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ABSTRACT

A continuing study of plane stress singularities at
corners and cracks has been extended to the case of a crack in.
a hard (soft) material ending normal to a continuous interface
with a soft (hard) material. The increase {decreaae) in stress
singularity over the homogeneous material case, which ia of the
characteristic inverse square root of distance from the crack
point, is given for all relative rigidities between zero and
infinity. Associated changes in the principal stress and
distortion strain energy density distribution are also discussed,
along with indications of application to such situations as
microcrack growth near grain boundaries and earth faults in
layered strata.



CRACK POINT STRESS SINGULARITIES
AT A BI-MATERIAL INTERFACE

Introduction

Continuing a series of papers devoted to the study of stress
distributions in the vicinity of angular notches in sheet apecimens
subjected to plane stress, the present results deal with a particular
limit case of a closed notch or line crack. Elastic analysia when applied
to brittle fracture has generally been restricted to isotropic homogeneous
media and based upon the initial work of Inglis and Griffith. The type
solutions exploited in these recent investigations have also been found
to apply to this isotropic homogeneous case for both bending (1, 2)=
(3, 4) 1, addition certain limited results have been )

5

obtained for the case of a radial crack in sheet with polar orthotropy( .

and extension

Finally a non-homogeneous application dealing with a crack occurring
along a line separating two strata of different isotropic properties was
studied, initially due to its geophysical application. (6)

This latter problem may also be interpreted, with some license,
as related to the conditions at the point of a micro-crack along the
grain boundary in a bi-material matrix. In this sense there is a
companion problem, dealt with in this paper, which concerns the
situation wherein a plane crack in one isotropic medium is on the
verge of entering a different mataerial. The general problem is of
course that of the crack oriented at an arbitrary angle to the (grain)
boundary but, while it can be treated in the same fashion, only the
simpler problem of the crack oriented perpendicularly to the boundary
between the two regions will be considered here.

Recalling that the strength of the elaatic streas singularity for
a stationary crack in an isotropic homogeneous medium is inversely
proportional to the inverse square root of the distance from the crack
point, the question to be investigated here ia the character of the
singular stress distribution as a crack is about to propagate from a
harder to softer region, or vice versa.

*Refer to reference list in the back of the paper.



Qutline of the Solution

The geometry of the crack in the two dissimilar media
M, and M, is shown in Figure 1 below,

M, Vi M,

Crack

Figure 1.

The crack is assumed to exist in M, ( x £ 0). It terminates, and is
perpendicular to the dividing line between the two media, x = 0. The
method of solution for the stresses around the crack is the same as
used in the previous investigations. A stress function X( r, ‘f’ ) is
found which satisfies the biharmonic equation

V4X('L, ‘f’) o

It must also be such that (a) the normal stress, (J'{,, » and the shear
ey vanish along both sides of the crack, and (b) the normal
, the shear stress Tr\V , the radial displacement U, and

atress, ‘t

atress O'q',

the tangential displacement uq/ are continuous across x = 0,
The general solution to (1) is chosen in the following form

A+l

X@,‘i’) = " F)= [GS('n(A+l)lF+bcos(A+l)W (2)
+Csm(r )Y + d cos(}rl)‘f’]
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where the relations between stresses, displacements, and the stress
function are,

X L 1YL A

o =4yt = T FE) o) Rl o)
7, = 3:),51 = A+ Fly) (4)
Uyy=" % R N Y (%)

- 7 WM - F) - 4f- Ol wsb)Y - dsia g el (6)
0, = 25 TGV + +1-0e sing)t + dcosg)0]} )

In the above expresnionn/m is the shear modulus and O = [+V » where
V is the Poisson's ratio. The primes denote differentiation with reapect

to Y .
Introducing a notation, let the quantities in region- Ml' and Mz
have the corresponding subscript, i.e. F FZ, )\ Z’ Y 1 Y 2

ay, ay etc. For convenience the angle \Y 1 in Ml is measured from the
vertical and (1/2 in M, from the horizontal, as shown in Figure 1. This

will be understood in the subsequent analysis and the subscript will be
dropped. Furthermore it will be found that A 1 " A , in order that the
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radial variation of the continuity conditions on the demarcation line
can be satisfied.

It is assumed in the present analysis that the media containing
the crack is loaded symmetrically with respect to the crack. Therefore

the stress function in the two media can be writtea in M; a

Fl) = a, sinb+)¥ +bcost)¥ + ¢ simB-0Y + o, cosh-)¥ (8)

and in M,, upon taking advantage of the symmaetry,

E@’)l‘ bac,osé\ﬂ)qj -+ dacos(z\—l)“\j (9)
The boundary conditions on the crack, G}; = 0 and (E'uv = O,
require
o, snf) T + b cosh+) T +cismp-)E +d,cosp-)Z= 0 (10)

0,0+ cos)E = bibrl)singt) &+ - cospoIB

: (11)
—d,()\—))Sm(/\—l\%: 0]
Matching the stresses O, and T»Lq in the two regions at the
demarcation line leads to
. i d i
b+ d,=b,cospr)z + dycosp-N)z (12)

* Strictly speaking, if Equation (8) is assumed to hold for above
the crack then the stress function for M, below the crack wﬂf have the
y 1

OF™® E @) =-q,sinfr)¥ + bcospt)Y —csmf-0W +d, cosfh- DY

the coefficients a; » b}, ¢;. d, are equal to the ones in Equation (8).
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8, (1) + G- ) == bafor Vsim B+ )E = by - sim p-) Z (13)

after employing the praeviously mentioned condition that A 1
while matching the displacementa U, . U\w here gives

A

2/‘,,{ é\ﬂ E + + 4- d}[
(14)
:-271{—(/\+x [ cos b E + d, cosg B 40-0)[ 1, cosfon]}
QJ/-M,{-()\H)Q‘—()HC —4(1—6‘ C.}
= 35 b besimir N B+l simpo +4(1-)dysion ) 3}

(15)

Equations (10) to (15) are six linear, homogeneous equations
in the unknown constants and for a non-trivial solution to exist the
determinant of the coefficients of these six equations has to vanish. This
determinant can easily be evaluated and put in the form

D\L(—4&1+ 44@) + 20(1—2,((5 +2 L —(3)1—)]%)\?\’
t-adv 2dp-2 L+ 2Bl dT ol = O a6)

where the notation

k-1 _ -9 ,‘
A=G(me) , Pk, and k=4 -
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has beesn introduced.
For the special case, T 1: Uiandkto, k=1}1and k = oo,

corresponding to clamped-free {90 degree angle) free~free (360 degree
angle) and free-free (90 degree angle) situations respectively, the
charactaristic values deduced from the equations given in Reference (3)
can easily be obtained. In general, each combination of material
properties, as reflected by the values of Kand 3 in (17) will yield‘a
set of eigenvalues of A ,» which then define possible solutions for the
stresa fnnction7<(r. Y ) wi arbitrary multiplicative constant, by
solving for five of the unknowns interms of the sixth in (10) - (15).

One possible solution to {16) is given by

ecm A= O
corresponding to the eigenvalues A =0, 1, 2, “°°. The solutien \ =0
generates stresses which are identically equal to zero in the whole
region and the remaining solutions A =1, 2, etc. will not produce a
stress singularity at the crack tip, while negative values leading to

infinite displacements are not physically admisaible.
The other possible solutions to (16) result from solving

AX+ B +Cenrf=0 (18)
where 2

A= —4d +4d40

R=2L-24p+24- B+
and

(= -2 +2dp—2d+203

In general A will be complex and therefore will be written
A= x 4+ ly. Substituting into (18) and dividing the equation into real and
imaginary parts, the following two equations are obtained
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by )A + B+ C cos T cork Y =0 (19)

Rxy A —‘CWXTTW%(?W:O (20)

When )\ia real, Equation {(9) will apply, viz.

A+ B+ CeosxT=0 1)

which can easily be solved graphically or numerically.
lf)\ is complex, write (19) and (20) in the form

AR
CosX Il = C 1/”3_,77, (22)
S x T - ﬁxbgA_. (23)
C sink ,?‘?7‘

and upon squaring (22) and (23) and adding, an equation is obtained
which gives a solution of x in terms of y. Subatituting for x into (19) or
(20) then gives an equation in y only. This equation again has to be
salved graphically or numerically, where it may be noted incidentally
that the roots are infinite in number and ordered at infinity as found

in a similar case investigated earlies!?),

Since the purpose of this paper is to investigate atresses in the
immediate neighborhood of the crack tip we are only interested in the
smallest positive values of the real part of A , which correspond to the
strongest singularity. It happens that such values of \ come from the
solution of Equation (21), that is when /\ is real.
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Discussion

As a first point of interest, the strength of the stress singularity
is calculated for a range of values of k, assuming for simplicity that
G“l = Qg i.e. equal to Poisason's ratio. The reaults of this calculation

are shown in Figure 2, where ) ia plotted against k. As the stresses at
the crack tip, (3) - 65) e proportional to r A=l it can be seen from
Figure 2 that the strength of singularity increases as k increases, that
is as the region M, ahead of the crack becomes ''softer” with respect

to Ml' and vice versa. Furthermore, it can be shown thataa k — o0 ,
A— 0. Infact for large k the assymptotic expression is

A= 0-881 (4ol 4 11/2 . 1t may be reiterated that for the limit

k = o, the corrasponding value of ) = 0 leads to the condition that the
stresses vanish in the whole region.

Second, and in order to compare the characteristica of the stress
varfation when the crack praoceeds from the soft to hard regions, and
vice versa, the principal stresses around the crack tip have been computed
and presented in Figure 3 for two values of the modulus ratio, k = 1/20
and k = 20, For comparison, the results for k = 1, from Reference (4)
are also included in Figure 3.

The principal stresses near the crack point can be computed
from the relations

Op+ Sy On- ) + T
o, = z +J “— Y (24)
(%~ Op)™ -
0, = mﬁﬁﬁ‘- — J o Ty
(25)

where the stresaes O o (S)Y P and CL\:”, are calculated from, and

correspond to, the value of A which generates the singularity.
For k = 1/20 the minimum eigenvalue isa )\ = 0. 725, (Figure 2).
Using this value of ) the coefficients in (8) and (9) can be evaluated in
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terms of dz. which for the present purpose can be taken as unity.
This step ylelds, »

F)==06T wn 1725 + 0:257% cos 11725 ¥ (26)

—0-1202 sum 0:2759% + 039 cos 0-275 Y
and

Fl)= 0-285Ices-725Y + cos 0-275 Y
(27)

#* The general expression for FI(L{’) and F 2(‘() are,

d {(3)\()\1)-:;(1;(([-1-1)2)0& +/\:( 1] )\+l (>‘ !)l-fﬁ ]},os,\ %é_,()k(

dz{(aé,(f?i?f;?(*“]W] ot B

+d; (z/\:ll);::z/\) ﬁﬂL)\J[ (\+ l)‘*] + [(,\~\)¢<+ @Hcos " s penY
s [ S ) B r B easp-
E)= d, (?’)(;\2:&3’:5’\)@”‘:{ cosfpr )+ d, cosp-NY



For k = 20, >\m£n = 0. 185, similar computations gives

F\(&y): P3Bcin 11185Y — 64159 ces 1185 Y
o (28)
—6:065%n0-315¥ + 6107 cos 0-815Y

E(W)-—— 118 cos 1185 W + coso0-8I5Y
(29)

By the use of Equations (26) to (20)the stresses G-r’ Ty
and Trq/ can be calculated in the vicinity of the crack point and

subsequently, using (24) and (25) the principal stresses are obtained.
Finally the distortional strain energy density distribution has

been calculated and presented in Figure 4, for the same range of

modulus ratio. The expression for the distortional strain energy is

Wy = ,Z—'/M{ 0~ P+ G- )+ (0 - (30)

with 0—3 = 0 for this assumed case of plane stress.

The angle ! in Figures 3 and 4 is taken to be continuous through-
out the two regions Ml and Mz and is measured from the horizontal, as

shown. In order to compare the stress distributions for the homogeneous
case k =1 with the results for k = 1/20 and k = 20, the normalizing
coefficient 2, in Reference 4 was associated with - d, ; both of which

multiply the term cos ( A -1 )} . Only the distribution can be campared
for different values of k; any quantitative conclusion from the results of
Figures 3 and 4 would have no meaning because even under a fixed load
the value of the coefficient d 2 would be different for different values of
the parametsr k.
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In the beamogeneous case, the maximum of the principal stress
was found to occur ahead of the crack at b4 60 degrees to the direction
of prolongation. This same tendency also is seen to prevail when the
crack 1s in the softer of the two materials, even to the angular position.
On the other hand when the crack is proceeding from the hard into the
softer material, the maximum stress occurs along the interface and
is nearly an order of magnitude larger than the largest principal stress
ahead of the crack. Also, it was found in the homogeneous case that
the prin cipal stresses near the crack point along ! = 0 were squal, thus
leading to a state of'two-dimensional' hydrostatic tension and consequently
laas yielding. For the non-homogenecus situation, the stresaes differ,
actually being

4‘(‘2 /‘:417:?_"‘)(‘-\' 1)1)
() 5 (%) = (=)

o (r 0] 4

“EE‘;_(/‘ V) = ()

+ (23-1)

~ @)

which is seen to approach unity when M1 - MZ . Presumably therefore,
a larger plastic region at the crack tip might be expected.

Turning to the distribution of distortion energy, which has a
maximum at approximately L 7 degrees for the k = 1 case, it is seen
that similar behavior to the principal stress variation is found. For
k = 1/20, the maximum occurs ahead and to the sides of a crack
entering a hard region, whereas, if entering a softer medium the maximum
occurs at the interface.

The similarity in behavior of these two gquantities seems to
coincide with physical experience, with the latter situation leading
toward a sort of peeling away of the softer material perpendicular to the
crack direction. On the other hand it should be observed that there is
a small range of rigidity ratios for which the maximum stress at the
interface !L}’ = w/2) ia still less than the absolute maximum at Y = 60 degrees.

~11la



In conclusion two brief remarks are in order: (1) the stress
distributions have been arbitrarily limited to symmetrical loadings,
and (2) the lowest sigen value for this example is real and thus gives
strictly a monotonic decay of atress, G~ 7% | This latter
behavior is characteristically different than the associated case when
the crack lies along the interface. Here the lowest eigen value is
complex, and leads to a damped, trigonometric variation, viz

g~ *chon (blogr ). Itseems reasonable therefore to assume that at some
intermediate inclination of the crack to the interface, the characteristic
behavior will switch from one to the other, as coatrolled by the
relative value of the smallest positive real part of the complex eigenvalue
to the real root. '
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Review of: 218.1.62 Crack Point Stress Singularities at a
Bi-Material Interface by A. R, Zak and M, L. Williams

In this paper the form of the stress singularity is found for the region near
the end of a crack which extends through one elastic medium and terminates

at the interface with a second medium. Loads are applied symmetrically about
the crack which is perpendicular to the interface. The strength of the singule
arity is determined by solving the eigenvalue problem associlated with the
stress-free surface of the crack., A solution of the separated variables

type is assumed and the free surface conditions and conditions of compat-
ability of displacements and stresses at the interface are imposed to ob-

tain the characteristic equation. The variation of the least eigenvalue with
the ratio of the shear moduli of the two regions is shown for ths case of
equal values of Poisson's ratio., The magnitudes of the eigenvalues for

three different stiffness ratios were used to obtain the angular variation

of principal stresses and the distortion energy at the crack tip.

The paper is not accepted for presentation at the Fourth U.,S., National
Congress of Applied Mechanics because it does not contain either novel results
or novel methods. The method of solution has been demenstrated several times
and some of the results have been presented before (see the bibliography of
the paper). An additional limitation is that the eigenfunstion approsch
gives no information concerning the relation of stresses to the loads imposed

on such a cracked body.

Although there is no connection with the rejection of the paper there

appear to be omissions in equations (22) and (23) and an error in the first

sentence of page 8.



