolution
256 kernels
(3×3)

Crack orignal image

Figure 4: Image transformation to neural network input during the training process.
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Figure 5: Block diagram of the identification process.
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condition is presented in Figure 10. The exact recognition
rate decreased slightly from 97.6 to 96.4% for cracked chilli
fruits while having a significant reduction from 96.4 to 94%
in noncrack ones. The causes were supposed by the effect of
vibrations that blurred input images, thus increased crack-
like features on the image of noncrack fruits. This led to less
accurate identification. While for crack ones, the images
already had those features, so vibration had less effect.

When the identification algorithm was running, the con-
veyor belt and the fruits were still standing. But the move-
ment caused both the system and the camera to continue
vibrating for a while after stopping. The solution was offered
to move the camera out of the frame or use a high-shutter
speed camera to increase the input image quality.

In this current study, cracked fruits were detected and
pushed away. The exact recognition rate of 96.6% in the crack
group equivalent to 3.4% of them was recognized as non-
crack. They would not be pushed away, left on the conveyor
belt, and mixed in the noncrack group.

In fact, the destemming system had a relatively low crack
rate. By adding this grading system, this rate would be
reduced significantly. Assume that for every 100 kg of des-
temmed chilli, there was 5% (equivalent to 5 kg) cracked.
Passing this system, only 3.4% of the 5 kg will remain in the

finished group. Thus, the error rate was improved from 5%
initially to 0.1786% after treatment.

3.3. Effects of Storage Time to Identification Ability. Identifi-
cation ability by storage time is evaluated and presented in
Figure 11. It can be seen that the accurate detection rate after
24 hours of storage was stable and declined slightly to 93% at
120 hours. After that, there was a rapid decrease to 90% at
144 hours, which fell down to only 85% at 168 hours of stor-
age. This decline was explained by the fruit’s wrinkles during
the drying and dehydration process, resulting in regions of
the input image with crack-like features. Those wrinkles were
misidentified as cracks and led to a low accuracy rate. Dur-
ing the first period of storage from 0 to 96 hours, the fruit
body shrank size was not large enough to cause a false iden-
tification, so the accuracy rate was almost not changed. Over
time, those wrinkles enlarged enough to be recognized.
From these results, when using the crack identification
model, the destemming operation should be done during
the period of 0 to 96 hours of storage to ensure good identi-
fication and classification.

A sample of the noncracked chilli was chosen to store and
examine the wrinkle of the fruit body. As described in
Figure 12(a), there was no wrinkle until 24 hours of storage.
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Figure 6: System designation.
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Figure 7: Hardware assembly.
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As time was prolonged at 72 hours, small deformations
appeared, as shown in Figure 12(b), but their sizes were so
small that they did not confuse the identification. By 120

hours, the deformations became so large that they were easily
observed by visual inspection. As shown in Figure 12(c), the
concave and convex appeared with sizes and features similar
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Figure 8: Control flowchart of the grading process.
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Table 1: Static identification results (Experiment I).
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fruits

Identity
times/fruit

Total
identities

Exact
identity
times

Exact
rate

Crack 100 5 500 488 97.6%

Noncrack 100 5 500 482 96.4%

Total 200 1000 970 97%
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to cracks, thus reducing the accuracy. Those wrinkles contin-
ued to expand after 120 hours, especially at 168 hours, as
shown in Figure 12(d).

In the production process, to ensure the quality of the
fresh chilli, stem separation was usually done during the first
36 hours of storage. Therefore, the decrease in the accurate
identification rate was negligible under these practical
conditions.

4. Conclusions

The CNN model has been developed to identify and classify
fresh chilli fruits with cracks caused by the destemming pro-
cess, thus increasing the efficiency of the processing. The
accurate recognition rate of 95.2% has proved that the model
was reliable and suitable to be applied in practice. In addition,
after 120 hours of storage with wrinkled skin, test results for
destemmed fruits also yielded an accuracy of 93% and met
the required reliability. Thismodel helps to improve the auto-
matic ability of the destemming and sorting system. By
adding this grading method, the destemming system has
higher applicability in real production. Because the test was
performed in step mode, studies on increasing accuracy in
real-time identification would be carried out in further works.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Additional Points

Highlights. The manual sorting of cracked chilli after destem-
ming results in high costs and low quality; thus, automatic
grading is necessary to be performed. The convolution neural
network (CNN) model was built and trained to identify
cracked fruits in order to classify them into one group.
OpenCV, TensorFlow library, and Keras API were used to
support this work. Experiments achieved an accurate identi-
fication rate of 95.3%. Moreover, a success rate of 93% was
found even in wrinkled chilli bodies during the drying and
dehydration process.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

95 95

90

85

70

80

90

100

0 24 48 72 96 120 144 168

E
xa

ct
 i

d
en

ti
�

ca
ti

o
n

 p
er

ce
n

ta
ge

 (
%

)

Storage time (hour)

On-working

90

85

0 24 48 72 96 120 144 168

Storage time (hour)

On-working

94 94 94
93

Figure 11: The decrease in identification ability during storage time.

5 mm

(a) 24 hours

5 mm

(b) 72 hours

5 mm

(c) 120 hours

5 mm

(d) 168 hours

Figure 12: The wrinkles of the fresh chilli fruits at different periods of storage time.

8 Journal of Sensors



Acknowledgments

Quoc-KhanhHuynh was funded by the Vingroup Joint Stock
Company and supported by the Domestic Master/Ph.D.
Scholarship Programme of Vingroup Innovation Foundation
(VINIF), Vingroup Big Data Institute (VINBIGDATA). The
authors also would like to thank Chi-Tinh Vo, Huu-Quan La,
and Minh-Tri Nguyen for their enthusiastic participation in
this research.

References

[1] W. B. Paul and J. V. Eric, Peppers: Vegetable and Spice Sapsi-
cums, Centre for Agriculture and Bioscience International,
2nd edition, 2013.

[2] R. Arimboor, R. B. Natarajan, K. R. Menon, L. P. Chandrase-
khar, and V. Moorkoth, “Red pepper (Capsicum annuum)
carotenoids as a source of natural food colors: analysis and sta-
bility—a review,” Journal of Food Science and Technology,
vol. 52, no. 3, pp. 1258–1271, 2015.

[3] G. Subha, K. P. Praveen, A. P. Parveez, and S. Vijay, “Medicinal
Properties of Chilli Pepper in Human Diet: An Editorial,” ARC
Journal of Public Health and Community Medicine, vol. 2,
no. 1, pp. 6-7, 2017.

[4] Z. Shi, “Chilli intake is inversely associated with hypertension
among adults,” Clinical Nutrition ESPEN, vol. 23, pp. 67–72,
2018.

[5] A. Srivastava, V. R. Sharma, M. Dishri, A. Dikshit, M. Mangal,
and P. Kalia, “Inheritance of fruit attributes in chilli pepper,”
Indian Journal of Horticulture, vol. 76, no. 1, pp. 86–93, 2019.

[6] R. D. R. Elizanilda, M. D. R. Mailson, and L. F. Fernando, Pro-
duction and Breeding of Chilli Peppers (Capsicum spp.),
Springer International Publishing, 2016.

[7] J. Wilbur, “Final report on the safety assessment of Capsicum
annuum extract, Capsicum annuum fruit extract, Capsicum
annuum resin, Capsicum annuum fruit powder, Capsicum
frutescens fruit, Capsicum frutescens fruit extract, Capsicum
frutescens resin, and capsaicin,” International Journal of Toxi-
cology, vol. 26, no. 1, pp. 3–106, 2007.

[8] N. T. T. An and V. T. T. Loc, “Financial efficiency of chili
farmers in the Mekong Delta,” Can Tho University Journal of
Science, vol. 48D, pp. 87–95, 2017.

[9] V.-T.-T. Loc, N.-P. Son, L. Huon et al., “Analysis of chili value
chain in Dong Thap Province,” Can Tho University Journal of
Science, vol. 38D, pp. 107–119, 2015.

[10] C. Nimrotham, R. Songprakorp, S. Thepa, and V. Monyakul,
“Experimental research of drying red chili by two methods:
solar drying and low - temperature system drying,” Energy
Procedia, vol. 138, no. 1, pp. 512–517, 2017.

[11] N. R. Pochont, M. N. Mohammad, B. T. Pradeep, and P. V.
Kumar, “A comparative study of drying kinetics and quality
of Indian red chilli in solar hybrid greenhouse drying and open
sun drying,” Materials Today: Proceedings, vol. 21, pp. 286–
290, 2020.

[12] R. P. Herbon, E. Cillessen, M. Gamillo, and M. Hyde, “Design-
ing a high volume chile de-stemming machine,” in ASABE
Meeting Presentation, Pennsylvania, 2010.

[13] R. Herbon, D. Cillessen, E. Gamillo, and A. Hyde, “Engineer-
ing a machine to remove stems from chile peppers-a critical
need for the new Mexico chile industry,” in American Society

of Agricultural and Biological Engineers Annual International
Meeting, Nevada, 2009.

[14] Tabanli Machine Industry & Trade Ltd Co, “Pepper process-
ing lines,” http://www.tabanli.com/food/eng/product21.htm.

[15] A. Carl, E. Rasmussen, O. George, and M. Tiura, “Pepper sta-
tion,” USPTO, 1974.

[16] N. B. Kodali, “System and method for de-stemming produce
and preparing produce for de-stemming,” USPTO, 2014.

[17] M. Gunes and H. Badem, “Detecting direction of pepper stem
by using CUDA-based accelerated hybrid intuitionistic fuzzy
edge detection and ANN,” Journal of Sensors, vol. 2016, Article
ID 4052101, 11 pages, 2016.

[18] R. J. Knorr and J. Victor, “Pepper de-stemming,” USPTO,
2008.

[19] A. Davenel, C. Guizard, T. Labarre, and F. Sevila, “Automatic
detection of surface defects on fruit by using a vision system,”
Journal of Agricultural Engineering Research, vol. 41, no. 1,
pp. 1–9, 1988.

[20] E. Moltó, F. Plá, and F. Juste, “Vision systems for the location
of citrus fruit in a tree canopy,” Journal of Agricultural Engi-
neering Research, vol. 52, no. 1, pp. 101–110, 1992.

[21] V. Leemans, H. Magein, and M. F. Destain, “AE–automation
and emerging technologies: on-line fruit grading according
to their external quality using machine vision,” Biosystems
Engineering, vol. 83, no. 4, pp. 397–404, 2002.

[22] S. Huang, X. F. Fan, L. Sun, Y. L. Shen, and X. S. Suo, “Research
on classification method of maize seed defect based on
machine vision,” Journal of Sensors, vol. 2019, Article ID
2716975, 9 pages, 2019.

[23] J. R. Parker, Algorithms for Image Processing and Computer
Vision, Wiley Publishing, 2nd edition, 2010.

[24] D.W. Sun, Computer Vision Technology for Food Quality Eval-
uation, Elsevier, 2nd edition, 2008.

[25] R. C. Gonzalez and R. E. Woods, Digital Image Processing,
Prentice Hall of India Pvt. Limited, 2nd edition, 2002.

[26] V. Flores, B. Keith, and C. Leiva, “Using artificial intelligence
techniques to improve the prediction of copper recovery by
leaching,” Journal of Sensors, vol. 2020, Article ID 2454875,
12 pages, 2020.

[27] F. L. Han, J. Z. Yao, H. T. Zhu, and C. H. Wang, “Underwater
image processing and object detection based on deep CNN
method,” Journal of Sensors, vol. 2020, Article ID 6707328,
20 pages, 2020.

[28] J. Liu and R. Zhang, “Vehicle detection and ranging using two
different focal length cameras,” Journal of Sensors, vol. 2020,
Article ID 4372847, 14 pages, 2020.

[29] W. Viriyavit and V. Sornlertlamvanich, “Bed position classifi-
cation by a neural network and Bayesian network using nonin-
vasive sensors for fall prevention,” Journal of Sensors,
vol. 2020, Article ID 5689860, 14 pages, 2020.

[30] J. Wang, M. Shen, L. Liu, Y. Xu, and C. Okinda, “Recognition
and classification of broiler droppings based on deep convolu-
tional neural network,” Journal of Sensors, vol. 2019, Article ID
3823515, 10 pages, 2019.

[31] S. S. Haykin, Neural Networks and Learning Machines, Pear-
son, 3rd edition, 2016.

[32] K. Suzuki, Artificial Neural Networks: Architectures and Appli-
cations, InTech, 2013.

[33] G. Cristobal, P. Schelkens, and H. Thienpont, Optical and Dig-
ital Image Processing: Fundamentals and Applications, Wiley-
VCH Verlag, 2011.

9Journal of Sensors

http://www.tabanli.com/food/eng/product21.htm


[34] A. Gongal, S. Amatya, M. Karkee, Q. Zhang, and K. Lewis,
“Sensors and systems for fruit detection and localization: a
review,” Computers and Electronics in Agriculture, vol. 116,
no. 1, pp. 8–19, 2015.

[35] A. Gongal, M. Karkee, and S. Amatya, “Apple fruit size estima-
tion using a 3D machine vision system,” Information Process-
ing in Agriculture, vol. 5, no. 4, pp. 498–503, 2018.

[36] L. Fu, S. Sun, R. Li, and S. Wang, “Classification of kiwifruit
grades based on fruit shape using a single camera,” Sensors,
vol. 16, no. 1012, pp. 1–14, 2016.

[37] G. Lin, Y. Tang, X. Zou, J. Li, and J. Xiong, “In-field citrus
detection and localisation based on RGB-D image analysis,”
Biosystems Engineering, vol. 186, no. 1, pp. 34–44, 2019.

[38] G. Lin, Y. Tang, X. Zou, J. Xiong, and Y. Fang, “Color-, depth-,
and shape-based 3D fruit detection,” Precision Agriculture,
vol. 21, no. 1, pp. 1–17, 2020.

[39] E. H. Yossy, J. Pranata, T. Wijaya, H. Hermawan, and
W. Budiharto, “Mango fruit sortation system using neural net-
work and computer vision,” Procedia Computer Science,
vol. 116, no. 1, pp. 596–603, 2017.

[40] Z. Wang, J. Underwood, and K. B. Walsh, “Machine vision
assessment of mango orchard flowering,” Computers and Elec-
tronics in Agriculture, vol. 151, no. 1, pp. 501–511, 2018.

[41] A. Z. Da Costa, H. E. H. Figueroa, and J. A. Fracarolli, “Com-
puter vision based detection of external defects on tomatoes
using deep learning,” Biosystems Engineering, vol. 190, no. 1,
pp. 131–144, 2020.

[42] X. Juntao, L. Rui, B. Rongbin, L. Zhen, and Y. Zhengang, “A
micro-damage detection method of litchi fruit using hyper-
spectral imaging technology,” Sensors, vol. 18, no. 3, pp. 1–
12, 2018.

[43] B. Zhao, Y. Wang, J. Fu et al., “Online measuring and size sort-
ing for Perillae based on machine vision,” Journal of Sensors,
vol. 2020, Article ID 3125708, 8 pages, 2020.

[44] C. Liang, J. Xiong, Z. Zheng et al., “A visual detection method
for nighttime litchi fruits and fruiting stems,” Computers and
Electronics in Agriculture, vol. 169, article 105192, 2020.

[45] J. Li, Y. Tang, X. Zou, G. Lin, and H.Wang, “Detection of fruit-
bearing branches and localization of litchi clusters for vision-
based harvesting robots,” IEEE Access, vol. 8, no. 1,
pp. 117746–117758, 2020.

[46] G. Lin, Y. Tang, X. Zou, J. Cheng, and J. Xiong, “Fruit detection
in natural environment using partial shape matching and
probabilistic Hough transform,” Precision Agriculture,
vol. 21, no. 1, pp. 160–177, 2020.

[47] M. Chen, Y. Tang, X. Zou et al., “Three-dimensional percep-
tion of orchard banana central stock enhanced by adaptive
multi-vision technology,” Computers and Electronics in Agri-
culture, vol. 174, article 105508, 2020.

[48] M. Chen, Y. Tang, X. Zou, K. Huang, L. Li, and Y. He, “High-
accuracy multi-camera reconstruction enhanced by adaptive
point cloud correction algorithm,” Optics and Lasers in Engi-
neering, vol. 122, no. 1, pp. 170–183, 2019.

[49] Y. Zhang, S. Wang, G. Ji, and P. Phillips, “Fruit classification
using computer vision and feedforward neural network,” Jour-
nal of Food Engineering, vol. 143, no. 1, pp. 167–177, 2014.

[50] J. F. I. Nturambirwe and U. L. Opara, “Machine learning appli-
cations to non-destructive defect detection in horticultural
products,” Biosystems Engineering, vol. 189, no. 1, pp. 60–83,
2020.

[51] Y. Tang, M. Chen, C. Wang et al., “Recognition and localiza-
tion methods for vision-based fruit picking robots: a review,”
Frontiers in Plant Science, vol. 11, article 510, 2020.

[52] N. B. Kodali, “System and method of de-stemming produce,”
USPTO, 2015.

10 Journal of Sensors


	Crack Identification on the Fresh Chilli (Capsicum) Fruit Destemmed System
	1. Introduction
	2. Materials and Methods
	2.1. Convolution Neural Network, Input Library, and Training Process
	2.2. Hardware Setup
	2.3. Control Flowchart
	2.4. Experimental Setup
	2.4.1. Experiment I: Static Identification
	2.4.2. Experiment II: On-Working Identification
	2.4.3. Experiment III: Identification Ability during Storage Time


	3. Results and Discussions
	3.1. Static Identification Results
	3.2. On-Working Identification Results
	3.3. Effects of Storage Time to Identification Ability

	4. Conclusions
	Data Availability
	Additional Points
	Conflicts of Interest
	Acknowledgments

