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Abstract

In this paper we study the crack initiation in a hyper-elastic body governed by a
Griffith-type energy. We prove that, during a load process through a time-dependent
boundary datum of the type t → tg(x) and in the absence of strong singularities
(e.g., this is the case of homogeneous isotropic materials) the crack initiation is
brutal, that is, a big crack appears after a positive time ti > 0. Conversely, in the
presence of a point x of strong singularity, a crack will depart from x at the initial
time of loading and with zero velocity. We prove these facts for admissible cracks
belonging to the large class of closed one-dimensional sets with a finite number of
connected components. The main tool we employ to address the problem is a local
minimality result for the functional

E(v, Γ ) :=
∫
Ω

f (x,∇v) dx + kH1(Γ ),

where Ω ⊆ R
2, k > 0 and f is a suitable Carathéodory function. We prove that if

the uncracked configuration u of Ω relative to a boundary displacement ψ has at
most uniformly weak singularities, then configurations (uΓ , Γ ) with H1(Γ ) small
enough are such that E(u,∅) < E(uΓ , Γ ).

1. Introduction

Griffith’s criterion for crack propagation in hyper-elastic bodies asserts that,
during a load process, a crack Γ can grow only if the energy dissipated to enlarge
the crack, which is basically assumed to be proportional to the area of the cracked
surface, is balanced by the corresponding release of bulk energy. According to
Griffith’s theory, if Ω represents a two-dimensional hyper-elastic body, ψ is a
boundary datum and Γ is a curve inΩ parameterized by arc length, then the crack
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Γ (l0) is in equilibrium if

k(l0) := lim sup
l→0+

W (u(l0))− W (u(l0 + l))

l
� k, (1.1)

where u(l0) and u(l0 + l) are the displacements associated to ψ and to the cracks
Γ (l0) andΓ (l0+l), respectively, W is the bulk energy functional and k is the tough-
ness of the material. A quasistatic crack evolution is determined by an increasing
function t → l(t) satisfying the Griffith’s criterion for crack propagation, which
asserts that for every t we have k(l(t)) � k and

(k − k(l(t)))l̇(t) = 0,

that is, Γ (l(t)) propagates only if (1.1) holds with equality.
The aim of this paper is to discuss this criterion in the case of crack initiation,

that is, when there is not a pre-existing crack in the body (l0 = 0). A fundamental
role in the problem is played by the singularities of the body, namely the behavior
of the elastic energy concentration of the deformation. Experiments show that small
cracks usually appear near sufficiently strong singular points of the body, whose
positions are essentially determined by its inhomogeneities. If the singularities of
the body are sufficiently weak (for instance this is the case of homogeneous isotropic
materials), a lot of the results given in the literature of materials science show that
the derivative in (1.1) for l0 = 0 is equal to zero. The conclusion is that Griffith’s
criterion is not adequate to predict crack initiation (and, as a consequence, a crack
evolution originating from an uncracked configuration). These results require that
the path of the crack is sufficiently regular (a line or a smooth curve). In this paper
we prove that the same conclusion holds in the class of all one-dimensional closed
sets with a finite number of connected components. More precisely we prove that
the limit in (1.1) is zero if Γ (l) is any family of closed sets with length less than l
and with at most m connected components, with m independent of l. In particular
we do not prescribe the path nor the shape of the cracks.

Although it is more general, our study is in part motivated by the variational
model for quasistatic crack propagation proposed by Francfort and Marigo
in [20]. The main features of this model are that the path of the increasing crack
Γ (t) is not preassigned, the class of admissible cracks is given by all sets with finite
length, and the growth is not assumed to be progressive, namely the length of the
crack is not assumed to be continuous in time. The classical Griffith’s equilibrium
condition for the configuration (u(t), Γ (t)) is replaced by a unilateral minimality
property and an energy balance condition. The unilateral minimality property states
that, during the crack evolution, the total energy is minimal among all configurations
with larger cracks, namely

W (u(t))+ kH1(Γ (t)) � W (v)+ kH1(H), (1.2)

for every crack H containing Γ (t) and for every deformation v admissible for the
boundary datum ψ and for H . (Here H1—the one-dimensional Hausdorff mea-
sure—is a suitable generalization of the length.) The energy balance condition
states that the energy of the system evolves in relation with the power of external
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loads in such a way that no dissipation occurs (except for the surface energy spent to
enlarge the crack). The authors claim that their model improves the understanding
of the crack initiation with respect to the classical Griffith’s criterion: in fact, in
contrast with Griffith’s model, it admits brutal crack initiation, that is, evolutions
Γ (t) of the type

Γ (t) = ∅ for every t � ti

and

inf
t>ti

H1(Γ (t)) > 0,

where ti is referred to as time initiation of the crack. In this paper we prove that,
within the class of cracks which are closed and with at most m connected compo-
nents, crack initiation is always brutal whenever the elastic displacement presents
sufficiently weak singularities. More precisely, we show that (1.2) can be violated
only by cracks whose length is greater than a critical quantity l∗, depending on the
boundary datum and on the physical properties of the material. On the contrary, in
the presence of a point x of strong singularity the crack initiation is progressive:
a crack departs from x at the initial time of loading and with zero velocity. These
facts were proved by Francfort and Marigo in [20, Proposition 4.19], under the
assumption that the path of the crack is given a priori by a finite number of fixed
curves which can be parameterized by arc length. This is not the case in our larger
class of admissible cracks.

The main tool we employ to address the problem of crack initiation is a local
minimality result for the functional

∫
Ω

f (x,∇v) dx + kH1(Γ ), (1.3)

where Ω is a bounded Lipschitz open set in R
2, k > 0, and f : Ω × R

2 → R

is a Carathéodory function strictly convex and C1 in the second variable, satis-
fying standard p-growth estimates with p > 1, and such that f (x, 0) = 0. The
functional (1.3) is a variant of a functional which first appeared in the theory of
image segmentation, in a celebrated paper by Mumford and Shah [29]. The set
Γ belongs to the class

Km(Ω) :=
{
Γ ⊆ Ω : Γ has at most m connected components and (1.4)

H1(Γ ) < +∞
}

and the function v belongs to the Sobolev space W 1,p(Ω \ Γ ) and satisfies the
boundary condition

v = ψ on ∂DΩ \ Γ, (1.5)

where ∂DΩ ⊆ ∂Ω is open in the relative topology, andψ is (the trace of a function)
in W 1,p(Ω) ∩ L∞(Ω).
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Let uΓ be a minimum energy displacement relative to ψ and Γ , that is, let uΓ
be a minimizer for

min

{∫
Ω

f (x,∇v) dx : u ∈ W 1,p(Ω \ Γ ), v = ψ on ∂DΩ

}
. (1.6)

We denote by u the elastic configuration ofΩ relative to the boundary datumψ , that
is, a solution of (1.6) with Γ = ∅, and we assume that u admits at most uniformly
weak singularities in Ω , that is,

‖∇u‖p
L p(Br ∩Ω) � Crα (1.7)

for some constants α > 1 and C > 0 and for every ball Br with radius r . Condi-
tion (1.7) means that the bulk energy of the elastic configuration u in a ball Br (x)
is negligible with respect to the length of ∂Br (x) as r goes to zero, uniformly in
x ∈ Ω .

Our main result is the following theorem, which establishes that under the pre-
vious assumptions small cracks are not energetically convenient for the functional
(1.3).

Theorem 1. Assume that u admits only at most uniformly weak singularities inΩ .
Then there exists a critical length l∗ depending onΩ , f , k, ψ , and m such that for
all Γ ∈ Km(Ω) with H1(Γ ) < l∗ we have

∫
Ω

f (x,∇u) dx <
∫
Ω

f (x,∇uΓ ) dx + kH1(Γ ). (1.8)

We observe (see Remark 2) that this statement is equivalent to the local mini-
mality of u in (1.3), in the L1 topology.

Let us briefly comment upon the assumption about the singularities of u in
Theorem 1. The minimality result is false if the elastic solution u has strong singu-
larities, namely if there exists x ∈ Ω such that

lim sup
r→0

1

r

∫
Br (x)∩Ω

|∇u|p dx = +∞. (1.9)

In fact condition (1.9) ensures that it is energetically convenient to create a small
crack Γ := ∂Br (x) around x : the surface energy needed to create such a crack is
proportional to r , while the corresponding release of bulk energy is by (1.9) bigger
than r if r is small enough.

The critical case when the right-hand side of (1.9) is a constant 0 < C < ∞
corresponds to the singularity appearing around the tip of the crack (see [21]). In
this case the celebrated Irwin’s formula states that the release of bulk energy per unit
length along rectilinear increments of the crack is equal to the so-called mode III
stress intensity factor KIII, which is proportional to C . In our class of cracks Km(Ω)

we have that, if C is small enough, then the release of bulk energy per unit length
is less than k, and therefore our minimality result still holds, while it is false if C is
too large. We cannot fill the gap, and therefore we do not achieve a sharp Irwin-type
formula in our class of cracks.
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In order to prove Theorem 1 we have to compare the asymptotic behavior of
the release of bulk energy∫

Ω

[ f (x,∇u)− f (x,∇uΓ )] dx (1.10)

with H1(Γ ) when H1(Γ ) → 0. In the literature there are many results in this
direction considering particular sequences of infinitesimal cracks Γn , for instance
when Γn is the rescaled version of a fixed smooth curve Γ . An intuitive strategy to
estimate (1.10) is to compute how much energy is required in order to make uΓ a
good competitor for the minimum problem (1.6) without cracks, namely how much
energy is required to heal the crack Γ .

This seems difficult for a generic crack in Km(Ω). So our strategy is to operate
on the stress σ := ∂ f (x,∇u) of the elastic solution. More precisely we prove the
following key estimate (see (2.7))∫

Ω

[ f (x,∇u)− f (x,∇uΓ )] dx �
∫
Ω

[τ − σ ] · [∂ f ∗(x, τ )− ∂ f ∗(x, σ )] dx,

(1.11)

for all vector fields τ ∈ Lq(Ω; R
N ) (q = p′ := p

p−1 ) such that
∫
Ω

τ · ∇v = 0 for all v ∈ A(Γ ). (1.12)

Here f ∗ is the convex conjugate of f , and A(Γ ) is defined as

A(Γ ) := {v ∈ W 1,p(Ω \ Γ ) : v = 0 on ∂DΩ \ Γ }.
If Γ is sufficiently regular, condition (1.12) implies that the vector field τ has zero
divergence outside Γ , and τ(x) is tangent to Γ for every x ∈ Γ .

The proof of Theorem 1 relies on the construction of a vector field τ satisfying
(1.12) and such that∫

Ω

[τ − σ ] · [∂ f ∗(x, τ )− ∂ f ∗(x, σ )] dx < kH1(Γ ). (1.13)

We construct τ modifying the stress σ which is divergence-free [as a consequence
of Euler equation of problem (1.6)], but not tangent to Γ . First, we consider a
neighborhood U of Γ , and a cut-off function ϕ such that ϕ = 0 on U . Then ϕσ is
null near Γ , and in particular it is tangent to Γ . Then we construct a vector field η
in such a way that η = 0 on U and

div η = −div(ϕσ).

We get that τ = ϕσ + η is an admissible vector fields for inequality (1.11). Using
the fact that Γ ∈ Km(Ω) and that u has at most uniformly weak singularities, it is
possible to choose U , ϕ, and η in such a way that inequality (1.13) holds.

It turns out that the constraint (1.12) can be handled in an easier way than the
constraint of being a gradient, and this is the reason why we work with the stress
σ instead of the strain ∇u.
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Estimate (1.11) actually holds true in any dimension, and it turns out that our
arguments work in any dimension provided that the crack Γ belongs to the class

KC (Ω) := {Γ ⊆ Ω : Γ is closed and diam(Γ ) � CHN−1(Γ )}, (1.14)

where C is a fixed constant. This is certainly true in dimension two for the cracks
in K1(Ω) [and in Km(Ω) up to a localization argument]. However, it also shows
that the local minimality result of Theorem 1 remains valid in higher dimension,
within the class KC (Ω) of cracks that are not needle-like: see Remark 7.

The minimality result holds also in the case of planar linearized elasticity, with
a density of bulk energy involving the symmetrized gradient. This is considered
in Section 4—while the “simpler” case of two-dimensional vectorial nonlinear
elasticity is addressed in Remark 6.

A natural question that arises from Theorem 1 is whether the bound on the
number of connected components is absolutely necessary for this result. Could it
be possible to initiate fracture, in the framework of Griffith’s theory, by nucleating
infinitely many little cracks somewhere, possibly in a dense way? This is a very
interesting point that remains open in general (we believe the answer is no). We
can give a negative answer only in a very special case, of a scalar displacement in
two dimensions, when everything is smooth enough. This is done in Appendix A,
where we extend the local minimality result of Theorem 1 to the larger class of all
one-dimensional rectifiable sets. This seems to be the most general class: however,
there is a price to pay in order to handle such admissible cracks. First, we need to
assume that ∇u is bounded and regular up to the boundary. In particular, we are
not able to treat the case in which u has weak singularities. Then, the method we
employ is based on the maximum principle, which allows one to estimate the local
opening of a crack with the global energy in a small ball surrounding the crack. It
is therefore strictly scalar and bidimensional.

On the other hand, one could hope to show a priori a bound on the number of
connected components of “good cracks” and thus be able to invoke, in all situa-
tions, Theorem 1. However, this seems quite difficult, as it is not even known for
minimizers of the Mumford–Shah functional (1.3) (and is the last step towards a
full proof of the Mumford–Shah conjecture in two dimensions [16]).

In fact, we would have expected, at the beginning of our study, that most of
the questions we were asking could be addressed with techniques similar to the
techniques introduced for the study of (almost, quasi, ... see for instance [16])
minimizers of the Mumford–Shah functional (1.3). We were not successful in this
direction. In fact, it seems now quite different to us to study the properties of actual
minimizers and to actually show that a given data is a local minimizer in some
sense. Results exist that actually show that jumps sets of minimizers have their
length/surface or density bounded from below (see, for instance, [4, 13, 16, 17,
25, 28]), but this does not really determine that in a given situation the energy will
not decrease by adding a small fracture. The most straightforward strategy we had
thought of, for instance, consisted of trying to study minimizers with a constraint
H1(K ) � δ for δ small: however, the lower bounds shown in [16], if applicable
for this constrained problem, would heavily depend on δ in a way that does not
seem too explicit to us. Another approach would be to try to use in some recursive
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way excision lemmas à la Morel and Solimini [25, 28, 31], but it is far from clear
that this approach, if ever successful, would lead to a simpler proof than the one
we present in the Appendix A (nor give any information on what happens in the
presence of singularities).

The paper is organized as follows. In Section 2 we establish the main inequality
(1.11). In Section 3 we prove the local minimality result in dimension 2 and its
extensions to vector-valued displacements and to the N -dimensional case within
the class of cracks given by (1.14). Section 4 addresses the case of planar two-
dimensional elasticity. The problem of crack initiation in quasistatic evolutions is
addressed in Section 5, while the two-dimensional SBV -case without singularities
is treated in Appendix A. In Appendix B we show how to obtain some uniform
Poincaré and Poincaré–Korn type inequalities, used during the proofs of our main
results in the construction of the competitor stress field τ .

2. The dual problem and the main estimate

Let Ω be a bounded connected Lipschitz open set in R
N , let ∂DΩ ⊆ ∂Ω be

open in the relative topology, and let ∂NΩ := ∂Ω \ ∂DΩ . Let f : Ω × R
N → R

be a Carathéodory function such that

ξ → f (x, ξ) is strictly convex and C1 for almost every x ∈ Ω, (2.1)

f (x, 0) = 0 for almost every x ∈ Ω, (2.2)

and such that for almost every x ∈ Ω and for all ξ ∈ R
N

α|ξ |p � f (x, ξ) � β(|ξ |p + 1), (2.3)

where α, β > 0 and 1 < p < +∞.
Given ψ ∈ W 1,p(Ω) ∩ L∞(Ω) and Γ a closed set contained in Ω (not nec-

essarily with empty interior, nor with a bound on the number of its connected
components), let us consider the minimization problem

min

{∫
Ω

f (x,∇u) dx : u ∈ W 1,p(Ω \ Γ ), u = ψ on ∂DΩ \ Γ
}
. (2.4)

In view of (2.2) and since ψ ∈ W 1,p(Ω) ∩ L∞(Ω), problem (2.4) is well posed.
Let us denote by uΓ ∈ W 1,p(Ω \ Γ ) ∩ L∞(Ω \ Γ ) a minimizer of (2.4).

Clearly ∇uΓ is uniquely determined, while uΓ is determined up to a constant on
each connected component of Ω \ Γ which does not touch ∂DΩ .

We denote by u ∈ W 1,p(Ω) ∩ L∞(Ω) the solution of (2.4) corresponding to
Γ = ∅, and we refer to u as the elastic solution. In the case Γ is sufficiently regular,
the Euler–Lagrange equation satisfied by uΓ is

⎧⎪⎨
⎪⎩

div ∂ξ f (x,∇uΓ ) = 0 on Ω \ Γ,
u = ψ on ∂DΩ \ Γ,
∂ξ f (x,∇uΓ ) · n = 0 on ∂NΩ ∪ ∂Γ,

(2.5)
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where n denotes the normal vector to ∂NΩ ∪ ∂Γ . In the sequel, we will write
∂ f (x, ξ) for ∂ξ f (x, ξ).

Let us set

A(Γ ) := {v ∈ W 1,p(Ω \ Γ ) : v = 0 on ∂DΩ \ Γ }. (2.6)

Let us denote by f ∗ the convex conjugate of f with respect to the second
variable defined by

f ∗(x, ζ ) := sup{ζ · ξ − f (x, ξ) : ξ ∈ R
N }.

We refer the reader to [30] for the main properties of the conjugate function f ∗.
Notice that f ∗ is of class C1 since f is strictly convex. The main result of this
section is the following.

Theorem 2. Let Γ be a closed subset of Ω , and let σ := ∂ f (x,∇u) be the stress
associated to the elastic configuration u. Then we have

∫
Ω

[ f (x,∇u)− f (x,∇uΓ )] dx

�
∫
Ω

[τ − σ ] · [∂ f ∗(x, τ )− ∂ f ∗(x, σ )] dx (2.7)

for all τ ∈ Lq(Ω; R
N ) (q = p′ := p

p−1 ) such that

∫
Ω

τ · ∇v dx = 0 for all v ∈ A(Γ ). (2.8)

Proof. For all η ∈ L p(Ω; R
N ) let us set

Φ(η) := min
w∈u+A(Γ )

∫
Ω

f (x,∇w + η) dx, (2.9)

where A(Γ ) is defined in (2.6). Then the convex conjugate of Φ defined on
Lq(Ω; R

N ) has the form

Φ∗(τ ) := sup
w,η

∫
Ω

[τ · η − f (x,∇w + η)] dx

= sup
w,η

∫
Ω

[τ · (η + ∇w)− f (x,∇w + η)− τ · ∇w] dx

=
∫
Ω

[ f ∗(x, τ )− τ · ∇u] dx + sup
v∈A(Γ )

∫
Ω

τ · ∇v dx . (2.10)

We conclude that

Φ∗(τ ) =
⎧⎨
⎩

∫
Ω

[ f ∗(x, τ )− τ · ∇u] dx if τ satisfies (2.8)

+∞ otherwise.
(2.11)
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Notice that Φ(0) = Φ∗∗(0) because Φ is weakly lower semicontinuous and

Φ(0) =
∫
Ω

f (x,∇uΓ ) dx < +∞.

(In fact, Φ is locally finite, hence locally Lipschitz.) Therefore we obtain

−
∫
Ω

f (x,∇uΓ ) dx = −Φ(0) = −Φ∗∗(0) = min
τ
Φ∗(τ ),

so that by (2.11) we deduce

−
∫
Ω

f (x,∇uΓ ) dx = min
τ

{∫
Ω

[ f ∗(x, τ )− τ · ∇u] dx : τ satisfies (2.8)

}
.

For all τ satisfying (2.8), we get
∫
Ω

[ f (x,∇u)− f (x,∇uΓ )] dx �
∫
Ω

[ f (x,∇u)+ f ∗(x, τ )− τ · ∇u] dx .

Let σ(x) := ∂ f (x,∇u(x)) be the stress of the elastic solution u. Since for almost
every x ∈ Ω

f ∗(x, τ (x)) � f ∗(x, σ (x))+ ∂ f ∗(x, τ (x)) · (τ (x)− σ(x)),

and

f (x,∇u(x))+ f ∗(x, σ (x)) = ∇u(x) · σ(x),
and since ∇u(x) = ∂ f ∗(x, σ (x)), we finally obtain our main estimate (2.7), so that
the proof is concluded. �
Remark 1. IfΓ is sufficiently regular, condition (2.8) implies that τ has zero diver-
gence outside Γ , and τ(x) is tangent to ∂Γ for every x ∈ ∂Γ .

3. The minimality result in anti-plane elasticity

In this section we prove that, under some assumptions on the elastic configura-
tion u, small cracks are not convenient for the total energy

∫
Ω

f (x,∇v) dx + kH1(Γ ), (3.1)

where f is a Carathéodory function satisfying conditions (2.1), (2.2) and (2.3), and
k > 0.

Let us consider Ω bounded connected Lipschitz open subset of R
2, and let

∂DΩ ⊆ ∂Ω be open in the relative topology and such that ∂NΩ := ∂Ω \ ∂DΩ has
a finite number of connected components.
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Let m be a positive integer. The class of admissible cracks is given by

Km(Ω) :=
{
Γ ⊆ Ω : Γ has at most m connected components and

H1(Γ ) < +∞
}
. (3.2)

Given ψ ∈ W 1,p(Ω) ∩ L∞(Ω) and Γ ∈ Km(Ω), the displacement

uΓ ∈ W 1,p(Ω \ Γ )
associated to Γ and ψ is given by problem (2.4). We denote with u the solution of
(2.4) relative to Γ = ∅, and we refer to u as the elastic solution.

The basic assumption on the elastic configuration u involves the behavior of the
energy concentration of the stress. We require that u has at most uniformly weak
singularities in Ω , in the sense of the following definition.

Definition 1. We say that u ∈ W 1,p(Ω) has at most uniformly weak singularities
in A, an open subset of Ω , if there exist constants 1 < α < 2 and C > 0 such that
for every x ∈ A and for every r small (independent of x)∫

Br (x)∩Ω
|∇u|p dx � Crα. (3.3)

As mentioned in the Introduction, the condition of at most uniformly weak sin-
gularities means that the bulk energy of the elastic configuration u in a ball Br (x)
is an infinitesimal of higher order than the length of ∂Br (x) as r goes to zero,
uniformly with respect to x ∈ A.

The main result of this section is the following theorem.

Theorem 3. Let the elastic solution u of problem (2.4) have at most uniformly
weak singularities in Ω according to Definition 1. Then there exists a critical
length l∗ > 0 depending on Ω , m, f , k, and ψ such that for all Γ ∈ Km(Ω) with
H1(Γ ) < l∗ we have∫

Ω

f (x,∇u) dx <
∫
Ω

f (x,∇uΓ ) dx + kH1(Γ ), (3.4)

where uΓ is a minimum of (2.4).

Remark 2. (Local minimality in the L1-topology) The minimality condition (3.4)
implies that the elastic solution u is a local minimum for the total energy (3.1) with
respect to the L1-topology. More precisely, for every sequence (Γh)h∈N in Km(Ω)

and for every uh ∈ W 1,p(Ω \Γh)with uh = ψ on ∂DΩ \Γh and uh → u strongly
in L1(Ω), for h large enough we have∫

Ω

f (x,∇u) dx <
∫
Ω

f (x,∇uh) dx + kH1(Γh). (3.5)

In fact, it is not restrictive to assume that (∇uh)h∈N is bounded in L p(Ω,R2) and
that H1(Γh) � C . By Ambrosio’s lower semicontinuity theorem [2] we have∫

Ω

f (x,∇u) dx � lim inf
h→+∞

∫
Ω

f (x,∇uh) dx .
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If the sequence (H1(Γh))h∈N is not infinitesimal, then (3.5) clearly holds. If H1(Γh)

→ 0, we have H1(Γh) � l∗ for h large enough, and hence (3.5) follows from (3.4).
Actually, using Ambrosio’s compactness theorem [2], one can show that the

local minimality in the L1-topology and the minimality result of Theorem 3 are
equivalent.

In order to prove Theorem 3 we will use the main estimate given by Theorem 2.
Our aim is to construct a vector field τ ∈ Lq(Ω; R

2) which is an admissible com-
petitor in (2.7) and which shows that the difference between the bulk energies of
u and uΓ is smaller than kH1(Γ ). In order to do so, we need some preliminary
lemmas.

Lemma 1. Let x ∈ Ω , and let r > 0 be such that B2r (x) ⊆ Ω . Let ϕ be a smooth
function with 0 � ϕ � 1, ϕ = 0 on Br (x), ϕ = 1 outside B2r (x) and ‖∇ϕ‖∞ � 2

r .
Then there exists η ∈ Lq((B2r (x) \ Br (x)); R

2) with q := p′ = p/(p − 1) such
that {

div η = −div(ϕσ) on B2r (x) \ Br (x),

η · n = 0 on ∂(B2r (x) \ Br (x))

and ∫
B2r (x)\Br (x)

|η|q dx � C
∫

B2r (x)\Br (x)
|σ |q dx, (3.6)

where σ := ∂ f (x,∇u) is the stress of the elastic solution u, n is the outer normal
to ∂(B2r (x) \ Br (x)), and C is a constant independent of r .

Proof. Let us set η := |∇v|p−2∇v, where v ∈ W 1,p(B2r (x) \ Br (x)) satisfies the
equation

{
div(|∇v|p−2∇v) = −div(ϕσ) in B2r (x) \ Br (x),

|∇v|p−2∇v · n = 0 on ∂(B2r (x) \ Br (x)).
(3.7)

Notice that the equation is well posed because

−div(ϕσ) = −∇ϕ · σ ∈ Lq(Ω) (3.8)

and ∫
B2r (x)\Br (x)

div(ϕσ) dx =
∫
∂B2r (x)

σ · n dH1 = 0

since σ is divergence free in Ω .
It remains to prove inequality (3.6). To this aim, note that we can always assume

that v has zero mean value, so that by the Poincaré inequality and by a rescaling
argument, we have that there exists C > 0 independent on r such that

∫
B2r (x)\Br (x)

|v|p dx � Cr p
∫

B2r (x)\Br (x)
|∇v|p dx . (3.9)
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Recalling that ‖∇ϕ‖∞ � 2/r and taking into account (3.8) and (3.9) we get∫
B2r (x)\Br (x)

|∇v|pdx

=
∫

B2r (x)\Br (x)
∇ϕ · σv dx � ‖∇ϕ · σ‖Lq (B2r (x)\Br (x))‖v‖L p(B2r (x)\Br (x))

� 1

r
‖σ‖Lq (B2r (x)\Br (x),R2)C

1/pr‖∇v‖L p(B2r (x)\Br (x),R2)

= C1/p‖σ‖Lq (B2r (x)\Br (x),R2)‖∇v‖L p(B2r (x)\Br (x),R2)

so that∫
B2r (x)\Br (x)

|η|q dx =
∫

B2r (x)\Br (x)
|∇v|p dx � Cq/p

∫
B2r (x)\Br (x)

|σ |q dx,

and this concludes the proof. �
Now we need to construct a suitable field η also around points x on the boundary

of Ω . Since Ω is Lipschitz, for every x ∈ ∂Ω we can find an orthogonal coordi-
nate system (x ′

1, x ′
2) with origin at x , ε1, ε2 > 0 and a Lipschitz function g :

[−ε1, ε1] → [−ε2, ε2] such that setting

Rr (x) := {(x ′
1, x ′

2) : |x ′
1| � rε1, |x ′

2| � rε2} (3.10)

we have for r small enough

Ω ∩ Rr (x) = {(x ′
1, x ′

2) ∈ Rr (x) : x ′
2 � g(x ′

1)}. (3.11)

Notice moreover that the Lipschitz constant Cg of the function g is determined only
by Ω , and that we can assume Cgε1 < ε2. Let us set

Ar (x) := (R2r (x) \ Rr (x)) ∩Ω. (3.12)

Lemma 2. Let r > 0 be small enough (so that (3.11) holds everywhere on ∂Ω).
Let x ∈ ∂Ω such that one of the following three situations holds:

(1) x ∈ ∂DΩ and Ar (x) ∩ ∂Ω ⊂ ∂DΩ;
(2) x ∈ int(∂NΩ) and Ar (x) ∩ ∂Ω ⊂ ∂NΩ (where int(·) indicates the interior

relative to ∂Ω);
(3) x ∈ ∂Ω \ (∂DΩ ∪ int(∂NΩ)).

Let ϕ be a smooth function with 0 � ϕ � 1, ϕ = 0 on Rr (x), ϕ = 1 outside R2r (x)
and ‖∇ϕ‖∞ � 2

r . Then there exists η ∈ Lq(Ar (x); R
2) with q := p′ = p/(p − 1)

such that {
div η = −div(ϕσ) in Ar (x)

η · n = 0 on ∂Ar (x) ∩ (Ω ∪ ∂NΩ)

and ∫
Ar (x)

|η|q dx � C
∫

Ar (x)
|σ |q dx,

where σ := ∂ f (x,∇u) is the stress of the elastic solution u, n is the outer normal
to ∂Ar (x) ∩ (Ω ∪ ∂NΩ), and C is a constant depending only on Ω .
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We observe that only the points in ∂Ω at distance less than r
√
ε2

1 + ε2
2 to ∂Ω \

(∂DΩ ∪ int(∂NΩ)) might not fall into one of first two cases.

Proof. In all the three cases of the lemma, we will use the fact that the Poincaré
inequality holds in W 1,p(Ar (x)) with a constant that rescales as r , that is, there
exists a positive constant C independent of r such that

∫
Ar (x)

|v|p dx � Cr p
∫

Ar (x)
|∇v|p dx (3.13)

for all v ∈ W 1,p(Ar (x)) with
∫

Ar (x)
v = 0 or v = 0 on ∂DΩ ∩ ∂Ar (x).

This can be seen by rescaling Ar (x) with the transformation Tr (x ′, y′) = ( x ′
r ,

y′
r ),

and using Proposition 4 (see Appendix B) in the domains {Tr (Ar (x))}: it shows
that the Poincaré inequality holds in Tr (Ar (x)) with a constant that is independent
of r , and by rescaling we deduce that (3.13) holds.

In case (1), we can consider η := |∇v|p−2∇v, with v ∈ W 1,p(Ar (x)) satisfying
the equation

⎧⎪⎨
⎪⎩

div(|∇v|p−2∇v) = −div(ϕσ) in Ar (x),

v = 0 on ∂Ar (x) ∩ ∂DΩ,

|∇v|p−2∇v · n = 0 on ∂Ar (x) ∩Ω.
(3.14)

Notice that −div(ϕσ) = −∇ϕ · σ (σ is divergence free) and ‖∇ϕ‖∞ � 1
r . Taking

into account the Poincaré inequality (3.13) we get
∫

Ar (x)
|∇v|pdx

=
∫

Ar (x)
∇ϕ · σv dx � ‖∇ϕ · σ‖Lq (Ar (x))‖v‖L p(Ar (x))

� 1

r
‖σ‖Lq (Ar (x),R2)C

1/pr‖∇v‖L p(Ar (x),R2)

= C1/p‖σ‖Lq (Ar (x),R2)‖∇v‖L p(Ar (x),R2)

so that ∫
Ar (x)

|η|q dx =
∫

Ar (x)
|∇v|p dx � Cq/p

∫
Ar (x)

|σ |q dx .

Cases (2) and (3) can be treated as case (1) considering η := |∇v|p−2∇v with
v ∈ W 1,p(Ar (x)) defined by the equations

{
div(|∇v|p−2∇v) = −div(ϕσ) in Ar (x),

|∇v|p−2∇v · n = 0 on ∂Ar (x),
(3.15)
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and ⎧⎪⎨
⎪⎩

div(|∇v|p−2∇v) = −div(ϕσ) in Ar (x),

|∇v|p−2∇v · n = 0 on ∂Ar (x) ∩ (Ω ∪ ∂NΩ),

v = 0 on ∂Ar (x) ∩ ∂DΩ,

(3.16)

respectively. Notice in particular that equation (3.15) is well posed since its right-
hand side has zero mean value, because σ is divergence-free in Ω , and σ · n = 0
on ∂NΩ so that∫

Ω

div(ϕσ) dx =
∫

Ar

div(ϕσ) dx =
∫
∂Ar

σ · n dH1 = 0.

�
We are now in a position to prove our minimality result.

Proof. (Proof of Theorem 3) First of all, we claim that there exist at most m open
balls Br1(x1), . . . , Brk (xk), k � m such that Γ ⊆ ∪i Bri (xi ),

ri � CH1(Bri (xi ) ∩ Γ ),
and

B2ri (xi ) ∩ B2r j (x j ) = ∅ for all i �= j,

where C depends only on m. In fact let us consider the decomposition of Γ in its
connected components, that is,

Γ := Γ1 ∪ · · · ∪ Γk,

with k � m. For all i = 1, . . . , k let Bsi (yi ) be an open ball with si = H1(Γi )

and such that Γi ⊆ Bsi (yi ). If the balls B2si (yi ) are disjoint, then the covering
{Bsi (yi )}i=1,...,k satisfies the claim. Otherwise we proceed in this way. Let us con-
sider

B1 :=
k⋃

i=1

B2si (yi ),

and let B1
j , j = 1, . . . , k̃ � k − 1 be its connected components. For all j , let

Bτ j (z j ) be an open ball with τ j = diam(B1
j ) such that B1

j ⊆ Bτ j (z j ). Again, if the
balls B2τ j (z j ) are disjoint, then the covering {Bτ j (z j )} j=1,...,k̃ satisfies the claim.

Otherwise we construct in a similar way as before the set B2 which has at most
k − 2 connected components. Clearly in at most m steps we come up with at most
m balls satisfying the requirements of the claim.

SinceΩ is Lipschitz, we have that, if H1(Γ ) is sufficiently small (depending on
Ω), we can assume that the balls {Bri (xi )}i=1,...,k intersecting ∂Ω can be replaced
by rectangles Rs j (y j ) of the form (3.10) satisfying (3.11), centered at some point
y j that falls into case (1), (2), or (3) of Lemma 2. More precisely, there exists a con-
stant C depending only onΩ and m, and there exist at most m open balls {Bri (xi )}



Crack Initiation in Brittle Materials 323

and at most m rectangles {Rs j (y j )} defined in (3.10) with y j falling into case (1),
(2) or (3) of Lemma 2, such that B2ri (xi ) ⊆ Ω , and

Γ ⊆ ∪i, j Bri (xi ) ∪ Rs j (y j ),

diam(Bri (xi )) � CH1(Bri (xi ) ∩ Γ ),
diam(Rs j (y j )) � CH1(Rs j (y j ) ∩ Γ ), (3.17)

B2ri (xi ) ∩ B2r j (x j ) = ∅,
R2si (yi ) ∩ R2s j (y j ) = ∅,
B2ri (xi ) ∩ R2s j (y j ) = ∅ for all i, j.

Let ϕ be a smooth function with

0 � ϕ � 1, ϕ = 0 on
⋃
i, j

(
Bri (xi ) ∪ Rs j (y j )

)
,

ϕ = 1 outside
⋃
i, j

(
B2ri (xi ) ∪ R2s j (y j )

)
.

Let us denote with Ari (xi ) and As j (y j ) the sets B2ri (xi ) \ Bri (xi ) and R2s j (y j ) \
Rs j (y j ), respectively. Let

ηi ∈ Lq
(

Ari (xi ); R
2
)

and η j ∈ Lq
(

As j (y j ); R
2
)

with q := p′ = p/(p − 1) be the vector fields given by Lemmas 1 and 2. Let us
consider η ∈ Lq(Ω; R

2) defined as

η :=

⎧⎪⎨
⎪⎩
ηi in Ari (xi ),

η j in As j (y j ),

0 otherwise,

and let us set

τ := ϕσ + η,

where σ = ∂ f (x,∇u) is the stress of the elastic solution u. By construction we
have that ∫

Ω

τ · ∇v = 0 for all v ∈ A(Γ ), (3.18)

where A(Γ ) is as in (2.6). Moreover we have that for all i, j
∫

Ah

|η|q dx � C
∫

Ah

|σ |p dx,

where Ah denotes one of the Ari (xi )’s or one of the As j (y j )’s, and C is a constant
depending only on Ω and the bulk energy density f .
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In view of (3.18) we can put τ in inequality (2.7) getting
∫
Ω

[ f (x,∇u)− f (x,∇uΓ )] dx

�
∑

h

∫
Ah

[τ − σ ] · [∂ f ∗(x, τ )− ∂ f ∗(x, σ )] dx . (3.19)

Since f ∗ is the convex conjugate of f , and since f satisfies the growth conditions
(2.3), we deduce that

| f ∗(x, ζ )| � C(|ζ |q + 1)

and

|∂ζ f ∗(x, ζ )| � C(|ζ |q−1 + 1).

We claim that for every Ah∫
Ah

[τ − σ ] · [∂ f ∗(x, τ )− ∂ f ∗(x, σ )] � Cdiam(Ah)
α, (3.20)

where C is independent of Ah , and depends only on m, Ω , and f . Here α > 1 is
the exponent defining the weak singularities of u (see Definition 1). From (3.20)
and (3.19), taking into account (3.17) and the fact that α > 1, we obtain that there
exists l∗ depending only on Ω , m, f , and k such that for every Γ ∈ Km(Ω) with
H1(Γ ) < l∗ we have∫
Ω

[ f (x,∇u)− f (x,∇uΓ )] dx � C
∑

h

diam(Ah)
α � CH1(Γ )α < kH1(Γ ),

so that the minimality result holds.
In order to conclude the proof, we need to show that claim (3.20) holds true.

This can be seen making all the products and estimating each addend. Let us check
the first one, the other ones being similar. We have

∫
Ah

τ · ∂ f ∗(x, τ ) dx � C
∫

Ah

(|σ | + |η|) · (|σ |q−1 + |η|q−1 + 1) dx .

Then, in view of Lemmas 1 and 2, since u has at most uniformly weak singularities
in Ω we get for r small enough

∫
Ah

|σ |q dx � C
∫

Ah

|∇u|p dx + C |Ah | � Cdiam(Ah)
α,

∫
Ah

|η|q dx � C
∫

Ah

|σ |p dx � Cdiam(Ah)
α,

∫
Ah

|η||σ |q−1 dx �
(∫

Ah

|η|q dx

) 1
q

(∫
Ah

|σ |q dx

) 1
p

� Cdiam(Ah)
α,
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∫
Ah

|η|q−1|σ | dx �
(∫

Ah

|η|q dx

) 1
p
(∫

Ah

|σ |q dx

) 1
q

� Cdiam(Ah)
α,

∫
Ah

|σ | dx � C

(∫
Ah

|σ |q dx

) 1
q

diam(Ah)
2
p � Cdiam(Ah)

α,

and

∫
Ah

|η| dx � C

(∫
Ah

|η|q dx

) 1
q

diam(Ah)
2
p � Cdiam(Ah)

α.

Summing up we obtain that (3.20) holds. �
Remark 3. Notice that the arguments of the previous proof also work in the case
in which the elastic solution u has critical singularities, that is, in the case α = 1,
provided that there exists ε > 0 and δ sufficiently small (depending only onΩ , m,
f and k), such that

∫
Br (x)∩Ω

|∇u|p dx � δr for every r < ε.

Using the same arguments of the proof of Theorem 3, we can easily deduce the
following localized version of the minimality result.

Proposition 1. Let the elastic solution u of problem (2.4) have at most uniformly
weak singularities in A, where A is an open subset ofΩ . Then there exists a critical
length l∗ > 0 depending on A, m, f , and k such that for all Γ ∈ Km(Ω) with
Γ ⊆ Ā and H1(Γ ) < l∗ we have

∫
Ω

f (x,∇u) dx <
∫
Ω

f (x,∇uΓ ) dx + kH1(Γ ),

where uΓ is a minimum of (2.4).

Remark 4. (The case of strong singularities) Theorem 3 is false if the elastic solu-
tion u has strong singularities in Ω , that is, there exists x ∈ Ω such that

lim sup
r→0

1

r

∫
Br (x)∩Ω

|∇u|p dx = +∞. (3.21)

In fact if such a point x exists, then the pair (vr , ∂Br (x) ∩Ω), where vr is defined
as

vr (y) :=
{

u(y) in Ω \ Br (x),

0 in Ω ∩ Br (x)
(3.22)

is energetically more convenient with respect to u for r small. Note also that this
example needs the right-hand side of (3.21) to be just greater than 2π

k .
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The previous remark and Proposition 1 seem to suggest that, in the presence of
strong singularities, energetically convenient small cracks prefer to stay near the
singular points. Let us prove that this intuition is indeed true in the case in which
u has only one point of strong singularity x .

For every l > 0 let Γl ∈ Km(Ω) be such that (uΓl , Γl) minimizes the total
energy (3.1) among all pairs (uΓ , Γ ) with Γ ∈ Km(Ω) and H1(Γ ) � l. The
existence of Γl can be proved using the direct method of the Calculus of Variations
in view of the lower semicontinuity of the H1-measure with respect to Hausdorff
converging sequences in Km(Ω) given by Go̧łab’s Theorem (see, for example, [14]
for details).

Notice that Γl �= ∅ for l small because the pair (vl , ∂Bl), where vl is defined
in (3.22), is energetically more convenient than the elastic solution. Moreover, for
every r > 0, we have thatΓl ∩Br (x) �= ∅ when l is small enough because otherwise,
in view of Proposition 1, (uΓl , Γl)would not be energetically more convenient than
the elastic solution. So we deduce that the following proposition holds.

Proposition 2. Assume that x ∈ Ω is a point of strong singularity for the elastic
solution u, and that u has at most uniformly weak singularities in Ω \ Br (x) for
every r > 0. Then for every neighborhood U of x, if l is small enough we have
Γl �= ∅, and Γl ∩ U �= ∅.

Remark 5. (Singularities in materials) Theorem 3 and Remark 4 show that the
quantity

∫
Ω∩Br (x)

|∇u|p dx, (3.23)

where u is a solution of{
div∂ξ f (x,∇u) = 0 in Ω

u = ψ on ∂DΩ,
(3.24)

determines the feasibility of the appearance of small cracks inΩ when imposing a
boundary datum ψ . By Theorem 3, small cracks are not energetically convenient
if u has at most uniformly weak singularities in Ω according to Definition 1. This
is certainly the case if ∇u has a summability sufficiently higher than p, as one can
check by means of Hölder inequality. In fact we have

∫
Br (x)

|∇u|p dx �
(∫

Br (x)
|∇u|q dx

)p/q

|Br (x)|(q−p)/q

�
(∫

Ω

|∇u|q dx

)p/q

r2(q−p)/q .

We deduce that u has at most weak singularities in Ω if ∇u ∈ Lq(Ω; R
2) with

q > 2p.
It is well known that, if Ω , ψ , and f are sufficiently regular, then the solu-

tion u of (3.24) is regular, so that u has at most uniformly weak singularities in
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Ω . However the assumption of regularity of f with respect to the variable x is
not suitable for applications to continuum mechanics, since discontinuity in the
variable x models the important case of composite materials.

Several papers in the literature address the issue of higher integrability properties
of the gradient of solutions of (3.24) without continuity assumptions on x . Usually,
the behavior of ∇u is studied on compactly contained open subsets of Ω , and this
is the natural price to pay in order to concentrate on properties depending only on
the material (that is, on the bulk energy density f ) and not on the boundary datum.

In the fundamental paper [26] due to Meyers (and based on some ideas by
Boyarski on higher integrability for quasiconformal mappings in dimension two,
see [8, 9]), it is proved in particular the following result. Let A be an N × N sym-
metric matrix with eigenvalues between K −1 and K (K � 1). Then the gradient
of the solution of the linear elliptic partial differential equation (PDE)

{
div (A(x)∇u) = 0 in Ω

u = ψ on ∂DΩ,
(3.25)

belongs to Lq
loc(Ω) for some q > 2. Moreover in the same paper it is conjectured

that the optimal integrability exponent q(K ) is equal to 2K/(K −1). This conjecture
in particular implies that

q(K ) → +∞ for K → 1 and q(K ) → 2 for K → +∞.

The long-standing conjecture for the optimal exponent q(K ) in the context of
planar quasiconformal mappings was solved by Astala in [6]. Then Leonetti
and Nesi [22] proved the conjecture in the context of PDEs: any solution of (3.25)
has gradient in Lq

loc(Ω) for every q < 2K/(K − 1).
In the two-dimensional setting required by Theorem 3, we conclude that, in

order to guarantee that u has at most uniformly weak singularities in compactly
contained open subsets of Ω , it suffices that K < 2. On the other hand, a famous
example due to Meyers [26] shows that for every K � 2 we can find materials
which exhibit strong singularities inside the body. In fact, assuming that the origin
belongs to Ω we can consider

A(x) := K n ⊗ n + 1

K
τ ⊗ τ,

where n := x
|x | , τ is obtained from n through a rotation of 90 degrees counterclock-

wise, and a ⊗ b denotes the matrix with coefficients (a ⊗ b)i j = ai b j . Then it is
easy to see that the solution of

{
div (A(x)∇u) = 0 in Ω

u(x) = x1 on ∂Ω

is given by

u(x) := |x |K −1−1x1.
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A simple computation shows that if K � 2, the origin is a point of strong singularity
for u.

Higher integrability results for the gradient in the case of composite materials
composed of a finite number of phases with some geometrical constraints can be
found in Li-Vogelius [24] and in Li-Nirenberg [23] (for the case of systems).

Higher integrability results in the case of nonlinear PDEs can be found in
Caffarelli and Peral [11]. They prove [11, Theorem C] that, under mild assump-
tions on f , for any fixed q > p there exists ε = ε(q) > 0 such that if

||ξ |p−2ξ − ∂ξ f (x, ξ)| � ε|ξ |p−1

(that is, ∂ξ f is sufficiently close to the p-Laplacian operator), then every solution

u ∈ W 1,p(Ω) also belongs to W 1,q
loc (Ω). In particular if ε is small enough, u has at

most uniformly weak singularities on every compactly contained open subset ofΩ .

Remark 6. (The vectorial two-dimensional case) The minimality result given by
Theorem 3 holds also in the case of R

M -valued displacements provided that we
choose them in the Deny–Lions space

L1,p(Ω \ Γ ; R
M ) := {v ∈ W 1,p

loc (Ω \ Γ,RM ) : ∇v ∈ L p(Ω \ Γ ; M M×2)}.
(3.26)

We have that W 1,p(Ω \Γ,RM ) ⊆ L1,p(Ω \Γ ; R
M ), and the two spaces are equal

ifΩ \Γ is sufficiently regular (for example, a union of a finite number of Lipschitz
domains). A notion of trace for functions in L1,p(Ω \ Γ ; R

M ) near the points of
∂DΩ \ Γ is well defined, so that, given ψ ∈ W 1,p(Ω,RM ) and Γ ∈ Km(Ω), the
displacement uΓ is a solution of the minimum problem

min

{∫
Ω

f (x,∇u) dx : u ∈ L1,p(Ω \ Γ ; R
M ), u = ψ on ∂DΩ \ Γ

}
. (3.27)

(Notice that in this vectorial setting the maximum principle does not hold, so that
only a control on the gradient is available and this is why Deny–Lions spaces are
required.) Since Definition 1 relies only on the behavior of ∇u, it turns out that the
notion of uniformly weak singularities is well defined in the context of L1,p-spaces.

The minimality result in the vectorial setting follows because estimate (2.7)
still holds provided we set

A(Γ ) := {v ∈ L1,p(Ω \ Γ ; R
M ) : v = 0 on ∂DΩ \ Γ },

and the constructions of Lemmas 1 and 2 can easily be adapted to the case of
matrix-valued vector fields.

Remark 7. (The N-dimensional case) Let us consider the case Ω ⊆ R
N with

N � 3. The two-dimensional setting is employed in the proof of Theorem 3 only to
ensure the existence of a covering of the crack Γ which satisfies conditions (3.17).
In the case Γ is connected, the covering condition can be reduced to the existence



Crack Initiation in Brittle Materials 329

of an open set A (a ball ifΓ is well insideΩ , or a rectangle if it is near the boundary)
such that Γ ⊆ A and

diam(A) � CHN−1(Γ ),

where C is a given constant. This inequality is not implied by connectedness in
dimension N � 3, because needle-like cracks can have very small HN−1-measure
and large diameter. So the machinery of the proof of Theorem 3 can be employed
in dimension N � 3 if we restrict ourselves to a class of admissible cracks which
excludes the elongated ones. Namely we can consider the family

KC (Ω) := {Γ ⊆ Ω : Γ is closed and diam(Γ ) � CHN−1(Γ )}, (3.28)

where C is a given constant. The displacement uΓ relative to a crack Γ ∈ KC (Ω)

and the boundary datum ψ ∈ W 1,p(Ω,RM ), with M � 1, is again given by
problem

min

{∫
Ω

f (x,∇u) dx : u ∈ L1,p(Ω \ Γ ; R
M ), u = ψ on ∂DΩ \ Γ

}
,

(3.29)

where the space L1,p(Ω \ Γ ; R
M ) is defined in (3.26).

The notion of uniformly weak singularities can be rephrased in the N -dimen-
sional setting in the following way: we say that u ∈ L1,p(Ω; R

N ) has at most
uniformly weak singularities in Ω if there exist constants N − 1 < α � N and
C > 0 such that for every x ∈ Ω and for r small enough

∫
Br (x)∩Ω

|∇u|p dx � Crα. (3.30)

The intuitive meaning of condition (3.30) is the same as in the two-dimensional
setting, namely that the bulk energy of u inside a ball of center x and radius r is
asymptotically negligible for r → 0 and uniformly in x with respect to the surface
of the ball.

4. The minimality result in linearized elasticity

We briefly show in this section that the results obtained up to now are also true
if the bulk energy f (x,∇u) is replaced with a quadratic linearized elasticity energy

C(x)e(u) : e(u) = Ci, j,k,l(x)e(u)i, j e(u)k,l ,

that is a positive-definite quadratic form of the symmetrized gradient

e(u) := (∇u + (∇u)T)/2

of the displacement u : Ω → R
N . As before, the main conclusions will be drawn

in dimension 2 (Theorem 3 or rather, since u is vectorial, the result of Remark 6),
whereas in higher dimension the same restrictions of Remark 7 will apply.
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Let us consider in Ω a measurable function C , such that for any x ∈ Ω , C(x)
is an N × N × N × N fourth-order tensor that defines a positive-definite quadratic
form on the vector space of symmetric N × N matrices, that we denote by SN×N .
We assume that for any ξ ∈ SN×N and almost every x ∈ Ω , it holds that

λ|ξ |2 � C(x)ξ : ξ � Λ|ξ |2, (4.1)

where ξ : η = T r(ξηT ) = ξi, jηi, j and |ξ |2 = ξ : ξ is the standard Euclidean
(Frobenius) norm.

Given Γ ⊂ Ω a compact one-dimensional fracture, the space of admissible
displacements with finite energy will be the space of measurable displacements
u : Ω → R

N whose symmetrized distributional gradient in Ω \ Γ , denoted by
e(u), is in L2(Ω \ Γ ;SN×N ), and that satisfy in some sense u = ψ on ∂DΩ \ Γ .
Thanks to Korn’s inequality, it is known that such a displacement belongs in fact
to H1

loc(Ω \ Γ ), and since we have assumed that the boundary of Ω is Lipschitz,
we also have that u ∈ H1(Ω ∩ B) for any ball B with B ∩Γ = ∅, so that the trace
of u on ∂Ω \ Γ is well defined. As in Section 6, we introduce the space

L D1,2(Ω \ Γ ) := {u ∈ H1
loc(Ω \ Γ ; R

N ) : e(u) ∈ L2(Ω \ Γ ;SN×N )}
and for Γ a closed subset of Ω , the displacement uΓ is given by

min

{∫
Ω

C(x)e(u) : e(u) dx : u ∈ L D1,2(Ω \ Γ ), u = ψ on ∂DΩ \ Γ
}
.

We denote by u the solution in the non-cracked domain. The set of admissible
variations is now

A(Γ ) := {v ∈ L D1,2(Ω \ Γ ) : v = 0 on ∂DΩ \ Γ }.
The proof of Theorem 2 can be reproduced in this situation, yielding the estimate
(we assume |Γ | = 0)

∫
Ω

[C(x)e(u) : e(u)− C(x)e(uΓ ) : e(uΓ )] dx

� 2
∫
Ω

[τ − σ ] : [C(x)−1(τ − σ)] dx,

with σ(x) := C(x)e(u)(x) and τ ∈ L2(Ω;SN×N ) is any stress field compatible
with the variations in A(Γ ), that is, such that

∫
Ω\Γ

τ : e(v) dx = 0 (4.2)

for any v ∈ A(Γ ). The last estimate, together with (4.1), yields
∫
Ω

[C(x)e(u) : e(u)− C(x)e(uΓ ) : e(uΓ )] dx � 2

λ

∫
Ω

|τ − σ |2 dx, (4.3)

for any τ satisfying (4.2).
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In order to prove Theorem 3 in this setting, we form exactly the same construction
as before. We build a τ from σ by letting τ = σ in Ω except in a finite union of
balls or rectangles B2ri (xi ) or R2s j (y j ) (cf. the proof of Theorem 3 pp. 322 and fol-
lowing). Inside the smaller balls/rectangles Bri (xi ) and Rs j (y j ), we choose τ = 0,
and in each crown Ari (xi ) = B2ri (xi ) \ Bri (xi ) or As j (y j ) = R2s j (y j ) \ Rs j (y j ),
τ is of the form: τ = ϕσ + η, where ϕ is the appropriate cut-off function.

Again, to achieve (4.2), one needs to choose η in an appropriate way. An
additional difficulty here follows from the fact that η(x) has to be almost every-
where an N × N symmetric matrix. In order to find a suitable η, one needs to
replace problems (3.7), (3.14), (3.15) or (3.16) by the appropriate variant.

The right way to do it is obviously to solve the vectorial equation

div e(v) = −div (ϕσ) (4.4)

in the appropriate domain, and to replace the Neumann boundary condition, when
present, with the corresponding condition e(v) · n = 0. We then set η = e(v) in
each crown.

We get an estimate on
∫
Ω

|τ −σ |2 dx from standard estimates on e(v), that will
follow from appropriate Poincaré–Korn inequalities. For instance, one shows (see
Appendix B for details) that∫

Ar (x)
|v|2 dx � Cr2

∫
Ar (x)

|e(v)|2 dx (4.5)

for any v ∈ H1(Ar (x); R
N ) with

(∫
Ar (x)

v(y) dy = 0 and
∫

Ar (x)
y × v(y) dy = 0

)
,

or v = 0 on ∂DΩ ∩ ∂Ar (x).

The first set of conditions ensure that the average rigid motion of v vanishes in
Ar (x). Rigid motions, of the form x �→ K x + p with K antisymmetric, are the
kernel of the symmetrized gradient (in any connected domain).

Multiplying (4.4) by v and integrating by parts, we find that∫
Ar (x)

|e(v)|2 dx

= −
∫

Ar (x)
σ : (∇ϕ ⊗ v(x)) dx

� ‖σ‖L2(Ar (x))‖∇ϕ‖L∞(Ar (x))

(√
Cr‖e(v)‖L2(Ar (x))

)
,

where we have used (4.5). Since ‖∇ϕ‖L∞(Ar (x)) � 2/r and η = e(v), we deduce
that ∫

Ar (x)
|η(x)|2 dx � C

∫
Ar (x)

|σ(x)|2 dx

for some constant C that does not depend on x or r . We conclude as in the proof
of Theorem 3.
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5. Qualitative properties of crack initiation

In this section we use the results of Section 3 to address the problem of crack
initiation in elastic bodies. We restrict our analysis to the case of antiplane elasticity.
In view of the minimality result of Section 4, the same conclusions hold also for
the case of planar linearized elasticity.

First of all we consider the classical theory of Griffith concerning quasistatic
crack propagation, and we prove that it cannot explain the formation of a crack in
an elastic bodyΩ without singularities within the class Km(Ω) of closed sets with
a finite number of connected components, which is much richer than the family of
smooth curves usually considered in the mechanical literature.

In the second part of the section, we remove the assumption, implicit in Grif-
fith’s theory, that the crack growth is progressive, namely that the length of the
crack is continuous in time. Inspired by the variational theory of quasistatic crack
evolution proposed by Francfort and Marigo in [20], we replace Griffith’s equi-
librium condition with a static equilibrium condition and an energy balance. The
static equilibrium condition is a unilateral minimality property which states that,
during the crack evolution, the total energy is minimal among all configurations
with larger cracks (so that discontinuities of the crack’s length are allowed). The
energy balance requires that the total energy of the system evolves in relation with
the power of external loads in such a way that no dissipation occurs (except the
surface energy spent to enlarge the crack).

Within this framework, we prove that a crack appears immediately at a point
of strong singularity for the body. Moreover we prove that, if the body has at
most uniformly weak singularities, then it deforms elastically until a critical time
ti after which a “big” crack Γ (t) appears. These results have been established by
Francfort and Marigo in [20, Proposition 4.19, point (ii)] under the assumptions
that the crack Γ (t) is union of m fixed curves {γi (t)}i=1,...,m which can be parame-
terized by arc length. Thanks to our local minimality result (Theorem 3), we prove
these facts removing the restrictions on the path of the crack.

The mathematical setting we consider is that of Section 3. Namely Ω is a
bounded Lipschitz open set in R

2, ∂DΩ ⊆ ∂Ω is open in the relative topology,
and ∂NΩ := ∂Ω \ ∂DΩ is composed of a finite number of connected components.
The family of admissible cracks is given by the class Km(Ω) of closed subsets of
Ω with at most m connected components and with finite length, while the class
of admissible displacements relative to a crack Γ is given by W 1,p(Ω \ Γ ) with
p ∈]1,+∞[. The total energy is given by

E(u, Γ ) :=
∫
Ω

f (x,∇u) dx + kH1(Γ ), (5.1)

where f is a Carathéodory function satisfying (2.1), (2.2) and (2.3), and k > 0.

5.1. Crack initiation and Griffith’s theory

LetΓ0 be a crack insideΩ of length l0, and suppose that a boundary displacement
ψ is assigned on ∂DΩ \ Γ . According to Griffith theory, Γ0 is in equilibrium if,
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taking any family of increasing cracks Γl containing Γ0 with length l0 + l, then

lim sup
l→0+

W(l0)− W(l0 + l)

l
� k, (5.2)

where W(l0) and W(l0 + l) denote the bulk energy of the displacements uΓ0 and
uΓl associated to the boundary datumψ and the cracks Γ0 and Γl , respectively, and
k represents the toughness of the material. Moreover, during a quasistatic crack
evolution, if Γ0 propagates along the Γl , then (5.2) holds with equality.

Let us prove that the rate of energy release that appears in the left-hand side
of (5.2) is zero in the case in which Γ0 = ∅ and the elastic solution u relative
to the boundary displacement ψ has at most uniformly weak singularities. This
means that the elastic configuration is always in equilibrium according to Griffith’s
theory, and moreover that a quasistatic crack evolution which begins in the elastic
configuration remains at all subsequent times in the elastic regime, that is, Griffith’s
theory cannot explain crack initiation.

To this aim for every l > 0, let us set

W(l) := inf

{∫
Ω

f (x,∇uΓ ) dx : Γ ∈ Km(Ω),H1(Γ ) � l

}
,

where uΓ ∈ W 1,p(Ω \ Γ ) denotes the displacement associated to Γ and the
boundary datum ψ . Notice that we clearly have W(0) = ∫

Ω
f (x,∇u) dx , where

u is the elastic displacement relative to ψ . The following proposition holds.

Proposition 3. Let us assume that the hypotheses of Theorem 3 are fulfilled. Then
we have

lim
l→0+

W(0)− W(l)

l
= 0.

Proof. For every k̃ > 0, by Theorem 3 we have that for l small enough and
Γ ∈ Km(Ω) with H1(Γ ) � l∫

Ω

f (x,∇u) dx �
∫
Ω

f (x,∇uΓ )+ k̃H1(Γ ).

We deduce that

lim sup
l→0+

W(0)− W(l)

l
� k̃.

Since k̃ is arbitrary, and since W(l) � W(0), we conclude that the result holds.
�
Remark 8. (The case of strong singularities) If the elastic solution u has a strong
singularity at x ∈ Ω , then by Remark 4 we have that

lim
l→0+

W(0)− W(l)

l
= +∞,

so that the elastic configuration is not in equilibrium in the framework of Griffith’s
theory.
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5.2. Crack initiation in variational theories of crack propagation

As explained at the beginning of the section, we now consider irreversible
quasistatic crack evolutions governed by a static equilibrium condition and an
energy balance. More precisely if ψ(t) is a time-dependent boundary displace-
ment, and u(t), Γ (t) are the displacement and the crack at time t relative to ψ(t),
we assume that the pair (u(t), Γ (t)) satisfies the following properties:

(a) Irreversibility: Γ (t) is increasing in time, that is, Γ (t1) ⊆ Γ (t2) for all 0 �
t1 � t2 � T ;

(b) Static equilibrium: if t > 0, E(u(t), Γ (t)) � E(u, H) for all cracks H such
that ∪s<tΓ (s) ⊆ H and all displacements v : Ω \ H → R with v = ψ(t) on
∂DΩ \ H ;

(c) Energy balance: the total energy E(u(t), Γ (t)) is absolutely continuous in time,
and it satisfies

E(u(t), Γ (t)) = E(u(0), Γ (0))+
∫ t

0

∫
Ω

∂ f (x,∇u(τ ))∇ψ̇(τ ) dx dτ.

Condition (a) stands for the irreversibility of the evolution: the crack can only
increase in time, that is, no healing processes are admitted. Condition (b) asserts
that the pair (u(t), Γ (t)) is a unilateral minimizer of the total energy, that is, it
is a minimum among all configuration with larger cracks. In particular u(t) is the
elastic deformation relative to the boundary datum ψ(t) in the domain Ω \ Γ (t),
that is, u(t) satisfies equation (2.5) with Γ = Γ (t) and ψ = ψ(t). Finally, notice
that under suitable regularity assumptions on u(t) and Γ (t), condition (c) can be
rewritten as

∫
Ω

f (x,∇u(t)) dx −
∫
Ω

f (x,∇u(s)) dx + kH1(K (t) \ K (s))

=
∫ t

s

∫
∂DΩ\K (τ )

∂

∂n
f (x,∇u(τ )) · ψ̇(τ ) dH1(x) dτ. (5.3)

Therefore the energy balance condition states that the sum of the variation of the
bulk energy and of the dissipation due to the creation of a new crack is equal to
the work inserted in the system by the boundary datum ψ . We refer the reader to
the paper by Francfort and Marigo [20] for further details on crack evolutions
satisfying conditions (a), (b), and (c) (see also Mielke [27] for a connection with
the theory of rate-independent processes).

In order to treat the problem of crack initiation, we consider as in [20] the case
in which f is p-homogeneous in the gradient, that is, for all x ∈ Ω , ξ ∈ R

2 and
t > 0

f (x, tξ) = t p f (x, ξ).

We consider a time-dependent boundary displacement of the form t → tψ ,
where t ∈ [0, T ] and ψ ∈ W 1,p(Ω) ∩ L∞(Ω) is a given function. We refer the
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reader to the paper by Dal Maso and Toader [14] for the existence of a quasistatic
crack evolution {t → (u(t), Γ (t))} with

Γ (t) ∈ Km(Ω) and u(t) ∈ W 1,p(Ω \ Γ (t))
for every t ∈ [0, T ] satisfying (a), (b), and (c).

Since we are dealing with a crack initiation problem, and since ψ(0) = 0, we
assume that (u(0), Γ (0)) = (0,∅). Notice that, if v denotes the elastic displacement
associated to the boundary datum ψ , then tv is the elastic displacement associated
to tψ . Then from the static equilibrium condition, comparing (u(t), Γ (t)) with
(tv, Γ (t)), we have that for all t ∈]0, T ]∫

Ω

f (x,∇u(t)) dx � t p
∫
Ω

f (x,∇v) dx . (5.4)

Finally, since we can replace tψ by tv in the energy balance condition, we can
write∫

Ω

f (x,∇u(t)) dx + kH1(Γ (t)) =
∫ t

0

∫
Ω

∂ f (x,∇u(τ )) · ∇v dx dτ. (5.5)

This implies that∫
Ω

f (x,∇u(t)) dx + kH1(Γ (t)) � t p
∫
Ω

f (x,∇v) dx . (5.6)

In fact, from the inequality

zw � f (x, z)+ f ∗(x, w),

taking into account the p-homogeneity of f , we can write for a, b > 0

(z/a)(w/b) � (1/a p) f (x, z)+ (1/bq) f ∗(x, w)

where q = p′ := p/(p − 1). For z, w : Ω → R measurable functions on Ω ,
integrating over Ω , and setting

a p = p
∫
Ω

f (x, z) dx and bq = q
∫
Ω

f (x, w) dx,

we obtain the following Hölder-type inequality
∫
Ω

zw � p1/pq1/q
(∫

Ω

f (x, z) dx

)1/p (∫
Ω

f ∗(x, w) dx

)1/q

. (5.7)

Taking z = ∇v andw = ∂ f (x,∇u(τ ))we get [using f ∗(∂ f (z))+ f (z) = ∂ f (z) ·z
= p f (z)]∫

Ω

∂ f (x,∇u(τ ))∇v dx

� p1/pq1/q
(∫

Ω

f (x,∇v) dx

) 1
p
(∫

Ω

f ∗(x, ∂ f (x,∇u(τ ))) dx

) 1
q

= p1/pq1/q
(∫

Ω

f (x,∇v) dx

) 1
p

(p − 1)
1
q

(∫
Ω

f (x,∇u(τ )) dx

) 1
q

.
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In view of (5.4) we have∫
Ω

∂ f (x,∇u(τ ))∇v dx � τ
p
q p1/pq1/q(p − 1)

1
q

∫
Ω

f (x,∇v) dx .

Integrating from 0 to t we obtain∫ t

0

∫
Ω

∂ f (x,∇u(τ ))∇v dx � p1/pq1/q p−1(p − 1)
1
q t p

∫
Ω

f (x,∇v) dx .

Since

p1/pq1/q p−1(p − 1)
1
q = 1,

by (5.5) we conclude that (5.6) holds.
Notice that we can rescale (5.6) obtaining for t small∫

Ω

f (x,∇v(t)) dx + H1(Γ (t)) �
∫
Ω

f (x,∇v) dx, (5.8)

where v(t) := 1
t u(t) is the displacement associated to Γ (t) and ψ .

As noticed by Francfort and Marigo in [20], if T is large enough, a crack
will appear during the evolution, that is, Γ (s) �= ∅ for some s ∈]0, T [. In fact if T
is such that

H1(∂DΩ) < T p
∫
Ω

f (x,∇v) dx, (5.9)

then we get that creating a crack along ∂DΩ is more convenient that deformingΩ
elastically. We are now in a position to state the first crack initiation result.

Theorem 4. Let us assume that T satisfies (5.9), and let us suppose that the elastic
displacement v associated to the boundary datum ψ has at most uniformly weak
singularities in Ω , that is, it satisfies (3.3). Then the crack initiation is brutal, that
is, there exists a positive time ti ∈]0, T ] such that Γ (t) = ∅ for every t � ti , and
H1(Γ (t)) > l∗ for all t ∈]ti , T ] for some l∗ > 0 depending onΩ , f , k, m, and ψ .

Proof. Notice that by (5.6) we have H1(Γ (t)) → 0 as t → 0. By Theorem 3, we
get that for t small the elastic solution v is energetically convenient with respect
to (v(t), Γ (t)), where v(t) is the displacement associated to Γ (t) and ψ . But this
is against (5.8) unless H1(Γ (t)) = 0. In view of (5.9) we deduce that there exists
ti ∈]0, T [ such that Γ (t) = ∅ for every t � ti and H1(Γ (t)) > 0 for all t ∈]ti , T ].

In order to prove that H1(Γ (t)) > l∗ for all t ∈]ti , T ] and for some l∗ > 0,
notice that by (5.6) we deduce that∫

Ω

f (x,∇v(t)) dx + kt−pH1(Γ (t)) �
∫
Ω

f (x,∇v) dx .

Then by Theorem 3 we deduce that

lim inf
t↘ti

H1(Γ (t)) � l∗

for some positive constant l∗ depending only on Ω , f , kt−p
i , m, and ψ . The proof

is thus concluded. �
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Remark 9. Note that Theorem 4 holds true whenever the elastic solution v is a
local minimum for the total energy. Therefore, in view of the results of Section 4,
Theorem 4 can be extended to the setting of planar elasticity. Moreover we will
prove (see Theorem 6) that if v is C1, and the associated stress is continuous, then
v is a local minimizer in the class of SBV displacements. In view of this result,
we conclude that crack initiation is always brutal whenever the elastic solution has
no singularities at all, without assuming the cracks to be closed, or with a finite
number of connected components.

Let us now study the crack initiation in the case in which the elastic displace-
ment u associated to the boundary datum ψ has strong singularities. We recall that
a point x ∈ Ω is a point of strong singularity for v if

lim sup
r→0

1

r

∫
Br (x)∩Ω

|∇v|p dx = +∞.

It is well expected that during a loading process, a crack will appear at a point of
strong singularity. The following theorem establishes this fact for a general quasi-
static crack evolution satisfying properties (a), (b), and (c). The result, stated in
the setting of antiplane elasticity, can be easily generalized (see Remark 9) to the
case of planar elasticity.

Theorem 5. Let us suppose that the elastic displacement v associated to the bound-
ary datum ψ has a strong singularity at x ∈ Ω , and that v has at most uniformly
weak singularities inΩ \ Br (x) for every r > 0. Then we have that H1(Γ (t)) > 0
for all t ∈]0, T ], and the crack starts at the point {x}, that is,

x ∈
⋂
t>0

Γ (t).

Moreover the crack departs with zero speed, that is,

lim
t→0

H1(Γ (t))

t
= 0. (5.10)

Proof. In view of Remark 4, and since x is a point of strong singularity for v,
we have that for a positive time t > 0 the elastic displacement tv relative to the
boundary datum tψ cannot satisfy condition (b). As a consequence, we deduce that
H1(Γ (t)) > 0 for all t ∈]0, T ].

Let us come to the properties of Γ at time t = 0. By (5.6) we have

lim
t→0

H1(Γ (t)) = 0,

so that ⋂
t>0

Γ (t) = {y1, . . . , yh},

with h � m. Let us suppose by contradiction that yi �= x for all i = 1, . . . , h.
Then there exists r > 0 such that for t small enough we have Γ (t) ⊆ Ω \ Br (x).
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Since v has at most uniformly weak singularities in A := Ω \ B̄r (x), and in view of
Proposition 1, we have that inequality (5.8) implies that H1(Γ (t)) = 0 for t small,
which is a contradiction.

Finally, in order to prove (5.10), we rescale (5.6), obtaining∫
Ω

f (x,∇v(t)) dx + k

t p
H1(Γ (t)) �

∫
Ω

f (x,∇v) dx,

wherev(t) is the displacement associated toΓ (t) andψ . We deduce thatH1(Γ (t))�
Ct p for some constant C , and so (5.10) easily follows. �

Appendix A: The two-dimensional SBV case

The aim of this appendix is to prove a minimality result along the lines of
Theorem 3 which does not require an a priori bound on the number of the connected
components of the admissible cracks. Small cracks are still not energetically con-
venient if the gradient of the elastic solution of problem (2.4) and the related stress
are continuous inΩ . This condition excludes however that the elastic configuration
presents (weak) singularities.

In order to make the mathematical setting of this section precise, we need to
recall some facts about rectifiable sets and the functional space SBV of special func-
tions with bounded variation. We refer the reader to [4] for a complete treatment
of these subjects.

A set Γ ⊆ R
N is rectifiable if there exists N0 ⊆ Γ with HN−1(N0) = 0, and

a sequence (Mi )i∈N of C1-submanifolds of R
N such that

Γ \ N0 ⊆
⋃
i∈N

Mi .

For every x ∈ Γ ∩ Mi , we define the normal to Γ at x as nMi (x). It turns out that
the normal is well defined (up to the sign) for HN−1-almost every x ∈ Γ .

Let U ⊆ R
N be an open bounded set with Lipschitz boundary. SBV (U ) is the

set of functions u ∈ L1(U ) such that the distributional derivative Du is a Radon
measure which, for every open set A ⊆ U , can be represented as

Du(A) =
∫

A
∇u dx +

∫
A∩S(u)

[u](x)ν dHN−1(x),

where ∇u is the approximate differential of u, S(u) is the set of jump of u (which
is a rectifiable set), ν(x) is the normal to S(u) at x , and [u](x) is the jump of u at x .

For every p ∈]1,+∞[ we set

SBV p(U ) := {u ∈ SBV (U ) : ∇u ∈ L p(U,RN ), HN−1(S(u)) < +∞}.
If u ∈ SBV (U ), then u admits a trace γ (u) on ∂U which is characterized by the
relation (see [4, Theorem 3.87])

lim
r→0

r−N
∫
Ω∩Br (x)

|u(y)−γ (u)(x)| dy =0 for HN−1-almost every x ∈∂U.
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We will denote the trace γ (u) on ∂U again by u. If Γ ⊆ U is rectifiable and
oriented by a normal vector field n, then we can define the traces γ+

Γ (u) and γ−
Γ (u)

of u ∈ SBV (U ) on Γ (see [4, Theorem 3.77]) which are characterized by the
relations

lim
r→0

r−N
∫
Ω∩B±

r (x)
|u(y)−γ±

Γ (u)(x)| dy =0 for HN−1-almost every x ∈Γ,

where B±
r (x) := {y ∈ Br (x) : (y − x) · n ≷ 0}. It turns out that the jump [u](x)

for HN−1-almost every x ∈ S(u) is given by the difference of the traces of u at x
on both sides of S(u).

A set E ⊆ U has finite perimeter in U if the characteristic function 1E belongs
to SBV (U ). We denote by ∂∗E the set of jumps of 1E . ∂∗E is usually referred to
as the reduced boundary of E in U .

Let us now come to our problem of local minimality. Let Ω ⊆ R
2 be open,

connected, and with Lipschitz boundary. Let ∂DΩ ⊆ ∂Ω be open in the relative
topology, and let ∂NΩ := ∂Ω \∂DΩ . Let f (x, ξ) be a Carathéodory function satis-
fying (2.1), (2.2), and (2.3). Let us moreover assume that the boundary displacement
on ∂DΩ is given by the trace of a continuous functionψ ∈ C0(Ω)∩ W 1,p(Ω). We
denote by u the elastic solution relative to ψ , namely the solution to the problem

min

{∫
Ω

f (x,∇u) dx : u ∈ W 1,p(Ω), u = ψ on ∂DΩ

}
.

The class of admissible cracks we consider is

R(Ω) := {Γ ⊆ Ω : Γ is rectifiable and H1(Γ ) < +∞}. (A.1)

Let us come to the class of admissible displacements relative to a crack Γ and
to the boundary displacementψ . Since Γ is not supposed to be closed, the Sobolev
space W 1,p(Ω \ Γ ) is not well defined. So we consider as class of admissible
displacements the functions u ∈ SBV p(Ω) such that Sψ(u) ⊆ Γ , where

Sψ(u) := S(u) ∪ {x ∈ ∂DΩ : u(x) �= ψ(x)},

and the inequality on ∂DΩ is intended for the traces. Notice that if Γ is closed then
u ∈ W 1,p(Ω \ Γ ), and u = ψ on ∂DΩ \ Γ .

The displacement uΓ ∈ SBV p(Ω) ∩ L∞(Ω) associated to Γ and ψ is a
solution of the minimum problem

min

{∫
Ω

f (x,∇u) dx : u ∈ SBV p(Ω), Sψ(u) ⊆ Γ

}
. (A.2)

The proof of the existence of uΓ is standard: it relies on Ambrosio’s compactness
and lower semicontinuity Theorem [2], together with a truncation argument.

The main result of the section is the following.
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Theorem 6. Let u be the elastic displacement relative to ψ ∈ W 1,p(Ω)∩ C0(Ω),
and let us assume that u satisfies

∇u ∈ C0(Ω; R
2) and σ := ∂ξ f (x,∇u) ∈ C0(Ω; R

2). (A.3)

Then there exists a critical length l∗ > 0 depending on Ω , f , k, and ψ such that
for all Γ ∈ R(Ω) with H1(Γ ) < l∗ we have∫

Ω

f (x,∇u) dx <
∫
Ω

f (x,∇uΓ ) dx + kH1(Γ ).

In order to prove Theorem 6 we need the following lemma.

Lemma 3. For every Γ ∈ R(Ω) we have∫
Ω

[ f (x,∇u)− f (x,∇uΓ )] dx �
∫
Γ

σ · n(u+
Γ − u−

Γ ) dH1, (A.4)

where σ is the stress of the elastic displacement u defined in (A.3), uΓ is a minimum
of (A.2), and u±

Γ are the traces of uΓ onΓ (ifΓ touches ∂DΩ , we set u+
Γ (x) = ψ(x)

and u−
Γ (x) = γ (u)(x), γ (u) being the trace of u on ∂Ω , while if Γ touches ∂NΩ

we set u±
Γ (x) = ψ(x)).

Proof. By the convexity of f we have∫
Ω

[ f (x,∇u)− f (x,∇uΓ )] dx �
∫
Ω

∂ f (x,∇u)(∇u − ∇uΓ ) dx

=
∫
Ω

σ(∇u − ∇uΓ ) dx . (A.5)

We can assume that ψ is defined on R
2, that is, ψ ∈ W 1,p(R2) ∩ C0(R2). Let B

be a ball centered at 0 such thatΩ ⊆ B. Let us setΩ ′ := B \ ∂NΩ . We can extend
u and uΓ to Ω ′ setting u = uΓ = ψ on B \Ω . Let us consider un ∈ C1(Ω ′) with
un = ψ on B \Ω and such that

Dun → DuΓ strictly in the sense of measures,

that is (see [4, Theorem 3.9])

lim
n→+∞

∫
Ω ′
ϕdDun =

∫
Ω ′
ϕdDuΓ for all ϕ ∈ C0(Ω ′) ∩ L∞(Ω ′).

Since u is a minimum for problem (A.2) with Γ = ∅, and un = ψ on ∂DΩ , then
we have that u − un is an admissible variation for u so that for all n ∈ N

0 =
∫
Ω

σ(∇u − ∇un) dx =
∫
Ω

σ dD(u − un). (A.6)

Since by assumption σ ∈ C0(Ω), we can extend σ to Ω ′ in such a way that
σ ∈ C0(Ω ′) ∩ L∞(Ω ′). Notice that since u = un = ψ on B \Ω , from (A.6) we
have ∫

Ω ′
σ dD(un − u) = 0.
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Then by strict convergence we deduce

0 = lim
n→∞

∫
Ω ′
σ dD(u − un) =

∫
Ω ′
σ∇u dx −

∫
Ω ′
σ dDuΓ

=
∫
Ω ′
σ(∇u − ∇uΓ ) dx −

∫
S(uΓ )

σ · n(u+
Γ − u−

Γ ) dH1. (A.7)

Since S(uΓ ) ⊆ Γ , u+
Γ = u−

Γ on Γ \ S(uΓ ), and ∇u = ∇uΓ = ∇ψ on B \Ω , by
(A.7) we deduce∫

Γ

σ · n(u+
Γ − u−

Γ ) dH1 =
∫
Ω ′
σ(∇u − ∇uΓ ) dx =

∫
Ω

σ(∇u − ∇uΓ ) dx,

so that, in view of (A.5), we have that (A.4) follows. �
We are now in a position to prove the minimality result in the SBV context.

Proof (Proof of Theorem 6). Let us consider l > 0, and let Γ ∈ R(Ω) be a
minimum for the functional

F(Γ ) :=
∫
Ω

f (x,∇uΓ ) dx + kH1(Γ )

among the cracks Γ ∈ R(Ω) such that H1(Γ ) � l. The existence of such a Γ
follows by taking a minimum ṽ of the functional

F(v) :=
∫
Ω

f (x,∇v) dx + kH1(Sψ(v))

among all v ∈ SBV p(Ω) with H1(Sψ(v)) � l, and choosing Γ := Sψ(ṽ). As
a consequence, we can assume that Γ ∩ ∂NΩ = ∅, and moreover that for every
x ∈ Γ we have |[uΓ ](x)| > 0 [on ∂DΩ we mean |ψ(x)− γ (u)(x)|, with γ (u) the
trace of u on ∂Ω]. Theorem 6 will be proved if we show that Γ = ∅ for l small
enough.

The main idea to prove that Γ = ∅ for l small enough is to look at the the
quantity |[uΓ ]|, to prove that it is infinitesimal as l → 0, and to apply (A.4). There
are some problems connected to this strategy. Recall that, while the strain ∇uΓ is
uniquely determined, the displacement uΓ is not, because, at least if Γ is closed,
uΓ can be any constant on the connected components ofΩ \Γ which do not touch
∂DΩ . This is also the case, in a suitable weak sense, when Γ is only rectifiable.
Consider indeed E ⊆ Ω with finite perimeter in R

2, such that ∂∗E ⊆ Γ ∪ ∂NΩ ,
where ∂∗E denotes the reduced boundary of E with respect to R

2. Notice that we
can assume that uΓ is equal to a constant c on E . In fact we have that

ũΓ :=
{

uΓ in Ω \ E

c in E

belongs to SBV (Ω), and it is an admissible displacement for Γ and ψ (see [4,
Theorem 3.84]) with∫

Ω

f (x,∇ũΓ ) dx �
∫
Ω

f (x,∇uΓ ) dx .
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We conclude that ũΓ is a minimum energy displacement relative to Γ andψ . Com-
ing back to |[uΓ ]|, we see that this quantity is not well defined unless we fix a
representative of uΓ . Moreover, having fixed such a representative, we have that
we can estimate at most the oscillation of [uΓ ] on ∂∗E , and not prove that |[uΓ ]|
converges to zero as l → 0. So in what follows, we split Γ in two pieces Γ \ Γ ∗
and Γ ∗, where Γ ∗ is related to the sets E on which uΓ is constant [so that only an
estimate for the oscillation holds, see (A.15)], while on the rest the quantity [uΓ ]
tends to zero as l → 0 [see (A.14)].

Let E ⊆ Ω be the set with finite perimeter in R
2, maximal with respect to

inclusion, such that ∂∗E ⊆ Γ ∪ ∂NΩ . As we have seen, we can assume that

uΓ = 0 on E . (A.8)

Notice that, in view of (A.8), we may assume also that if x ∈ Γ \ ∂∗E , then x has
not density 1 for E , that is,

lim inf
r→0+

|E ∩ B(x, r)|
|B(x, r)| < 1. (A.9)

Otherwise, we would get [uΓ ](x) = 0.
Let us divide E in the union of its indecomposable components according

to [5, Theorem 1], that is, let (Ei )i∈N be a family of sets with finite perimeter
in R

2 such that E = ⋃
i∈N

Ei , H1(∂∗E) = ∑
i∈N

H1(∂∗Ei ), |Eh ∩ Ek | = 0,
H1(∂∗Eh ∩ ∂∗Ek) = 0 for every h �= k, and such that for every k ∈ N the set
Ek cannot be written as Ek = E1

k ∪ E2
k with |E1

k ∩ E2
k | = 0 and H1(∂∗Ek) =

H1(∂∗E1
k )+ H1(∂∗E2

k ). Let us set

Γ ∗ := ∂∗E \ ∂NΩ =
( ∞⋃

i=0

∂∗Ei

)
\ ∂NΩ, (A.10)

and let us assume that n denotes the outward normal to Ei . Since the stress σ is a
divergence-free vector field, in view of the generalized Gauss-Green formula for
sets with finite perimeter (see [4, Theorem 3.36]) we have for all i ∈ N

∫
∂∗ Ei

σ · n dH1 =
∫

Ei

divσ dx = 0. (A.11)

In order to prove our minimality result, by contradiction let us assume that there
exists lh → 0 and Γh with H1(Γh) � lh , such that setting uh := uΓh we have

∫
Ω

f (x,∇uh) dx + kH1(Γh) <

∫
Ω

f (x,∇u) dx . (A.12)

By Ambrosio’s lower semicontinuity Theorem [2] and by (A.12), we deduce that
for every open set A ⊆ Ω

lim
h→+∞

∫
A

f (x,∇uh) dx =
∫

A
f (x,∇u) dx . (A.13)
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Let Eh , (Eh
i )i∈N and Γ ∗

h be the sets associated to Γh described above. We claim
that

|[uh]| := |u+
h − u−

h | → 0 uniformly on Γh \ Γ ∗
h as h → +∞ (A.14)

and

ess-sup∂∗ Eh
i
(u+

h )− ess-inf∂∗ Eh
i
(u+

h ) → 0 uniformly in i as h → +∞.

(A.15)

If xh ∈ Γh \ Γ ∗
h and xh ∈ ∂DΩ , we intend ψ(xh) for u+

h (xh), and γ (uh)(x) for
u−

h (x) [with γ (u) the trace of u on ∂Ω], while if xh ∈ ∂∗Eh
i ∩ ∂NΩ , we intend

ψ(xh) = u+
h (xh).

In view of (A.14) and (A.15), the proof of the proposition is readily concluded.
In fact, given ε > 0, and choosing h so large that

|[uh]| � ε on Γh \ Γ ∗
h

and for all i ∈ N

ess-sup∂∗ Eh
i \∂NΩ

(u+
h )− ess-inf∂∗ Eh

i \∂NΩ
(u+

h ) � ε,

by Lemma 3, in view also of (A.8) and of (A.11), and recalling that σ · n = 0 on
∂NΩ , we have that
∫
Ω

[ f (x,∇u)− f (x,∇uh)] dx

�
∫
Γh

σ · n(u+
h − u−

h ) dH1

=
∫
Γh\Γ ∗

h

σ · n(u+
h − u−

h ) dH1 +
∫
Γ ∗

h

σ · n(u+
h − u−

h ) dH1

=
∫
Γh\Γ ∗

h

σ · n(u+
h − u−

h ) dH1 +
∞∑

i=0

∫
∂∗ Eh

i \∂NΩ

σ · nu+
h dH1

=
∫
Γh\Γ ∗

h

σ · n(u+
h − u−

h ) dH1 +
∞∑

i=0

∫
∂∗ Eh

i

σ · nu+
h dH1

� ε‖σ‖∞H1 (
Γh \ Γ ∗

h

)

+
∞∑

i=0

(ess-inf∂∗ Eh
i
u+

h )×
∫
∂∗ Eh

i

σ · n dH1 + ε‖σ‖∞
∞∑

i=0

H1(∂∗Eh
i )

= ε‖σ‖∞
(
H1 (

Γh \ Γ ∗
h

) + H1 (
Γ ∗

h ∪ ∂NΩ
)) = ε‖σ‖∞H1 (Γh ∪ ∂NΩ) ,

and this is against (A.12).
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In order to conclude the proof, we have to prove the claims (A.14) and (A.15).
Let us consider (A.14), the proof of the other claim being similar. Let us assume
that there exists δ > 0 and xh ∈ Γh \ Γ ∗

h with

|[uh](xh)| � δ > 0. (A.16)

Up to a subsequence we have xh → x̄ ∈ Ω . Let us assume that x̄ ∈ Ω . For h
large enough, and for r small we have B̄r (xh) ⊆ Ω . Notice that for almost every r
such that ∂Br (xh) ∩ Γh = ∅, we have that uh ∈ W 1,p(∂Br (xh)). Moreover by the
maximum principle we have that

max
∂Br (xh)

uh − min
∂Br (xh)

uh = Mh − mh > δ. (A.17)

In fact otherwise, we can consider ũh defined as

ũh :=
{

uh outside Br (xh),

max{min{uh,Mh},mh} inside Br (xh).

Since xh ∈ Γh \ Γ ∗
h , and in view (A.9) and of (A.16), we deduce that

|{uh �= ũh} \ Eh | > 0

so that
∫
Ω

f (x,∇ũh) dx <
∫
Ω

f (x,∇uh) dx,

which is against the minimality of uh . Then (A.17) holds.
Let ∂ϑuh denote the angular derivative of uh , that is, ∂ϑuh := d

dϑ uh(x1
h +

r cosϑ, x2
h + r sin ϑ). Setting Ch := {s ∈ [0, r ] : H1 (∂Bs(xh) ∩ Γh) = 0}, by

(A.17) we have for every r ∈ Ch

∫ 2π

0
|∂ϑuh |p dϑ � 2πδ p.

Notice that |Ch | � r − H1(Γh). In fact we can obtain H1(Γh) considering cover-
ings of Γh made up by disks, and taking the sum of the length of their boundaries:
through suitable rotations we can move the disks in such a way that their centers
lie on a fixed radius of B(xh, r), so that the relation follows. We deduce that

∫
Br (xh)

|∇uh |p dx �
∫ r

0

∫ 2π

0
s1−p|∂ϑuh |p dϑ ds

�
∫

Ch

∫ 2π

0
s1−p|∂ϑuh |p dϑ ds � 2πδ p

∫
Ch

s1−p ds

� 2πδ p
∫ r

H1(Γh)

s1−p ds. (A.18)
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Let us distinguish two cases, namely p � 2 and 1 < p < 2. If p � 2, choosing
r = 2H1(Γh) we obtain

lim inf
h→+∞

∫
Brh (xh)

f (x,∇uh) dx � 2πδ p ln 2.

But this is against (A.13): in fact for all r such that Br (x̄) ⊆ Ω by (A.13) we have

∫
Br (x̄)

f (x,∇u) dx = lim
h→+∞

∫
Br (x̄)

f (x,∇uh) dx

� lim
h→+∞

∫
Brh (xh)

f (x,∇uh) dx � 2πδ p ln 2,

and this gives a contradiction for r small enough. If 1 < p < 2, then we have

lim inf
h→+∞

∫
Br (xh)

f (x,∇uh) dx � lim inf
h→+∞

2πδ p

2 − p

(
r2−p−H1(Γh)

2−p
)
= 2πδ p

2 − p
r2−p

from which by (A.13) we deduce that

∫
Br (x̄)

f (x,∇u) dx � Cr2−p (A.19)

for some C > 0. Since ∇u ∈ C0(Ω; R
2) and f satisfies (2.3) we get that

∫
Br (x̄)

f (x,∇u) dx � C̃r2

for some C̃ > 0, which together with (A.19) gives a contradiction.
The case in which x̄ ∈ ∂Ω can be treated almost in the same way as the case

x̄ ∈ Ω . In fact it is sufficient to choose r so small that

max
Br (xh)∩∂DΩ

ψ − min
Br (xh)∩∂DΩ

ψ < δ,

and to take into account the fact that there exists a constant C depending only on
Ω such that

H1(∂Brh (xh) ∩Ω) � Crh .

In this way, integrations involved in (A.18) can be performed on a set of angle ϑ
which has a positive measure uniformly bounded from below, and the contradiction
follows by the same arguments used above. �
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Appendix B: Uniform Poincaré and Poincaré–Korn inequalities

In this section, we show that very basic arguments lead to the uniform Poincaré
and Poincaré–Korn inequalities that are needed, respectively, in Sections 3 and 4.

To simplify, we will only consider the case of N -dimensional domains of the
form

Q f =
{

x = (x ′, xN ) ∈ R
N : 0 � xi � 1, i = 1, . . . , N − 1, 0 � xN � f (x ′)

}

where f : Q′ → [1,M] is an L-Lipschitz function. Here Q′ is the (N −1)-dimen-
sional cube (0, 1)N−1 and L > 0 and M > 1 are fixed constants. The adaptation of
the arguments that we will present here to the “real” cases that are useful in the paper
is straightforward. Also, for simplicity, we consider here the “linear” case p = 2.
However, the proofs would be identical with any other exponent p ∈ (1,+∞).

With a slight abuse in the notation we also identify Q′ with the base of Q f , that
is, the subset (0, 1)N−1 × {0} of ∂Q f . We show that the following result holds:

Proposition 4. There exists a constant C > 0 depending only on L and M such
that

(i) For any u ∈ H1(Q f ) with u = 0 on Q′, ‖u‖L2(Q f )
� C‖∇u‖L2(Q f )

;

(ii) For any u ∈ H1(Q f ) with
∫

Q f
u(x) dx = 0, ‖u‖L2(Q f )

� C‖∇u‖L2(Q f )
;

(iii) For any u ∈ H1(Q f ; R
N ) with u = 0 on Q′, ‖u‖L2(Q f )

� C‖e(u)‖L2(Q f )
;

(iv) For any u ∈ H1(Q f ; R
N )with both

∫
Q f

u(x) dx = 0 and
∫

Q f
x×u(x) dx =

0, one has ‖u‖L2(Q f )
� C‖e(u)‖L2(Q f )

.

In the last assertion, x × u is the skew-symmetric matrix (xi u j − x j ui )
N
i, j=1, and

the condition means that u is orthogonal (in L2) to the rigid motions (of the form
a + Bx with B skew-symmetric).

Let us sketch the proof of this proposition. First of all, the proof of point (i) is
standard (by integration along vertical lines starting from Q′) and it is well known
that the constant C , in this case, only depends on M ( f could then be any l.s.c.
function below M). In the same way, the proof of (iii) is significantly simpler than
the proof of (iv) (note however that it does require that f is Lipschitz and C will
depend on both M and L), and we will not discuss it. (See [7] for a detailed proof,
in dimension two).

To prove (ii) one first establishes the following inequality: there exists C0
depending only on M such that for any f and any u ∈ H1(Q f ), one has

∫
Q f

u(x)2 dx � C0

(∫
A

u(x)2 dx +
∫

Q f

|∇u(x)|2 dx

)
, (B.1)

where A denotes the set Q′ × (0, 1) (the important fact here being that A is an open
set that belongs to all the domains Q f , for all admissible f ). The proof of (B.1),
again, is standard. It relies on integration along vertical lines starting from the base
Q′ and on the obvious fact that for any b ∈ [1,M] and any v ∈ C1(0, b),

∫ y

0
v(t)2 dt � 2M

∫ 1

0
v(t)2 dt + 2M2

∫ b

0
v′(t)2 dt. (B.2)
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Now, if (ii) is not true, it means that there exists functions fn and un with
1 � fn � M , fn L-Lipschitz, un ∈ H1(Q fn ),

∫
Q fn

un dx = 0, and

‖un‖L2(Q fn )
� n‖∇un‖L2(Q fn )

for any n.
Without loss of generality we may renormalize un so that

∫
A u2

n dx = 1. Then,
by (B.1) we find

‖∇un‖L2(Q fn )
� 1

n
‖un‖L2(Q fn )

�
√

C0

n

(
1 + ‖∇un‖L2(Q fn )

)
.

If we extend both un and ∇un with the value 0 outside of Q fn , this inequality shows
that ∇un goes to zero strongly in L2(QM ; R

N ) [QM = Q′ × (0,M)], and, up to a
subsequence, that there exists u ∈ L2(QM ) such that un ⇀ u weakly in L2(QM ).

On the other hand, by Rellich’s theorem, un → u strongly in L2(A) and since
∇u = 0 in A and

∫
A u2 = 1, u is the constant ±1/

√|A|.
Now, since the functions fn are uniformly equibounded and equicontinuous,

up to a further subsequence, we may assume also that fn converges to some f
uniformly. It is now easy to check that u ∈ H1(Q f ), u = 0 outside of Q f , and
∇u = 0 (the limit of ∇un) in Q f so that u is a constant in Q f . We deduce that
u = (1/

√|A|)χQ f . Now, for each n, one had
∫

Q fn
un dx = ∫

QM
un dx = 0, hence

in the limit
∫

QM
u dx = 0 �= |Q f |/√|A|, a contradiction. Hence (ii) must be true.

We observe here that (ii) holds in fact as long as f belongs to a fixed set of
functions which is compact in C0(Q′, [1,+∞)) (the constant C depending only
on this compact set). The case of L-Lipschitz functions uniformly bounded by the
constant M is a particular case. On the other hand, for the Poincaré–Korn inequal-
ities (iii) and (iv), the fact that the functions f are uniformly Lipschitz seems to be
essential, as we now show.

Let us now prove (iv). It is enough to show that the vectorial version of (B.1)
holds, that is,

∫
Q f

|u(x)|2 dx � C0

(∫
A

|u(x)|2 dx +
∫

Q f

|e(u)(x)|2 dx

)
. (B.3)

This will be shown, again, by integration along lines and using (B.2), however, this
time, it is not sufficient to consider only vertical lines starting from Q′. Indeed, one
has for any smooth vectorial field u ∈ C1(Q f ) that

d(u(x + sξ) · ξ)/ds = (e(u)(x + sξ)ξ) · ξ
for any x ∈ Q f , ξ ∈ S

N−1, and s ∈ R such that x + sξ ∈ Q f . Hence, integration
along vertical lines will control the component uN of u = (u1, . . . , uN ). To control
the other components, one needs to integrate along lines in at least N − 1 other
independent directions (as is done in [7]).

Given p > max{L , 2M} let us consider, for any i = 1, . . . , N − 1, the vectors

ξ±
i = 1√

1 + p2
(0, . . . , 0,±1, 0, . . . , p)
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where ±1 appears at the i th position. Given i � N − 1, if we considers the lines
starting from Q′ in the direction ξ+

i , we see that they “see” all points x ∈ Q f

with xi � 1/2. On the other hand, the lines starting from Q′ in the direction ξ−
i

“see” all the points with xi � 1/2. Integrating along these lines and using (B.2),
one controls the L2-norms on one half of the domain Q f of (ui + puN )/

√
1 + p2

and, on the other half, of (−ui + puN )/
√

1 + p2. Together with the control of∫
Q f

u2
N dx obtained previously, this shows that one can control

∫
Q f

u2
i dx with the

right-hand side of (B.3). Repeating this argument for all i , we find that (B.3) holds,
with now a constant that depends on M and L , through p.

We deduce, exactly as before, that (iv) holds. �
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