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Crack Propagation in a Linearly
Viscoelastic Strip

The tip velocity of a crack propagating through a viscoelastic material depends on
geomelry, applied load and its history, and malerial properlies.
of the work done by the unloading tractions at the crack tip shows that, for a large
crack propagating through an infinitely long strip under constant lateral strain, the
rate of propagation can be calculated from a knowledge of the intrinsic fracture

A consideration

energy (a material constant), the material creep compliance, and an additional size

parameler.

the familiar instability crilerion is oblained in this case.

This parameter vanishes from the analysis if the material is elastic, and

Comparison with experi-

mental data is provided and the consequences of step loadings are examined.

Introduction

viEn though there are two apparently different
approaches to brittle fracture, the instability behavior of cracks in
linearly elastic solids is well understood. On the one hand, the
application of the first law of thermodynamics to the problem
of a growing crack [1]? associated with a singular stress field at
its tip leads to the now classical instability eriterion. On the
other hand, the quasi-atomistic approach of the so-called equilib-
rium crack [2] leads to an identical result through use of a non-
singular stress field representation. The equivalence of the two
approaches is based essentially on the equivalence of the work
done by the unloading tractions at the tip of an advancing crack,
wherein the precise distribution of the stresses at the crack tip
plays a secondary role. Fundamentally, it was Irwin's [3]
demonstration of the local nature of the fracture process that
elucidated this connection, as well as the supplemental investi-
gations of Bueckner [4] and Sanders [5]. As a consequence of
these expositions, fracture in brittle solids has become looked
upon as a loeal phenomenon rather than a global one as in [1].
The continuum mechanical deseription of crack growth in
materials other than linearly elastic ones is not as well under-
stood, the primary reason being the lack of simple mathematical
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tools for an analytic description of the deformations in yielding
materials under crack growth. While it would lead too far from
our present objective to review even the most important work in
metal fracture, suffice it to state that work on a erack growth
eriterion for very ductile materials is in progress [6-9] but it
does not seem promising that a general ecriterion for yielding
metals will be found. Partial solutions such as the concept of
quasi-brittle failure advanced by Orowan [10] and Irwin [11]
are useful and lean heavily on the principles of linear fracture
mechanics, which permeate almost all of the work on fracture in
nonlinear solids.

With the exception of fatigue and creep fracture [12], metal
fuilure is hardly rate-dependent. In contrast, the failure of or-
ganic glasses and other polymeric solids exhibit strong rate
effects which complicate the understanding of the fracture pro-
cess. Inasmuch as linear fracture mechanics has illuminated the
failure process in nonlinear, rate-insensitive materials, it seems
prudent to investigate first the problem of crack propagation in a
linearly viscoelastie solid.

Because the stress-strain analysis of a viscoelastic solid under
time-varying surface tractions such as encountered in a moving
crack is, in general, not readily performed, the global energy
balance [1] ecannot be carried out. Consequently, there is little
information concerning the effect of viscoelastic properties on
the process of crack growth. Starting from the concept of a
maximum strain sustained by a viscoelastic solid at the crack
tip, Williams [13] pointed out that a erack grows exponentially
in a sheet of a Voigt material. This result was also shown to
hold for the antiplane shear case by MeClintock [14]. The
onset of erack propagation through a bubble geometry under
hydrostatic tension was studied by Williams [15]. Wnuk and
Knauss [16] examined the actual case of a penny-shaped erack
in a linearly viscoelastic solid exhibiting a deformation-rate-
sensitive yield stress. These investigations are primarily of a
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Fig. 2 Control surface around crack tip

qualitative nature because either the material representation or
the geometry is overly simplified.

It is the purpose of this paper to derive a crack-propagation
model based on the first law of thermodynamics and fo examine
its usefulness in application to a viscoelastic solid.  Inasmuch as
comparison of a theory and its experimental evaluation requires a
realistic representation, the following work suffers from the
assumption of linear viscoelastic material behavior whereas the
material in the immedinte vieinity of the erack tip is under large
strain and clearly does not behave in a linear fashion, Never-
theless, if close agreement between theory and experiment oceurs
despite this discrepancy, we may have resolved a problem of some
practical importance.

Because any time variation in the boundary conditions compli-
cates the viscoelastic analysis, it is advantageous in an initial in-
vestigation to consider the simplest possible situation. Such a
gituation is provided by the steady growth of a large erack a >
1.56, Fig. 1, along the center line of an infinitely long strip under
constant lateral strain €. The only variables entering the iso-
thermal problem are then the strain € and, in dependence on
€, the velocity of erack growth 2.

Derivation of Power Equation

Consider the tip of a traction-free crack along y = 0 to be
surrounded by a control surface A, as shown in Fig. 2(a), for
some time &, The crack propagates through a thin plate of con-
stant thickness and extends from one plate face to the other.
A state of plane stress is assumed fo exist in the plate. The
rate of work done by the tractions 74 acting on 4 is

W = f T A Ads (1)
A

This quantity is equal to the rate of energy dissipation D,, the
rate of incrense of surface energy D,, and the rate of change of
reversibly stored energy E in the control volume. The plate
temperature during crack propagation is assumed to be constant,
and other energy contributions like kinetic energy and heat
energy are neglected. This investigation restriets itself to small
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enough crack velocities to justify these assumptions. With dots
denoting time derivatives, the power equation for the control
volume thus reads

W=£E8+D,+ D, (2)

Limiting ourselves to plate geometries and external loadings
that are symmetrical over the z-axis, we may consider the crack
to propagate along a straight line identical to the r-axis. Sup-
pose now that the lower half of the control volume is replaced
by the forces it exerts on the upper half, and denote these forces
by T.(x, t) as in Fig. 2(b). Because of the symmetry of the
problem under consideration, the forces 7';(z, t) are normal to
the z-axis. Since all other forces acting on the control surface
remain unchanged, the power equation for the upper half of the
control volume simply reads

T g a+tr 1 . .
5 W+ f Tz, it (x, )dz = P (D, + E) (3)

a—r

where u(z, {) denotes the displacement along the z-axis. A
comparison of equations (2) and (3) leads to the simplified
statement of energy conservation

a-tr :
- 2f Tz, iz, )de = D, (4)

-r

Remembering that the crack surface is free of tractions for z < q,
and admitting nonzero displacements w,(z, t) a small distance Aa
ahead of z = a, we may write equation (4) as

a+ Aa
-2 f Tz, i, Oz = D, (5)
a

Geometrically, the crack tip is thus located at # = a + Aa.
The condition of a traction-free erack surface will here be used
as definition for the crack length, and z = a will henceforth be
referred to as the location of the erack tip.

We shall later demonstrate that the energy required to form
a unit of new surface can be considered a constant, say, S. The
rate of inerease of surface energy is therefore D, = 28», where the
term v = ¢ is the erack-tip velocity and the factor 2 accounts for
the creation of two fracture surfaces. The power equation can
now be written as

a+ Aa
- f Tz, Uiz, t)dx = Sv (6)
a

The physical meaning of the quantity Aa will become clearer
during the following development.

Simplification of Power Equation

We remark parenthetically that the derivation of (6) implies
continuous, nonsingular tractions 7'(x, t) as well as continuous
displacement gradients along the crack axis as proposed by
Barenblatt [2]. Primarily, for reasons of simplicity, however,
we should like to employ the singular stress distribution, which
is obtained when no modifications near the erack tip ave intro-
duced. For this purpose we approximate the continuous crack
propagation by a stepwise process, allowing the erack to propa-
gate in small jumps of constant length Aa, with a > Aa. This
process is illustrated in Fig. 3. Solid lines correspond to the
stress distributions and displacements at some time ¢;, and the
broken eurves correspond to successively later times ¢ = t; + 7
< t; + At. The curves identified by 7 = Al represent the
stresses and displacements at the end of the current jump and
the beginning of the subsequent jump at ¢ = i, + At.

During each jump, the tractions over a < x < a + Aa decrease
from their maximum value to zero while the crack opening in-
creases from zero to its maximum value, depending on the jump
duration Al. The work done during unloading of the tractions
is easily calculated by considering the tractions and correspond-
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ing displacements. The rate of erack propagation v at some time
t; can be calculated from the jump duration at this time and is

given by v = With this interpretation in mind, we write

(1
At

equation (6) as

1 v -4 Aa ti+ At
- ﬂﬂj f g, lr, a, 7 — )i,
13 i
Aa

X (x,a + Aa, 7 — t)drde = S v (7)

where ¢, and u, stand for the normal stresses and di:ﬁpluwtu'ullls
along the crack axis as they are obtained from the solution for a
thin plate that is symmetrical over the r-axis and contains a line
crack whose tip is located al x = a and z = a + Aaq, respectively.

Evaluation of Energy- Release Rate

The left-hand side of the simplified power equation (7) ean be
looked upon as the rate at which energy is released during a
small extension of the crack. To evaluate this energy-release
rate we need to know the stresses o, and their rate of decrease,
and the normal displacements in the small interval ¢ € x < a +
Aa. Consider the crack at some time {; to be extended by Aa
put held closed by appropriate tractions a,,*(z, ¢, 1;). As indi-
cated in Fig. 3, we now allow these tractions to decrease until
they vanish at time { = t; 4+ Af, ie.,

a,,lx, at — 1))

b= LS LS4 A
= |:l - "] a,*(r, a,l), S N G
At a £ r<a+ Aa

The r-dependence of this stress is assumed to remain unchanged
with time. The choice of a constant rate of unloading of the
tractions e,,* is somewhat arbitrary and has primarily been
made for the purpose of simplicity. Another continuous un-
loading rate would give rise to a slightly different, but from a
practieal viewpoint, indiscernible end resull [17]. The time
which the erack needs to complete the jump from z = a to a +
Aa is again denoted by At.

With the following definition for a nondimensional stress-
intensity factor,
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the stress ,,* in the immediate vieinity of the crack tip ean be
represented as

b g
g, e, a,t) = J -/ 1 (a)d,,(b), £ %y (10)
r—a a

where ¢, denotes the stress o,, which would exist in the plate if
the erack was absent,

The displacements u, in a linearly viscoelastic material with
constant Poisson’s ratio v due to the stress history given by (8)
are found to be equal to

u,lx, a + Aa, t — 1))

+ Aa —z 6, ("
Y i

a+ Aa — zx

" a+ Aa

- = ARER Au)J“ Du(r — t,)dr,

<t <t + AL «1

]

(11)

where L. (t) denotes the tensile creep compliance of the material
[18] and the time ¢; marks the beginning of the step under
consideration,

The left-hand side of equation (7) is now easily evaluated by
substitution of expressions (8), (10), and (11) and leads to the
following expression for some time ¢;:

Aa 1 Aa
Dbl Ha)d. 2t (1) 2 — (2) = 8§,
wbl 2a)d,, (."_,)[D ( i ) 2 D ( 5 ):l

Aa

a 9

§ =

where ,(a 4+ Aa) has been approximated by [, (a) in view of
Aa << a, and the quantities D are time-weighted averages

of the ereep compliance defined by

n [
= 7D (T )T n=12
D(nr(“ n o

De(t) n=1~0

(13)

It should be noted that, for vanishing as well as for infinite argu-
ment of these functions, the bracket in equation (12) reduces to
#Da(0) and LD ( @), respectively.

Equation (12) and other relationships to be derived from it can
be simplified by introducing the function

G(t) = 2[DW() — FD>(1)) (14)

CGrack Propagation in a Strip

Consider the crack geometry shown in Fig. 1. The ¢lamped
boundaries arve displaced normal to the erack so as to produce a
constant and uniform lateral strain € far ahead of the erack tip.
In this region, which is undisturbed by the presence of the erack,
the strip material is furthermore assumed to be in its relaxed
state. The stress ¢,,(¢;) is a constant in this case and is given by

L E,En
Oyy = 1 — p?

Wy

(15)

with K, denoting the long-time, or relaxation, modulus of the
material. Provided the crack length a is greater than 1.56, the
stress-intensity factor becomes independent of crack length
[18, 19] and assumes the constant (nondimensional) value

— 2
u=¢ g
2

For an incompressible material the power equation (12) thus

(16)
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reduces to a simple equation relating the strain € and the crack

velocity v; namely,
2 A
- beu’E,‘G( ‘-‘) -8
« v

This result may be generalized to incorporate the effect of tem-
perature by making use of the classical theory of rubber elasticity
[20] and by assuming the material to be thermorheologically
simple [21]. With reference to 0 deg C, equation (17) then reads

(17)

2 Aa
B — (L) =2
g O m (uqs,.)

where the lime-temperature shift factor is denoted by ¢y,
Before we compare the relationship established in (18) with
experimental dafa, it seems appropriate to comment on some

(18)

: Aa
limit cases. We note first that as v — 0 the funetion J b
vy
approaches its maximum value Do (@) = . In this case the
strain € tends toward a lower limit
38 273
Eomin = oL (19)
20K, 1

No erack propagation is possible if € is smaller than this limiting

5 Aa
value. If, on the other hand, » — o the function @ ( tends
vay

to its lower limit D, (0) where K, denotes the short-time,

o
i

or glassy, modulus. Therefore, if & exceeds the upper limit,

_{3'815, 273 _Jﬁ:,
€oppx = 251&' T = Er

the crack-propagation process is governed by wave mechanics
only, and (18) is inapplicable. Sinece ¥, /FE, is on the order of
102-10% for many polymers, the upper limit on € is about 10-30
times as large as the lower limit.

In case the material is elastic with a Young’s modulus £, the
function G(t) reduces to the constant 1/E. The classical in-
stability eriterion for a strip with central erack is then regained

38 7] S 15
Cter oK b e

and the length Aa disappears in the end resull in accordance with
the work of Irwin (3] and others.

(20)

Epmin

(21)

Comparison With Experiment

The polyurethane elastomer Solithane 113 [22] served as test
material for the comparison of theory and experiment. The
composition used for these tests was made from equal volumes of
resin and catalyst and is referred to as Solithane 50/50. The
function G(¢) for this material is shown in Fig. 4, together with
the reciprocal uniaxial relaxation modulus £ ~'(t) and the creep
compliance D (t). The function G(t) was calculated from Dy.(t),
which, in turn, had been ecalculated from the experimentally
determined relaxation function [22]. The rubbery modulus
E, of this material is K, = 430 psi at 0 deg C.

We have not yel commented on the physical significance of the
jump size Aa, which does not vanish in general from the crack
propagation equation (18); nor on the meaning of the intrinsic
fracture energy S. It should be pointed out again that we con-
sider S as a probably temperature-dependent but rate-insensitive
material property. 1t is the lower limit of what is often called
the tear energy [23]. The determination of § by means of a
erack-propagation experiment requires the reduction of the
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energy dissipation which oceurs in the process to as small a value
as possible.  This can be accomplished by measuring S for very
small crack velocities at temperatures well above the glass transi-
tion temperature or by swelling the material in a suitable zolvent
and testing it in this state [22, 24]. Both methods were applied
to determine the intrinsic fracture energy of Solithane 50/50
and led to the value S = 0.1 Ib/in. =& 20 percent. A tempera-
ture dependence of 8 could not be detected in the tested range
from —5 deg C to 50 deg C.

The only unknown is now Aa. Since a change in Aa amounts
to a shift of the theoretical strain-versus-crack-velocity curve, the
jump size can easily be determined by matching this curve with
one or several experimental points. In this manner Ae for
Solithane 50/50 was found to be Aa = 134 .

The small size of Aa indicates that probably it is not purely
a quantity of eontinuum mechanies, nor, however, of clearly
molecular significance.  Williams [13] and Bueche and Halpin
[25] modeled viscoelastic erack propagation by assuming poly-
mer strands to break successively at the erack tip. The width
of these strands was suggested to be between 1 and 100 A [25].
Although Aa is possibly of the same order of magnitude as the
thickness of a strand, the criterion of a limiting strain or stress
at the crack tip [13, 2 )] leads to fundamentally different results
from those obtained in this work. The presence of a length Aa
in the erack-propagation equation is not solely the consequence
of assuming the crack to propagate in a stepwise manner. If a
continuous process had been considered with the help of a stress
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distribution as suggested by Barenblatt [2], the crack extension
over which cohesive forces act would enter instead.

Fig. 5 shows a comparison between experimental data and
equation (18). The tests were carried out on strips with a
thickness of /3 in., a width of 2b = 13/ in.,, and a length of
10in. Each data point represents the average of 3 measurements
of average velocities over a length of about '/: in, The crack
velocities are small enough to be easily measured with the help
of a stopwatch and optical comparator. The values of the shift
factors ¢4 for the test temperatures given in Fig. 5 are in good
agreement with values determined by other tests [22, 24]. The
actually observed relationship between strain €, crack velocity
v, and temperature 7' is seen to be well represented by equation
(18), together with the material properties just discussed.

Implications for Nonsteady Crack Propagation

The crack-propagation equation for a strip (18) has been de-
rived from equation (12) by giving the stress-intensity factor
I.(a) and the stress d,,(¢;) appropriate values, which are inde-
pendent of time and erack length in this case. It has been
shown in [26], however, that equation (12) is also applicable
when the stress-intensity factor is a function of erack length and
the specimen is loaded by time-independent forces. The equation
must then be viewed as a first-order nonlinear differential equa-
tion for the crack length a(t).

The details of modifying equation (12) for stresses d,,(1),
which change drastically during the time interval ¢; < ¢ <t +
At are given in [17]. Nevertheless, it is interesting to point
out the implications of the current result for a time-dependent
stress d,,(t). As an example we consider the strip geometry
in Fig. 1 to be loaded by a strain €, which is applied suddenly at
time ¢ = 0 and held constant thereafter. To the extent that
the assumption of a constant Poisson’s ratio » is admissible for
the viscoelastic response in the near-glassy (¥ = 0.3) and near-
rubbery time domain (v, = 0.5), the stress in the strip without
erack is equal to

¢, (1) = | i'- Sy Era0) (22)

where K, (t) stands for the tensile relaxation modulus.
Substituting (22) into (12) and restricting ourselves again to
a
cracks with an initial length such that 3 > 1.5, we obtain the
i
following expression for crack velocity as an implieit function of
time ¢

LY /. .
O] g ( Aa ) T S @3)

21 —»%) \ver/ 273 b

The temperature effect has been included in this statement on the
same basis as in the derivation of (18).

Since F.ei(l) is a monotonically decreasing function with time,
it follows, cf. Fig. 4, that the crack veloeity v is also o decreasing
funetion of time, provided

“r

€imux > €4 > E

(24)

€0snin
e

The limit strains used to establish this inequality are defined by
equations (19) and (20), In case the magnitude of €, is such that
(24) is satisfied and €, < €,,,, the crack will propagate for some

distance and be arrested at time ¢* after strain application. This
time is implicitly given by
e n 'S Tt
4‘r=1u*) - _nlﬁ Er (3:))

%

Since the relaxation modulus decays rapidly with time, crack
arrest will oceur within a short time unless e, is almost equal to
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the strain €,,,, below which steady crack propagation is im-
possible. It is of peripheral interest to note that, in the limit
case of a perfectly elastic material (E, = E; €, = €a)y the
inequality (24) merely indicates that e, = €o,,,, which corre-
sponds to an unstable equilibrium state.

Concluding Remarks

It has been demonstrated that extending the Irwin analysis
of tractions at the crack tip to linearly viscoelastic materials
leads to a theory that is in reasonable agreement with experi-
mental results on crack propagation in a strip. For a small
erack growing in a large plate under constant external load,
agreement between theory and experiment has also been demon-
strated [26].

We therefore believe that this approach to erack propagation
in viscoelastic materials provides a rational tool for the under-
standing of fracture in this class of material. Tt should be
emphasized that brittle fracture is a limit case in this theory,
and that it is sufficient to consider rate effects to arise solely
from the viscoelastic constitutive behavior, leaving the fracture
(surface) energy a rate-insensitive quantity and thus consistent
with its meaning in brittle fracture.
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