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Crack Modeling for Structural Health

Monitoring
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There are a number of approaches to the modeling of cracks in beam structures reported in the

literature, that fall into three main categories; local stiffness reduction, discrete spring models, and

complex models in two or three dimensions. This paper compares the different approaches to crack

modeling, and demonstrates that for structural health monitoring using low frequency vibration, simple

models of crack flexibility based on beam elements are adequate. This paper also addresses the effect

of the excitation for breathing cracks, where the beam stiffness is bilinear, depending on whether the

crack is open or closed. Most structural health monitoring methods assume that the structure is

behaving linearly, whereas in practice the response will be nonlinear to an extent that varies with the

form of the excitation. This paper will demonstrate these effects for a simple beam structure.

Keywords crack � structural health monitoring � vibration � breathing crack � finite element

modeling

1 Introduction

The identification of the location and depth

of a crack in beam type structures is an impor-

tant example of structural health monitoring,

and has received considerable attention. Most of

the approaches use the modal data of a structure

before damage occurs as baseline data, and all

subsequent tests are compared to it. Any devia-

tion in the modal properties from this baseline

data is used to estimate the crack size and

location. The advantage of using this baseline

data is that some allowance is made for modeling

errors. Doebling et al. (1998) gave a review of

the research on crack and damage detection

and location in structures using vibration data.

The estimation of crack size and location gener-

ally requires a mathematical model (usually a

finite element model) along with experimental

modal parameters of the structure. The estima-

tion methods are predominately based on the

change in natural frequencies, the change in

mode shapes or measured dynamic flexibility

(for example, Cawley and Adams, 1979; Friswell

et al., 1994; Doebling et al., 1996). Salawu (1997)

gave a review of research work on crack detection

based on the change in natural frequencies.

Another class of crack detection methods, also

based on the change in modal parameters, uses

a different identification approach based on

the modification of structural model matrices

(such as mass, stiffness and damping matrices)

*Author to whom correspondence should be addressed.

E-mail: m.i.friswell@swansea.ac.uk

Copyright � 2002 Sage Publications,

Vol 1(2): 0139–148

[1475-9217 (200210) 1:2;139–148; 10.1106/145792102028836]

Copyright � 2002 Sage Publications,

Vol 1(2): 0139–148

[1475-9217 (200210) 1:2;139–148; 10.1106/145792102028836]

http:\\www.sagepublications.com


using model updating methods (Doebling et al.,

1998).

There are a number of approaches to the

modeling of cracks in beam structures reported in

the literature, that fall into three main categories;

local stiffness reduction, discrete spring models,

and complex models in two or three dimensions.

Dimarogonas (1996) and Ostachowicz and

Krawczuk (2001) gave comprehensive surveys of

crack modeling approaches. The simplest meth-

ods for finite element models reduce the stiffness

locally, for example by reducing a complete

element stiffness to simulate a small crack in

that element. This approach suffers from pro-

blems in matching damage severity to crack

depth, and is affected by the mesh density. An

improved method introduces local flexibility

based on physically based stiffness reductions,

where the crack position may be used as a

parameter for identification purposes. The second

class of methods divides a beam type structure

into two parts that are pinned at the crack

location and the crack is simulated by the

addition of a rotational spring. These approaches

are a gross simplification of the crack dynamics

and do not involve the crack size and location

directly. The alternative, using beam theory, is

to model the dynamics close to the crack more

accurately, for example producing a closed form

solution giving the natural frequencies and

mode shapes of cracked beam directly or using

differential equations with compatible boundary

conditions satisfying the crack conditions.

The approaches of Christides and Barr (1984)

and Sinha et al. (2002), and of Lee and Chung

(2001) will be considered in more detail later.

Alternatively two or three dimensional finite

element meshes for beam type structures with a

crack may be used. Meshless approaches may

also be used, but are more suited to crack

propagation studies. No element connectivity is

required and so the task of remeshing as the

crack grows is avoided, and a growing crack is

modeled by extending the free surfaces corre-

sponding to the crack (Belytschko et al., 1995).

However, the computational cost of these mesh-

less methods generally exceeds that of conven-

tional FEA. Rao and Rahman (2001) avoided

this difficulty by coupling a meshless region near

the crack with an FEA model in the remainder of

the structure. The two and three dimensional

approaches produce detailed and accurate models

but are a complicated and computational

intensive approach to model simple structures

like beams. Furthermore, finite element models

will contain modeling errors, the data will

include measurement errors, and the use of low

frequency vibration will tend to average out

localized effects. The result is that these very

detailed models do not substantially improve

the results from crack detection and location

algorithms.

The models described in this paper are for

an open crack. A breathing crack, which opens

and closes, can produce interesting and compli-

cated nonlinear dynamics. Brandon (1998) and

Kisa and Brandon (2000) gave an overview of

some of the techniques that may be applied.

Many techniques to analyze the resulting non-

linear dynamics are based on approximating the

bilinear stiffness when the crack opens and closes.

The approach proposed in this paper is able to

approximate the stiffness matrix for the beam

with an open crack. Such an approach will

certainly be more efficient than those based on

two or three dimensional finite element models

for time integration of the equations of motion,

although any realistic multi degree of freedom

nonlinear analysis would have to be based on a

reduced order model of the structure. However,

the nonlinearity introduced by the crack is

often weak, and many of the common testing

techniques will tend to linearize the response

(Friswell and Penny, 1992; Leonard et al., 2001;

Worden and Tomlinson, 2001). Sinusoidal forcing

will tend to emphasise the nonlinearity, and

damage detection methods based on detecting

harmonics of the forcing frequency have been

proposed (Shen, 1998). In rotor dynamic appli-

cations, these approaches are useful because the

forcing is inherently sinusoidal (Dimarogonas,

1996). However in structural health monitoring

applications, this approach requires considerable

hardware and software to implement, and also

requires a lengthy experiment. The second purpose

of this paper is to consider the importance of the

effects of the nonlinearity in structural health

monitoring of beam type structures with breathing
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cracks. In particular, the effects of the nonlinearity

on measurements obtained using impact and

random excitations will be considered.

2 Models of Open Cracks

Although the geometry of a crack can be

very complicated, the contention in this paper is

that for low frequency vibration only an effective

reduction in stiffness is required. Thus, for

comparison, a simple model of an open crack,

which is essentially a saw cut, will be used. This

will allow the comparison of models using beam

elements, with those using plate elements. Only a

selection of beam models will be used, that

illustrate the fact that many beam models are

able to model the effect of the crack at low

frequencies.

Two standard approaches using beam ele-

ments are shown in Figure 1. In the first

approach, the stiffness of a single element is

reduced, which requires a fine mesh, and also the

derivation of the effect of a crack on the element

stiffness. In the second approach, the beam is

separated into two halves at the crack location.

The beam sections are then pinned together and

a rotational spring used to model the increased

flexibility due to the crack. Translational springs

may also be used in place of the pinned con-

straint. The major difficulties with this approach

is that a finite element node must be placed at

the crack location, requiring remeshing for health

monitoring applications, and the relationship

between the spring stiffness and crack depth

needs to be derived.

For illustration, the open crack will be

modeled using plate elements. The geometry is

modeled by removing elements where the crack

is located. Figure 2 shows this in the case of plate

elements, and shows the side view of the mesh

used. Clearly more complex methods may be

used, and the review papers quoted earlier give

further details.

2.1 The Approach of Christides and
Barr

Clearly some of the material adjacent to the

crack will not be stressed and thus will offer

only a limited contribution to the stiffness. The

actual form of this increased flexibility is quite

complicated, but in this paper we approximate

this phenomenon as a variation in the local

flexibility. In reality, for a crack on one side of a

beam, the neutral axis will change in the vicinity

of the crack, but this will not be considered here.

Shen and Pierre (1994) and Carneiro (2000)

have extended this approach to consider single

edge cracks. Christides and Barr (1984) consid-

ered the effect of a crack in a continuous beam

and calculated the stiffness, EI, for a rectangular

beam to involve an exponential function given by

EIðxÞ ¼
EI0

1þ C expð�2�jx� xcj=dÞ
ð1Þ

where C¼ (I0� Ic)/Ic � I0¼ (wd
3)/12 and Ic=

w(d� dc)
3/12 are the second moment of areas of

the undamaged beam and at the crack. w and d

are the width and depth of the undamaged beam,

and dc is the crack depth. x is the position along

the beam, and xc the position of the crack. � is a
constant that Christides and Barr estimated from

experiments to be 0.667. The inclusion of the

stiffness reduction of Christides and Barr (1984)

into a finite element model of a structure, using
Reduction in Element Stiffness

Pinned Joint at Crack Location

Figure 1 Simple crack models for beam elements.

xc

dc
d

Figure 2 A simple crack model using plate elements.
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beam elements, is complicated because the

flexibility is not local to one or two elements,

and thus the integration required to produce

the stiffness matrix for the beam would have to

be performed numerically every time the crack

position changed. Furthermore, for complex

structures, without uniform long beams, Equation

(1) would only be approximate. Sinha et al.

(2002) used a simplified approach, where the

stiffness reduction of Christides and Barr was

approximated by a triangular reduction in stiff-

ness. An example of this approximation is shown

in Figure 3, for a crack of depth 5%, located at

x¼ 0. The advantages of this simplified model is

that the stiffness reduction is now local, and the

stiffness matrix may be written as an explicit

function of the crack location and depth. For cracks

of small depth, a good approximation to the length

of the beam influenced by the crack is 2d/�.

2.2 Fracture Mechanics Approach

An alternative approach is to estimate the

increased flexibility caused by the crack, using

empirical expressions of stress intensity factors

from fracture mechanics. Lee and Chung (2001)

gave such an approach based on the relationships

given by Tada et al. (1973). Only a summary of

the relevant equations will be given here. The

element stiffness matrix is given by

Kc ¼ TTC�1T ð2Þ

where the transformation, T, is

T ¼
�1 1 1 0
0 �1 0 1

� �
: ð3Þ

The flexibility matrix, C, for an element

containing the crack in the middle, is given by

C ¼
1

6EI

2‘3e 3‘2e
3‘2e 6‘e

" #

þ
18�ð1� �2Þ

Ewd2
‘2e 2‘e

2‘e 4

" #Z dc=d

0

�F2I ð�Þd�:

ð4Þ

where ‘e is the element length and � is Poisson’s
ratio. FI (�) is the correction factor for the stress
intensity factor, and may be approximated as

FI ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanð��=2Þ

��=2

s
0:923þ 0:199½1� sinð��=2Þ	4

cosð��=2Þ
:

ð5Þ

This formulation does give the stiffness

matrix of the element containing the crack expli-

citly in terms of the crack depth. There are two

difficulties with using this approach for structural

health monitoring. The main problem is that the

crack is located at the centre of the element,

requiring that the finite element mesh be rede-

fined as the crack moves. Furthermore, the

stiffness matrix of the crack is a complicated

function of the crack depth, and does not depend

on the crack location explicitly.

2.3 A Numerical Comparison of the
Models

The approaches to crack modeling will be

compared using a simple example of a steel

cantilever beam 1m long, with cross section

25
 50mm. Bending in the more flexible plane is

considered. The crack is assumed to be located at

a distance 200mm from the fixed end, and has a

constant depth of 10mm across the beam width.

The beam is modeled using 20 Euler–

Bernoulli beam elements, and gives the natural
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Figure 3 The variation in beam stiffness for the
approaches of Christides and Barr (1984) (solid line)
and Sinha et al. (2002) (dashed line).
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frequencies shown in Table 1. For the plate

elements, the length is split into 401 elements and

the depth into 10 elements. Thus the elements are

approximately 2.5mm square. A large number

of elements is required because an element with

linear shape functions is used. Table 1 shows the

estimated natural frequencies using the Quad4

element in the Structural Dynamics Toolbox

(Balmes, 2000).

The damaged beam was also modeled using

the approaches discussed earlier, and the results

are shown in Table 2. The beam models all

contain 20 elements, and the nodes are arranged

such that the crack occurs in the middle of an

element. Of course in the case of the discrete

rotational spring a node is placed at the crack

location. The reduction in the element stiffness is

adjusted so that the percentage change in the

first natural frequency is the same as that for the

plate model. The other beam models are adjusted

in a similar way. In the plate model, the crack

is simulated by removing 4 elements and thus

represents a saw cut 10mm deep. The row of

elements below the crack is also made thinner,

so that the crack has negligible width. The

differences in the lower natural frequencies are

very similar for all models, and these differences

are smaller than the changes that would occur

due to small modeling errors, or changes due to

environmental effects. Of course the accuracy at

higher frequencies becomes less since the modes

are influenced more by local stiffness variations.

2.4 Comparison with Experimental
Results

The previous section has shown that the

natural frequencies predicted from different

models are very close. Of course the question is

whether the differences in these predictions are

smaller than the measurement errors. As a

demonstration, the example of Rizos et al. (1990)

will be used. Kam and Lee (1992) and Lee and

Chung (2001) also used these results. The exam-

ple is a steel cantilever beam of cross-section

20
 20mm and length 300mm. Table 3 shows

the measured and predicted frequencies of the

uncracked beam. Rizos et al. (1990) propagated

cracks at a number of different positions and

depths, but here only a crack 80mm from the

cantilever root, and depths of 2 and 6mm will be

considered. Table 3 also shows the measured

natural frequencies for these crack depths. The

damaged cantilever beam ismodeled using the beam

methods described earlier. The depth of the crack

is optimized so that the percentage change in the

first mode matches the experimental result, to

allow for possible errors in measuring the crack

depth. Tables 4 and 5 show the measured and

predicted frequency changes for the two crack

depths. The results clearly show that the differ-

ences in the natural frequencies predicted by the

models are smaller than the measurement errors.
Table 2 The percentage changes in the natural
frequencies for the damaged beam.

Beam

Modes

Element
Stiffness
Reduction

Discrete
Spring

Sinha
et al.
(2002)

Lee and
Chung
(2001) Plate

1 4.18 4.18 4.18 4.18 4.18
2 0.07 0.04 0.08 0.04 0.04
3 1.24 1.23 1.24 1.20 1.22

4 2.99 3.08 2.98 2.99 3.07
5 2.37 2.45 2.37 2.34 2.69

Table 1 The natural frequencies (in Hz) for the
undamaged beam.

Beam Plate

Number DoF 40 13233
Modes 1 20.709 20.707

2 129.78 129.39

3 363.40 360.62
4 712.16 701.96
5 1177.4 1150.6

Table 3 The natural frequencies (in Hz) for the experi-
mental cantilever beam example.

Experimental

Modes
FE Model
Undamaged Undamaged

2mm
Crack

6mm
Crack

1 185.1 185.2 184.0 174.7
2 1159.9 1160.6 1160.0 1155.3
3 3247.6 3259.1 3245.0 3134.8
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Thus the simple models for cracked beams may

be used with confidence in health monitoring

applications.

3 A Single Mode Approximation for
Breathing Cracks

Suppose that the structure is forced such that

its response may be approximated using a single

degree of freedom approximation. Although this

situation rarely occurs in practice, the following

analysis will provide insight into the general

response of breathing cracks that will be addre-

ssed in the next section. The equation of motion

is given by

m €qqþ c _qqþ kðqÞq ¼ f ðtÞ ð6Þ

where m and c are the mass and damping terms,

f (t) is the applied force, and the stiffness is given

by the bilinear function,

kðqÞ ¼
kc if q > q0
kt if q < q0

�
ð7Þ

q0 is the value of the response when the crack

opens or closes. It is assumed this happens

instantaneously, and for a particular mode the

value of q0 may be related to the curvature at

the crack. In practice the transition from open to

closed will not be immediate, leading to a weaker

nonlinearity. But here the instantaneous transi-

tion is considered as the worst case.

If Equations (6) and (7) represented a single

mode approximation, then the mode shape is

assumed not to change. Thus the modal mass

and damping coefficients are constant, and only

the modal stiffness value would change. Friswell

and Penny (1992) integrated these equations

explicitly for an impulse response, and demon-

strated the response for a sinusoidal response

using numerical integration. In this paper we will

use numerical integration throughout.

Figure 4 shows the impulse time response

with,

m ¼ 1 kg, c ¼ 3 kg=s, kc ¼ 350N=m,

kt ¼ 100N=m, q0 ¼ 0

This is the same example as given by Friswell

and Penny (1992). The change in stiffness

between the open and closed phases is larger than

would occur in practice, but the example serves

as an illustration. The simulation was performed

in MATLAB using ode45 with the stiffness

changes identified as ‘events’. Figure 5 shows the

Fourier Transform of this response and clearly

shows a single peak at just over 2Hz. Although

the presence of the harmonics clearly indicates

that the response is nonlinear, the magnitude of

the response at the harmonics is quite small.

Remember that the stiffness difference between
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Figure 4 The impulse time response for the SDoF
example.

Table 5 The percentage changes in the natural
frequencies for the damaged beam with a 6 mm crack.

Modes

Element
Stiffness
Reduction

Discrete
Spring

Sinha
et al.
(2002)

Lee and
Chung
(2001)

Experi-
mental

1 5.67 5.67 5.67 5.67 5.67
2 0.56 0.54 0.88 0.54 0.46
3 4.92 4.95 4.49 4.92 3.81

Table 4 The percentage changes in the natural
frequencies for the damaged beam with a 2 mm crack.

Modes

Element
Stiffness
Reduction

Discrete
Spring

Sinha
et al.
(2002)

Lee and
Chung
(2001)

Experi-
mental

1 0.648 0.648 0.648 0.648 0.648
2 0.065 0.063 0.090 0.063 0.052
3 0.606 0.610 0.604 0.606 0.433
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the open and closed crack has been exaggerated

for illustration. In practical cases, only a single

natural frequency, which is based on the compo-

site time period of the opening and closing parts

of the response, would be identified.

The second example is the response of

the system to a random force. Worden and

Tomlinson (2001) indicated that random excita-

tion tends to make the nonlinearity difficult

to detect from the measured frequency response

functions, although the measured coherence may

be used. These features of random excitation will

now be demonstrated for the single mode approx-

imation to a breathing crack. Figure 6 shows the

band-limited random force and the resulting

response. It is clear that the response, again

obtained from numerical integration, has filtered

out the higher frequency content of the force.

Each forced response was simulated for 50 s, and

the force considered was burst random, where the

force was set to zero, 8 s before the end so that

any leakage effects were minimized. Twenty

averages were used to calculate the frequency

response function and the coherence, shown in

Figures 7 and 8 respectively. The frequency

response function appears to be linear, although

very noisy. No noise has been added to the

simulation, and this effect is purely due to

the nonlinearity arising from the breathing

crack. There is no increase in the response

around 4Hz, however the coherence is quite

poor, with a reduction around 4Hz. From these

results it is possible that a nonlinearity would

be detected, although in this example the effect

of the nonlinearity is magnified. It practice, with

small cracks, it is unlikely that the nonlinear

effects would be distinguished from measurement

noise.

0 2 4 6

−40

−30

−20

−10

Frequency (Hz)

R
es

po
ns

e 
(d

B
 r

el
. t

o 
1 

m
)

Figure 5 The Fourier transform of the impulse response
for the SDoF example.
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Figure 6 The applied force and time response for the
SDoF example using band-limited random excitation.
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Figure 8 The coherence for the SDoF example using
band-limited random excitation.
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Figure 7 The estimated frequency response function for
the SDoF example using band-limited random excitation.
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3.1 The Response of a Beam with a
Breathing Crack

Suppose that the crack opens and closes

instantaneously at a known beam curvature at

the crack location. Assume that the crack is

located within element j, as shown in Figure 9.

Then the displacement within the element is

wð
Þ ¼ ½Ne1ð
ÞNe2ð
ÞNe3ð
ÞNe4ð
Þ	

we1
we2
we3
we4

8>><
>>:

9>>=
>>; ð8Þ

where Nei(
) is the ith cubic shape function, and
wei are the displacements and rotations at the

nodes.

The curvature at the crack location, �, is then
given by

� ¼ w00ð
cÞ ¼ ½N 00
e1ð
cÞN

00
e2ð
cÞN

00
e3ð
cÞN

00
e4ð
cÞ	

we1
we2
we3
we4

8>><
>>:

9>>=
>>;
ð9Þ

where 
c is the crack location in local

co-ordinates. Thus the curvature at the crack is

obtained by premultiplying the nodal coordinate

vectors of the element containing the crack by a

constant row vector. Thus, in terms of the global

generalized coordinates of the full model, q, the

curvature is given by

� ¼ Sq ð10Þ

for some constant row vector S, that only has 4

nonzero terms, given in Equation (9).

The estimation of curvature is more difficult

for the model where the beam is pinned at the

crack location and a rotational spring used to

model the crack flexibility. Here the beam slope,

and curvature, will be discontinuous, and it is

difficult to devise a suitable estimate for curva-

ture, although from the slope information it is

easy to determine if the curvature is positive or

negative. The discrete spring model has the

further complication that an extra degree of

freedom is added when the pinned connection is

introduced into the undamaged beam model. For

a fixed crack location, this may be overcome by

using the pinned model with a very stiff rotary

spring for the undamaged beam. However, in

structural health monitoring the crack location

has to be estimated, requiring that the mesh and

the degrees of freedom be redefined at every

iteration.

The equations of motion of the complete

beam structure is then

Mqqþ C_qqþ Kð�Þq ¼ fðtÞ ð11Þ

where M and C are the mass and damping

matrices, f(t) is the applied force, and the stiffness

matrix is given by the bilinear function,

Kð�Þ ¼
Kc if � > �0

Kt if � < �0

(
ð12Þ

where �0 is the value of the beam curvature at

the crack, when the crack opens or closes.

For simulation purposes, it is necessary to

use reduced order models of the structure with

the crack open and closed. There are two possible

approaches. The first is to reduce the two models

(i.e., with the crack open and closed) using the

lower modes of each. Although such an approach

is efficient for a linear model, the mode shapes

will be slightly different, and so the transforma-

tion matrix in each case will be different. Thus

when the crack changes from open to closed

not only will the stiffness matrix change, but

the system state vector will also have to be

transformed. Furthermore, the matrix, S,

required to calculate the curvature will be differ-

ent in each case. The alternative is to have a

we1 we3
we

ξ

e

we2 we4

Figure 9 The definition of the local element co-ordi-
nates.
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fixed transformation, based on the undamaged

model, and use this to transform the structure

when the crack is open. In this case the trans-

formed matrices will not be diagonal, and the

lower modes will only be reproduced approxi-

mately. However, since the effect of a crack on

the beam dynamics is relatively small, the approx-

imation should be reasonable. The advantage

is that the system state vector does not have

to be transformed, and the calculation of the

curvature is the same whether the crack is open

or closed.

The cracked beam discussed earlier is mod-

eled using 20 elements, and the open crack is

modeled using the approach of Sinha et al.

(2002). Five modes are retained to calculate the

response, and an impulse force at the tip of the

beam is simulated using a half sine pulse of

magnitude 100N and duration 1ms. One percent

damping is added to all modes, based on the

undamaged model. The crack is assumed to open

and close when the curvature changes sign.

Figure 10 shows the response of the beam at

the tip, and Figure 11 shows the corresponding

FFT. Although the response appears to contain

only the lower mode, the higher modes contribute

to the initial response, as shown in the FFT

plot. The harmonics of the first mode appear

in the FFT, although a small quantity of noise

would mask these features. The main peaks

occur at frequencies that correspond to com-

posite natural frequencies, that is between

the frequencies for the open and closed crack

conditions.

4 Conclusions

This paper has considered two major features

in the modeling of beam structures with breathing

cracks. It was demonstrated that relatively simple

beam models, with a small number of degrees of

freedom, are able to model the effects of an open

crack. Thus models with plate or brick elements

are not necessary for structural health monitoring.

Indeed two and three dimensional models are

difficult to apply in health monitoring applications

because not only is the number of degrees of

freedom very large, the mesh must be revised as

the estimated crack location changes. The second

effect considered was the nonlinear dynamics of a

breathing crack. It was demonstrated by using a

bilinear stiffness model for the crack opening and

closing that the impulse and random responses

approximated a linear response with natural fre-

quencies that were a composite of the correspond-

ing frequencies for the beam with the crack open

and closed. If these results were used for health

monitoring, then the crack would be estimated at

the correct location, but the crack depth estimate

would be smaller than the real crack.
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