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Abstract: Shortest paths play an important role in mathematical modeling and image
processing. Usually, shortest path problems are formulated on planar graphs that con-
sist of vertices and weighted arcs. In this context, one is interested in finding a path of
minimum weight from a start vertex to an end vertex. The concept of minimum-weight
surfaces extends shortest paths to 3d. The minimum-weight surface problem is formu-
lated on a cellular complex with weighted facets. A cycle on the arcs of the complex
serves as input and one is interested in finding a surface of minimum weight bounded
by that cycle. In practice, minimum-weight surfaces can be used to segment 3d images.
Vice versa, it is possible to use them as a modeling tool for geometric structures such
as cracks. In this work, we present an approach for using minimum-weight surfaces in
bounded Voronoi diagrams to generate synthetic 3d images of cracks.

Keywords: cracks, shortest paths, macrostructure modeling, minimum-weight surfaces,
Voronoi diagram, integer programming, 3d images, microstructure modeling, adaptive
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1 Introduction

The shortest path problem (SPP) is formulated on a planar (directed) graph consisting
of vertices and weighted arcs. Given a start and an end vertex, one is interested in
finding a path of minimal weight connecting these vertices. Shortest paths represent a
useful tool in 2d image processing in several contexts including image quilting [19] and
image segmentation. In particular, shortest paths have been used to segment linear, 1d
structures such as cracks in 2d images [2].
Minimum-weight surfaces were introduced in [21] and [15] as an extension of shortest
paths to 3d. The minimum-weight surface problem (MSP) is formulated on a cellular
complex consisting of vertices, arcs, weighted facets and cells. Here, the goal is to find
a set of facets of minimal weight that is bounded by an input cycle. The voxel lattice in
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a 3d image can be interpreted as a cellular complex. In this context, minimum-weight
surfaces have been used to segment flat structures in medical 3d images [15].
The segmentation of cracks in images of concrete is a broad field of research. A large
variety of segmentation methods have been studied for 2d and 3d images. Comprehensive
overviews and comparison studies in 2d and 3d can be found in [9] and [4], respectively.
In image segmentation, ground truths are necessary for an objective output evaluation.
Furthermore, they are prerequisite for training machine learning models such as convo-
lutional neural networks [8] and random forests [7]. In 2d, annotated data is abundantly
available, for example SDNET2018 [11]. For 3d images, manual annotation is not feas-
ible due to the large amount of data. Therefore, 3d ground truth images are scarce and
one has to rely on artificial data. Previously, the generation of synthetic cracks has been
realized via fractional Brownian surfaces [1, 4]. However, the Hurst index - a measure of
roughness - is the only parameter that can be used to control the shape of the surface.
Therefore, this model is rather limited.
Voronoi diagrams have been used previously for simulating crack propagation via finite
element methods [13, 16]. In this work, we propose a novel method to synthesize crack
structures in 3d images using Voronoi diagrams generated from random point processes.
The method includes two aspects:
First, we use minimum-weight surfaces as a tool to model the macrostructure of cracks.
Bounded 3d Voronoi diagrams serve as the underlying cell complexes. This leaves several
degrees of freedom such as the choice of the generating point processes, bounding cycles
and the facet weights.
Second, the computed surfaces are discretized to 3d binary images. The rough micro-
structure of cracks is modeled via a second Voronoi diagram on a finer scale. Then, the
cracks are embedded into patches of real computed tomography (CT) images of concrete.
This paper is structured as follows. In Section 2, we outline the concept of shortest
paths. Their extension to minimum-weight surfaces is described in Section 3. Section 4
comprises our crack modeling pipeline using Voronoi diagrams. It includes a description
of our approach for macro- and microstructure modeling. Section 5 serves as conclusion
and outlook to possible future research.

2 Shortest paths

Let G = (V,A) be a directed graph consisting of a set of vertices V and directed arcs
A ⊆ V × V . We use the notation α(a) for the start vertex and ω(a) for the end vertex
of an arc a ∈ A.
Furthermore, let c : A→ R>0 be a function assigning a non-negative weight to every arc
inA. A path inG is a finite sequence of vertices and arcs, P = (v0, a0, v1, a1, . . . , ak−1, vk),
k ≥ 0, with vi ∈ V and ai ∈ A with α(ai) = vi and ω(ai) = vi+1 for i = 0, . . . , k − 1. It
is called a cycle (or closed contour) if no arc and no vertex is included more than once
except for v0 = vk. The weight of a path P is given as c(P ) =

∑k−1
i=0 c(ai).

Given two vertices s, t ∈ V , the SPP is looking for a path of minimum weight from s to
t. Many algorithms for solving the SPP exist, for example Dijkstra’s [10] or Bellman’s
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and Ford’s algorithm [5].
SPPs can also be formulated as binary integer programs [17, 22]. Note that this approach
is less efficient than the ones described in [10] or [5]. However, it gives a good intuition
for an analogue approach to compute minimum-weight surfaces which we describe in
Section 3.
Let s be the start- and t the end vertex of the path and let x be a vector of binary
variables xi ∈ {0, 1} assigned to each arc ai. The SPP can then be formulated as

minimize
∑

i: ai∈A
c(ai)xi (1)

subject to Bx = p (2)

xi ∈ {0, 1}. (3)

The vertex-arc incidence matrix B and the vector p in constraints (2) are given as

Bj,i =


1 if vj = α(ai),
−1 if vj = ω(ai),
0 else

and pj =


1 if vj = s,
−1 if vj = t,
0 else.

The constraints (2) are flow-conservation constraints. They ensure that every vertex
that is part of the path is incident to exactly one incoming and one outgoing arc, except
for the start- and end vertex. This results in the fact that any feasible solution must
contain a path from s to t and, by the assumption that all costs are strictly positive,
this ensures that the optimal solution is in fact a path without repeated vertices. The
variables xi are binary by constraint (3) and indicate whether arc ai belongs to the path
(xi = 1) or not (xi = 0). Finally, the objective in (1) is to minimize the weight over all
paths from s to t.
Note that, in case of negative arc costs, the problem of finding a shortest path without
repeated vertices becomes NP-hard (which can be seen by a reduction from the Hamilto-
nian Path Problem [12]). Thus, additional constraints become necessary and, hence, we
assume that all arc costs are strictly positive.

3 Minimum-weight surfaces

Minimum-weight surfaces have been presented in [21] and [15] as an extension of shortest
paths to 3d.
For our purposes, let K = (V,A, F,C) be a cellular complex consisting of a set of vertices
V , directed arcs A ⊆ V × V , facets F ⊆ A× . . .×A and cells C ⊆ F × . . .× F .
Further, let w : F → R>0 be a function assigning a non-negative weight to every facet
in F .
Note that (V,A) defines a (directed) graph. Given a cycle H on (V,A), the MSP is
looking for a connected set of facets in K of mimimum weight that is bounded by H.
To this end, arc directions may be assigned arbitrarily. Every facet is considered twice,
once in clockwise and once in counterclockwise orientation. The orientation of H must
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be chosen to be either clockwise or counterclockwise. If the direction of arc a coincides
with the direction of its counterpart in an incident facet f (or cycle H), we call a and f
(or a and H) coherent. If it does not coincide, we call them anti-coherent.
The MSP can be formulated as a binary integer program analogously to the one in
Section 2. It is given as

minimize
∑

i: fi∈F
w(fi)yi (4)

subject to Dy = q (5)

yi ∈ {0, 1}. (6)

The arc-facet incidence matrix D and the vector q in constraints (5) are given as

Dj,i =


1 if aj and fi are incident

and coherent,
−1 if aj and fi are incident

and anti-coherent,
0 else

and

qj =


1 if aj is part of H

and coherent to H
−1 if aj is part of H

and anti-coherent to H
0 else.

Similarly to the flow-conservation constraints in (2), constraints (5) ensure that we obtain
a connected set of facets that is bounded by H. The variables yi are binary by constraint
(6) and indicate whether facet fi belongs to the surface (yi = 1) or not (yi = 0). Finally,
the objective in (4) is to minimize the weight over all possible surfaces that are bounded
by H.
We always assume positive costs to ensure that the output is indeed a connected surface.

4 Crack modeling

Minimum-weight surfaces have been used for 3d image segmentation with the 3d grid
being the underlying cell complex [15]. Reversing this approach, minimum-weight sur-
faces can also be used to model surface-like, connected structures such as cracks on a
macroscopic level.
Here, we focus on minimum-weight surfaces in bounded 3d Voronoi diagrams. Our goal
is to develop an approach for modeling 2d crack structures to generate semi-synthetic
3d images of cracked concrete. Using this approach in combination with various point
process models allows us to control the geometry of the resulting crack structure.
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The most striking geometric characteristics of cracks in 3d CT images of concrete have
been identified and discussed in [18]. In particular, we observe that 1. crack widths
are varying and cracks may appear on multiple scales, 2. crack surfaces are not totally
smooth but rather rough due to the granularity of the concrete’s cement matrix, 3.
when propagating through concrete, cracks may branch. An example is given in Fig.
1. These observations are used in the discretization procedure for modeling the cracks’
microstructure.

Figure 1: 2d slice of a 3d CT image of cracked concrete of size 1000× 550× 880 voxels
with a voxel edge length of 22.7µm. The image stems from a normal-strength
concrete sample that was exposed to a tensile test. Sample: Department of
Civil Engineering, University of Kaiserslautern, Imaging: Fraunhofer ITWM,
Kaiserslautern

4.1 Voronoi diagrams

Voronoi diagrams are defined on a metric space (S, d) with Euclidean distance function
d. Given a set of points R = {p1, . . . , pn} ⊂ S with 2 ≤ n < ∞, the Voronoi diagram
generated by R is given as W = {C1, . . . , Cn} with

Ci = {x ∈ S | d(x, pi) ≤ d(x, pj) ∀ pj ∈ R}.

The Ci are called the cells of the Voronoi diagram.
Note that, if S is not bounded, the Voronoi diagram contains cells of infinite size. In
practice, it is often convenient to only consider bounded cells. Therefore, we restrict our
attention to the bounded Voronoi diagram given by W ∩Q = {C1 ∩Q, . . . , Cn ∩Q} for
some bounded region Q ⊂ S. Note that this operation yields additional vertices, arcs
and facets on the boundary of Q that belong to the bounded Voronoi diagram.
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4.2 Minimum-weight Voronoi surfaces

Bounded Voronoi diagrams in 3d can be considered as a cellular complex. Therefore,
given a cycle on the arcs of the cell complex induced by a 3d Voronoi diagram and
weighted facets, we are able to compute a minimum-weight surface by solving the op-
timization problem given in Section 3. As a result, we obtain a connected set of facets
that we call a minimum-weight Voronoi surface.

4.3 Crack generation

We propose the following method to simulate crack structures via minimum-weight Voro-
noi surfaces.

1. Define a cuboid Q = [0, d1]× [0, d2]× [0, d3] ⊂ R3.

2. Compute a random point pattern R ⊂ Q as a realization of some point process
model.

3. Compute the Voronoi diagram generated by R, bounded by Q.

4. Define functions c, w assigning a non-negative weight to each of the arcs and facets,
respectively.

5. Choose a vertex on each of the four vertical edges ofQ. Denote them by u1, u2, u3, u4.
Compute shortest paths from u1 to u2, u2 to u3, u3 to u4 and u4 to u1, via Dijk-
stra’s algorithm, only using arcs that lie on the boundary of Q. Denote the paths
by P1, P2, P3, P4. Then, H = ∪4i=1Pi is a cycle on the boundary of Q.

6. Compute a minimum-weight surface bounded by P by solving the integer program
from Section 3.

The concept is illustrated in Fig. 2. It shows a minimum-weight surface in a Voronoi
diagram bounded by Q = [0, 1]×[0, 1]×[0, 1]. Its generators are a realization of a Poisson
point process in Q of intensity 500. Arcs and facets are both assigned unit weights.
The approach above leaves us several degrees of freedom. Facet shape and variability
can be controlled by choice of the underlying point process model, while the intensity
of the generator process influences the mean facet size. Additionally, the size of the
bounding cuboid, the input cycle and the weighting functions c and w can be varied.
Minimum-weight surfaces for the same realization of a Poisson point process but different
choices of input cycles are given in Fig. 3. Note that the input cycle is not restricted to
lie on the boundary of a cube but may be chosen arbitrarily.
Moreover, Fig. 4 shows minimum-weight surfaces in Voronoi diagrams generated by
Poisson point processes, Matérn cluster processes and regular processes obtained by a
force-biased sphere packing [3, 6] with a volume fraction of 60%. Arcs and facets were
weighted by their lengths and areas, respectively. For the cluster process, we observe a
bimodal distribution of the facet areas. The surfaces resulting from the regular model
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Figure 2: Minimum-weight surface generation. Left: Poisson-Voronoi diagram bounded
by a cube, middle: cycle on the boundary of the Voronoi diagram, right:
minimum-weight surface.

Figure 3: Examples of minimum-weight surfaces in the same Voronoi diagram but with
different choices of input cycles.

are far more homogeneous in facet size and shape than those obtained from Poisson
point processes.
For the Voronoi diagram generation we use the C++ library voro++[20] and for solving
the integer program we use the C++ library GLPK [14].
The runtime for computing a minimum-weight surface depends mainly on the size of the
arc-facet incidence matrix, that is, on the number of facets in the cell complex. For a
Poisson Voronoi diagram in [0, 1]× [0, 1]× [0, 1] with intensity 500 the expected runtime
is around 12 seconds. It is obtained on a Red Hat Enterprise Linux Workstation 7.9 with
an Intel(R) Xeon(R) CPU E5-2680 v2 2.8GHz (10 cores) and 125 gigabytes of RAM.
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λ = 50 λ = 2, µ = 50, r = 0.1 λ = 50

λ = 100 λ = 5, µ = 100, r = 0.1 λ = 100

λ = 1000 λ = 20, µ = 50, r = 0.1 λ = 1000

λ = 5000 λ = 50, µ = 100, r = 0.1 λ = 5000

Figure 4: Minimum-weight surfaces in Voronoi diagrams bounded by Q = [0, 1]× [0, 1]×
[0, 1]. The generators are realizations of Poisson point processes (first column)
with intensity λ, Matern cluster processes (second column) with parent and
daughter point process intensities λ and µ, respectively, and cluster radius r,
and hardcore processes (third column) with constant radii, intensity λ and
60% volume fraction.
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4.4 Discretization

The method described in Section 4.3 outputs a set of vertices of convex facets. In this
section, we describe a method to transfer this representation to a discrete image.
Let I denote a 3d label image and J a 3d binary image, both of size d1 × d2 × d3. The
discretization procedure is given as follows.

1. Compute a minimum-weight Voronoi surface in a cuboid of size d1 × d2 × d3.

2. Discretize the Voronoi diagram. For every voxel (p, q, r) do: Set I(p, q, r) = l if
(p, q, r) is contained in cell l.

3. Discretize the minimum-weight surface. For every two neighboring voxels (p, q, r),
(p′, q′, r′) (with respect to the 26-neighborhood) do: Set J(p, q, r) = 1 if I(p, q, r) =
j and I(p′, q′, r′) = k for generators j, k whose cells share a facet that is part of
the minimum-weight surface. Output J .

The procedure is visualized in Fig. 5. It yields a binary image whose foreground is a
piecewise planar structure of constant width. However, real crack structures usually are
far more complex as has been pointed out in Section 4. In the following, we propose
techniques to account for these observations.

Figure 5: Slice view visualizing the discretization procedure. Left: Label image obtained
from discretizing the Voronoi diagram. Red voxels indicate facets that are part
of the minimum-weight surface. Right: Output binary image.

4.4.1 Adaptive dilation

Our goal is to model cracks of varying thickness. We propose a procedure to dilate the
foreground of image J : Every x-slice of J is dilated separately and iteratively. We choose
a quadratic structuring element of size 2 × 2. The number of iterations depends on a
random walk with Bernoulli-distributed increments and index set {0, 1, . . . , d1}. The
increments are either 1 with probability p or 0 with probability 1 − p. Thus, the crack
thickness can be controlled via parameter p. The procedure is visualized in Fig. 6 for
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different choices of p. Note that the random walk can be substituted by any suitable
stochastic process, for example to produce decreasing crack widths.

Figure 6: Adaptive dilation applied to the input image with p = 0.02 (left) and p = 0.05
(right).

4.4.2 Microstructure modeling

In order to model the rough microstructure on the boundary of cracks, we compute a
second (Poisson-) Voronoi diagram with a higher intensity than the one used for the
computation of the minimum-weight surface. Then, for every foreground voxel in the
dilated crack image J , we identify the Voronoi cell it is contained in. The whole cell
is then discretized with voxel value 1 according to the approach described in Section
4.4. The procedure is visualized in Fig. 7. Afterwards, we apply a median filter to the
resulting image.

Figure 7: Microstructure generation. Left: Discretized Poisson-Voronoi diagram and
input crack (red). Right: Set of Voronoi cells (white) that are intersected by
the input crack.
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4.4.3 Crack branching

Crack branches emerge when a crack splits into two or more cracks. Often, the thickness
of these branches lies in a range of 1-2 voxels.
Branching cracks can be modeled by combining two minimum-weight surfaces obtained
from different cycles on the cuboid. If the underlying set of generators for the Voronoi
diagram is identical, the surfaces may share several facets, see Fig. 8.

4.4.4 Crack embedding

An approach for embedding crack structures in real 3d concrete images has been proposed
in [4]. We extract image patches of the same size as the ground truth images from
the real CT images. These patches are multiplied voxelwise with the inverse ground
truth images. This leads to crack voxels having grayvalue 0 while the background does
not change. Cracks and air pores both consist of air. Therefore, they should possess
the same grayvalue distribution. We assume these grayvalues to be i.i.d. normally
distributed. Mean and standard deviation are estimated via sample mean and sample
standard deviation of the empirical distribution of air pore grayvalues. Then the crack
voxels are simulated according to that distribution. To smooth the transition between
background and crack, we apply a Gaussian filter to crack voxels and all voxels in their
26-neighborhood. The final image together with its ground truth is given in Fig. 8. A
corresponding 3d rendering is given in Fig. 9.

Figure 8: Crack embedding. Left: Ground truth image after applying a median filter,
right: synthesized crack image.

5 Conclusion

In this work, we have presented a novel method to generate artificial crack images. It
includes the generation of a macrostructure via minimum-weight surfaces and a discret-
ization procedure for generating its microstructure.
The shape and size of the output can be controlled by several parameters. Thus it allows
for the generation of a wide range of surface structures.
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Figure 9: 3d volume rendering of the simulated crack structure.

Our next steps include the generation of a full semi-synthetic data set for training ma-
chine learning models and evaluating segmentation methods on multiscale crack images.
Furthermore, the model may be extended to include the grayvalue information of real
concrete images. We can assume that cracks, when propagating through concrete, take
the path of least resistance. Certain parts of the concrete mixture are less prone to
cracking than other parts. In particular, this holds true for parts with a higher density.
Therefore, facet weights may be derived from the mean voxel grayvalue in their vicinity.
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