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The tip velocity of a crack propagating through a vi scoelastic material depends on 

geometry, apptied toad and its history , and material properties. A consideration 

of the work done by the unloading tractions at the crack tip shows that, f or a large 
crack propagating throitgh an infini tely long strip under constant lateral strain, the 

rate of propagation can be calrnlated from a knowledge of the i ntri nsic fracture 
energy (a material constant), the material creep compliance, and an additional size 
parameter. This parameter vanishes from the analysis if the material is elastic, and 

the familiar instability criterion is obtained in this case. Comparison with experi­
mental data i s provided and the consequences of step loadings are examined. 

Introduction 

Ev1' N Lhough there are two apparenlly differenl 

approaches to bril t ie fracture, the instability behavior of cracks in 

linearly elas t ic solids i8 well understood. On the oue hand, the 

application of the first law of thermodyn amics to t he problem 

of a growing crack [ l ]2 associated with a s ingular stress field at 

its tip leads to the now classical instabili ty cri terion. On the 

ot her hand, t he qu11 ·i-atomistic approach of the so-called equilib­

rium crack [2] leads t.o an identical result through use of a non­

singular stress field representation. The equivalence of the two 

approaches is bnsed essent ially on the equivalence of the work 

done by t he unloading t rnctions at; the t ip of an advancing crack, 

wherein the preci e distribution of the stresses at the crack t ip 

plays a secondiiry role. F undamentally, it was Irwin's [::!] 

demonstrnt ion of the local nature of the fracture process that 

elucidated this connection, ns well as Lhe supplemental investi­

gation of Bueckner [4] and Sanders [5J. As a consequence of 

these expositions, frncture in bri t tle solids has become looked 

upon as ll local phenomenon rather Lha n a global one as in [ l]. 

Tbe continuum mecha ni c11l descript ion of crack growth in 

mater i11ls other than linearly elastic ones is not as well under­

stood, t,he primary reason being the lack of simple mat hematical 
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tools for a n analy tic descrip tion of the deformations in y ielding 

materials under crack growth. While it would lead too far from 

ot1r present objective to review even the most important work in 

meta l fracture, StLffice it to state tha t work on a crack growth 

criterion for very ductile materials is in progress (6- 9] but it 

does not seem promi8ing t hat a geneml criterion for yielding 

metals will be found . Part ial solut ions such as the concept of 

quasi-brittle failure advanced by Orowan [LO] a nd Irwin [ll) 

are useful and lean heavily on the principles of linear fracture 

mechanics, which permeate almost all of the work on fracture in 

nonlinear solids. 

Wit h the exception of fatigue and creep fracture [12], metal 

failure is hardly rate-dependent. In contrast, the failure of or­

ganic glas es and other polymeric solids exhibi t strong rate 

effect,' which complicate the uuderstanding of the fracture pro­

cess. Inasmuch as liuear fracture mechanics has illuminated the 

failure proce in nonliuear, rate-insensit ive materials, it seems 

prudent to invest igate first the problem of crack propagation in a 

linem·ly viscoelastic solid. 

Because the stress-strain analysis of a viscoelastic olid under 

t ime-varying surface tractions such as encountered in a moving 

crack is, in general, not read ily performed, the global energy 

bala nce [l] cannot be cllrried out. Consequently, there is li t tle 

information concerning the effect of viscoelastic propert ies on 

the process of crack growth. Start irrg from the c;oncept of a 

max imum stmin sustained by a viscoelastic solid at the crack 

t ip, Williams [131 point ed out that a crack grows exponentin.Uy 

in a sheet of a Voigt material. T his reRult w 1is n.lso shown to 

hold for the ant iplane shear cnse by McClintock [ 14]. Tbe 

onset of crnck propago.t ion through a bubble geometry under 

hydrostat ic ten. ion was studied by Williams [15J. Wnuk and 

Knauss [16] examined the actual case of a penny-shaped crack 

in a linearly viscoelast ic solid exhibit irrg a deformation-rnte­

sensitive yield st.ress. T hese invest igations are primarily of a 
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quali tative nat.ure because either the material representation or 

t he geometry is overly simplified. 

It is the purpo:e of t his paper to derive a crack-propagation 

model based on the first law of thermodynamics and to examine 

its usefulness in tipplication to a viscoelastic solid. Inasmuch as 

comparison of n theory and its experimental evnluation requires a 

realistic representation, the following work suffers from the 

assumpt ion of linear viscoelast,ic mat,erial behavior whereas the 

material in t he immediate vicinity of the crack t;ip iti under la rge 

strain and clearly does not behave in a linear fashion. Never­

theless, if close agreement between theory and experiment occurs 

despite t,his d iscrepancy, we may have resolved a problem of some 

pract,ical importance. 

Because any time variation in t he boundary condit,ions compli­

cates t.he v iscoelastic analysis, it is advantageous in an init ia l in­

vestigation to consider t he simplest possible situation. Such a 

situation is provided by the steady growth of a large crack a > 
l.5b, F ig. l , a long the center li ne of an infini tely long st rip under 

constant lateral strnin Eo. The only variables entering the iso­

thermal problem are then the st rain Eo and, in dependence on 

Eo, the velor.i ty of crack growth v. 

Derivation of Power Equation 
Consider the tip of a traction-free crack along y = 0 to be 

surrounded by a control smface A, as shown in F ig. 2(a), for 

some time t. The crack propagat.es through a thin p late of con­

stant thickness and extends from one plate face to t he other. 

A state of plane stress is assumed to exist in the plate. The 

rate of work done by the tractions T,A acti ng on A is 

W = J '1' Au .Ads 
' 1 

A 

(I) 

This quantity is equal to t he rate of energy d issipation D., t he 

rate of increase of surface energy D., and lrhe rate of change of 

reversibly stored energy E in t he cont rol volume. The plate 

temperature during crack propagation is assumed to be constant, 

and other energy contribntions like kinetic energy and beat 

energy are neglected. This investigation restricts itself to small 
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enough crack velocities to justify t hese assumptions. Wit h dots 

denoting time derivatives, t he power equation for t he cont rol 

volume thus reads 

E + b. + fJ , (2) 

Limiting ourselves to plate geometries and external loadings 

that are symmetrical over the x-axis, we may consider the crack 

to propaga te along a straight lino identical to t he x-axis. Sup­

pose 11ow that the lower half of the control volume is replaced 

by t,he forces it exerts on the upper half, and denote these fo rce:; 

by T,(x, t) as in Fig. 2(b). Because of the sym metry of t he 

problem under consideration, t he forces T,(x, t) are normal to 

the x-axis. Since all other forces acting on the control surface 

remain unchanged, t he power equation for t ho upper half of t he 

control volume simply reads 

1 . f a+r l . . 
Z W + T;(x, t)u,(x, t )dx = 2 (D. + E) 

a-r 

(3) 

where u,(x, l ) denotes the displacement along the x-axis. A 

comparison of equations (2) and (3) leads t,o t he simplified 

statement of energy conservation 

- 2 i a-~r T,(x, l ~ - ~t; . (x, t)dx = D, (4) 

Remembering that the crack surface is free of tract ions for x < a, 
and admitting nonzero displacements it;(x, l) a small distance t. a 

11head of x = a, we may write equation (4) as 

r a+t>a 
- 2 J a 1';(x, l )u,(x, l )dx = D, (5) 

Geometri c11lly, t he crack t ip is t hus located at x = a + t.a. 
The condi t ion of a traction-free crack surface will here be used 

as definit,ion for t he crack length, and x = a will henceforth be 

referred t.o as the location of t he crack tip. 

We shall later demonstrate thnt t he energy required to form 

a unit of new surface can be coriSidered a constant., i>ay, ·s. The 

rate of increase of surface energy is therefore /J, = 2Sv, where the 

term v = a is t,he crack-tip velocity and the factor 2 accounts for 

the creat,ion of two fracture ·urfaces. The power equation can 

now be writ.ten as 

r a+t>a 
- J a T,(x, l)u,(x, t)dx = Sv (6) 

T he physical meaning of t he quantity t.a will become clearer 

during Lhe following development. 

Simplification of Power Equation 
We remark parenthetically that t he derivation of (6) implies 

continuous, nonsingul!ir tractions T ;(x, l) ns well HS cont inuous 

displacement gradients along tbe crack axis as proposed by 

Barenblatt [2]. Primarily, for reasons of simplicity, however, 

we should like to employ the singular stress d istribution, which 

is obtained when no modifications near t he crack tip arn intro­

duced. For this purpose we approximate t,he continuous crack 

propagation by a stepwise process, allowing the crack to propa­

gate in small jumps of constitnt length t.a, with a » t.a. This 

process is illustrated in Fig. 3. Solid li nes correspond to the 

8tress distributions and displacement,s at some time l;, a nd the 

broken c urv e~ correspond to successively later times l = l; + T 

< l; + t.t. The curves identified by T = t.t represent the 

stresses and displacements at the end of t he current jump and 

the beginning of the subsequent jump at t = l; + t.t. 

D uring each j ump, tbe tractio11s over a::; x < a+ t.a decrease 

from their maximum value to zero while the crack open ing in­

creases from zero to its maximum value, depending on the jump 

durat ion flt. The work done during unloading of the tractions 

is easily calculated by considering the tractions and correspond-
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Fig. 3 Crack opening 

ing displacemen t,s. The rnte o f crack propagation vat some t,ime 

t ; can be calculated from t.he jump d urnt ion at this time a nd is 

g iven by v = ~ ~· Wit,h t,his interpreLation in mind, we writ,e 

eq11ation (6) fls 

I I a+'1a ft;+ '1t 
- ~ t IT •• (x, a, T - t ,-)itu 

(& t; 

A !i 
X (.r, ( t + Aa, T - t,- )drrlx = S At (7 ) 

where IT•• a nd u. st11.nd for the norm al s tres:ses a nd dis pltLcen{onts 

nlong t,he crack axis ns t hey a re obtained from the so lution for a 

t,hin p late that is symrne LriCll l ove r t he x-axis and contains a line 

crack whose t,ip is located at x = a a nd x = a + Aa, respectively. 

Evaluation of Energy. Release Rate 
T he leH-hand s ide of t he Rimplified power eq11ation (7 ) en11 be 

looked upon !LS the rate at which energy is released during a 

small extens ion of tho crack . T o evalua te t.his e nergy-reloa:se 

rnte we need to know I-he s tresse:s IT•• a nd their ra te of decrease, 

and t ho normal disp lacements in t,he small int;erva l a ~ x < a + 
~ a. Conside r the crack at some time l ; to ho ext ended by Aa 

uut held closed by appropriat e tractions IT.:<x, a, t;). As indi­

cnted in Fig. :l, we now nllow these t,rnctions to decrease until 

t hey vnnish a t time t = l; + At, i.e ., 

IT•11(x, a, t - t ;) 

[ 
t - t-J 

= 1 - --z:;;:' ITu.*(.r, a, L,-), 
t; ~ t ~ t; + At, 

(8) 
a ~ x < a+ Aa. 

The x-depen<lencc of this s t re:;s is assumed to re main uncha nged 

wit h t ime. The choice of a co n.-tnn t rat e o f unload ing uf the 

t,ractions IT"" • is somew hat arbitrnry and has p ri rnnrily hcen 

made for t he p urpose of sirnpli cit,y. Another continuous 11n­

londing rate would give rise t,o a slightly d iffere nt, but from a 

practical viewpoin t, indiscernible end result [ 17]. The t ime 

which the crack need:s to complete t he jump from x = a to a + 
Aa is again denoted by At. 

Wit.h t.he following definition for a nondirnens ional s trcss­

in tens ity facto r, 
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I n(a) = lim (fl) 

x- a 

the st,ress IT w • in tho immediate vicinity of t he crnck tip can he 

repreRented as 

ITu/(x,a, t ) = J b l n(a )O-•• (l), 1x - (I 

x - (I « 1 (10) 
(I 

where 0-"" de notes t he stress IT•• which would exist in t he p late if 

the- crack was abse nt . 

The displacements u. in I\ linearly viscoehi!'l.ic material with 

constan t Poi5son's rntio v due t,o the s trnss histo ry g iven by (8) 

arc fou nd to be equa l to 

u.(x, a + Aa, t - t ,-) 

J a + Aa - x o-•• (t;) f' )d 
- 4bf ..(a + Aa) " b -c;t Ji; D.,(T - t; T , 

l ; ~ t ~ I; + At, 
(t + Aa - x 

A 
« 1 (11) 

a+ a 

where D0 ,(t ) de notes the tensile CTeep compliance of t he material 

[1 8] a nd t,he t.irne t,. marks the beginning of the step under 

co ns idernt.io11. 

Tho left-ha nd s ide of equation (7·) is now ea:sily ev a luated by 

substit u t.ion of expressions (8), ( 10), 11nd ( JI ) a nd leads to the 

following expression for some time t;: 

27rbl,,'(ci)<f • .2(t,.{D(I> ( ~a ) - ± D<2
> ( ~c' )] = S, 

v = 
Aa 

At 
(12) 

where I ., (a, + Ac1) has been approxirnMed by I ,.(a) ir) view of 

Aa «a, and t.he quant it.ies D<n> ( ~a ) are t ime-weighted averages 

of the creep complia nce defined by 

n = 1,2 
(13) 

n = O 

It should be not ed t hat, for vanishi nf,!; as well as for infinil,e argu­

ment of these functions, the bracke t, in oqunt.ion (12) reduces to 

-}D.r(O) and tD.,( co), respect,ively. 

Equation ( 12) and othe r rela tionships to be de1·ived from it can 

be simplified by introducing the funct ion 

G(t) = 2(D!l)(t ) - j D<2>(l) J (14) 

Crack Propagation in a Strip 
Cons ider t he crnck geometry shown in F ig. l . The clamped 

bounda ries are dis placed normal to the crack so ns t.o produce a 

constant, a nd uniform lateral strain Eo far ahend of the crack t ip. 

In t his region, which is undisturbed by the presence uf t he crnck , 

t he s t. rip rmiterial is furthermore assumed to be in its relaxed 

s tat,o. The stress u •• (t;) is a cons t ant, in t.his case nnd is given by 

, E ,Eo 
IT = -­

•• I - ,,2 

wit;h E, denoting t,he long-t.in1e, o r relaxnt ion, mc5d11hrs of the 

materia l. Provided t he crack length a is greaLer than l.5b, t he 

s tress-in te nsity factor hecomes independe nt of crack length 

(18, 10] a nd nss11mes the constan t (nondimensionnJ ) value 

~
~ 

T = 
.. 27!' 

(16) 

For a n incompressible material tho power equation (12) t hus 
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reduces to a simple equation relating the strain Eo and the crack 

velocity v; namely, 

(17) 

This resul t may be generalized to incorporate the effect of tem­

perature by making use of the classical theory of rubber elasticity 

[20] and by assuming the material to be therrnorheologically 

simple [21]. With reference to 0 deg C, equation (17) then reads 

2 '1' ( ~a ) 
- bEo2E 2 - G -- = S 
3 r 273 v<Pr 

(18) 

where the time-temperature shif t factor is denoted by q,1 •• 

Before we compare t he relationship established in (18) with 

experimental data, it seems appropriate to comment on some 

limit cases. We note first that ns v -+ 0 t he function ;J (v!:) 
J. 

approaches its maximum value D 0,( oo) In this case the 

strain Eo tends t.oward a lower limit 

J 3S 273 

EOmin = " 2/iEr T 

E; 

(19) 

No crack propagat ion i ~ possible if Eo is smaller than this limit ing 

value. Jf, on the other.hand, v--- oo t he fun ction G ( ~a) tends 
var 

to its lower limit D 0,(0) ...!_, where E. denotes the short-time, 
Eu 

or glassy, modulus. Therefore, if Eo exceeds the upper limit, 

3SE. 273 E. 

~ ~
-

EOmax = 2bEr2 T = . Er Eomin 
(20) 

t he crack-propagation process is governed by wave mechanics 

only, and (18) is inapplicable. 8 ince E.!E, is on t.he order of 

102- 103 for many polymers, the upper limit on Eo is about 10- 30 
t imes as large as the lower limit,, 

In case t he material is elastic with a Young's modulus E, t he 

fun ction G(t) reduces to the constant l / E. The classical in­

s tabili ty criterion for a strip with centrnl crnck is then regained 

~
-

::is 
Eo •• = 2bE1 

a 
b > 1.5 (21) 

and the length ~ a disappears in the end result in accordance with 

the work of Irwin [3] and others. 

Comparison With Experiment 
The polyurethane elns tomer Solithane 11:3 [22] served as test 

material for the comparison of t heory and experiment. The 

composition used for these tests was made from equal volumes of 

resin and cat.a)yst and is referred to as Solithane 50/ 50. The 

function G(t) for t his material is shown in Fig. 4, together with 

the reciprocal uniaxial relaxation modulus E,.1- 1(1) and the creep 

compliance D 0 ,(t). The function G(t) was calcula ted from D 0 ,(t), 

which, i11 turn, had been calcuh1ted from the experimentally 

determined relaxation function [22] . T he rubbery modulus 

E, of thi8 material is E. = 430 psi at; 0 deg C. 

We have not yet, commented on the physical significance of t he 

jump siw Aa, which does not vanish in general from the crack 

propagation equation (18); nor on the meaning of the intrinsic 

fracture energy S. It should be pointed ou t again that we con­

sider S as a probably tempernture-dependent but rat.e-insensit.ive 

material property. IL is t he lower limit of what is often called 

t he tear energy (23]. T he det.erm inat.ion of S by means of a 

crack-propagation experiment requires t he rnduction of the 

486 I J u N E 1 9 7 1 

,_ 
(f) 

n. 
_.: -3 
0 

- 4i 
'w~ 

~Q-4 
0 
g 

' fD.,( t-T) E,., (T)dT : ' 
0 

G(t) • 2 [D
111

(t) - t o'21
(tl) 

TEMPERATURE 273 K 

-~~I0-~-~ - 8~ -~-~-6--~-~- 4 -- ~--~2--~~0 

LOG10 I , MIN 

Fig . 4 Relaxation functian, creep function, and G function far Solithane 

50/50 

o.---~-~--....--.-----.---..-~--. --- ...-- --.---. 

STRIP THICKNESS c • 1/32 IN. 
STRIP WIDTH 2b : I 3/8 IN. 

0 6 • 
MPERATURE O"C 10°c 20"C 

G10 <f>T 0 - 1.6 - 2.3 

v 0 .. 
3o•c 40"C 50"C 

-3.3 -4.0 -4.8 

-~~3-~--- 2~-~---~1-~-- o ~-~-~1-~~~2 

CRACK VELOCITY, LDG10 V, IN/MIN 

f ig. 5 Experimental and theoretical relation1hlp among s~aln, tempera• 

lure, ond crack velocity In a strip al Solithane 50/50 

energy dissipation which occurs in t he process to as small a value 

as possible. This can be accomplished by measuring S for very 

small crack velocities at temperatures well above the glass transi­

tion temperat ure or by swelling the material in a suitable solvent 

and testing it in t his state [22, 24]. Both methods were applied 

to determine the intrinsic fracture energy of Solithane 50/ 50 

and led to t he value S = 0.1 lb/ in. ± 20 percent. A tempera­

tme depe11dence of S could not be detected in the tested range 

from - 5 deg C to 50 deg C. 

The only unknown is now ~a. Since a change in ~a amounts 

to a shift of the theoretical strain-versus-crack-velocity curve, the 

jump size can easily be determined by matching Lhis curve with 

one or several experimenLal poin Ls. In Lhi8 manner ~a for 

Soli t.h11ne 50/ 50 was found to be Aa = 1::!4 A. 
The small s i ~e of Aa indicates I.hat probably it is not pmely 

a quantity of continuum mechanics, nor, however, of clearly 

molecular Higniti cance. Williams [13] and Bueche and Halpin 

[25] modeled v iscoelast.ic crack propagation by assuming poly­

mer strands to break successively a t t he crack tip. The width 

of these strands was suggested t.o be between l nnd 100 A (25]. 

Although ~ a is possibly of the same order of magni tude as t he 

thickness of a sLrand, t he crite rion of a limiting strain or stre s 

at the crack tip [1 3, 25] leads to fundamentally different results 

from those obtained in this work. The presence of 1\ length ~ a 

in t he crack-propagation equation is not solely t he consequeuce 

of assuming the crack to propagate in a stepwise manner. If a 

con tinuous process h ad been co11sidered wit,h the help of a stress 
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d.istributioo as suggested by Barenblatt [2], the cru.ck extension 

over which cohesive forces act would enter instead. 

F ig. 5 shows a comparison between experimental data and 

equation (18). The tests were carried out on strips with a 

thickness of 1/ ,. in., a width of 2b = l3/8 in., and a length of 

JO i11 . Each d1ita point represents t he average of : ~ mea»urements 

of average velocit,ics over a length of nbout 1/2 in . The crack 

velocities nre srmtll enough to be ensily measured with t,he help 

of a stopwatch and opt ical comparator. The values of the shlft 

factors <f>7• for the test temperatures given in Fig. 5 are in good 

agreement with values determined by other te s t ~ [22, 24]. The 

actually ob erved relationship between strain Eo, crack velocit.y 

v, and temperat.ure T is seeu to be well represented by eriuation 

(18), toget.her with the material proper ties just discussed. 

Implications for Nonsteady Crack Propagation 
The crack-propagation equation for n trip ( 18) has been de­

rived from equation ( 12) by giving t.he stress-inten. ity factor 

T n(a) and the stress c1_.(t;) appropriat.e values, which are inde­

penden t of t ime and crack length in this case. It has been 

shown in [26], however, that equation (12) is also applicable 

when the stress- intensit.y factor is a function of crnck leugth and 

the specimen is loaded by time-independent forces. The equation 

must then be viewed as a first-order nonlinear difTerential equa­

t ion for the crack length a(t ). 

The details of modifying equal.ion (12) for st.resses c1 .,(t), 

which change dni. ~t i ca ll y during the time interval t; ::; t ::; t + 
.6.t are given in [17) . Nevertheless, it is interest.ing to point 

out the implications of the current result for a t ime-dependent 

stress c1 ,,(t ). As an example we consider the strip geometry 

in F ig. 1 to be loaded by a strain E, which is applied suddenly at 

t ime t = 0 nnd held constan t. I.hereafter. T o the extent that 

the assump t.ion of a constant Poisson's ratio JI is admisRible for 

the viscoelastic response in the near-glassy ( J10 ~ 0.3 ) and near­

rubbery t ime domnin (J1., ~ 0.5), the stress in the strip without 

crack is equal to 

u,.<t> = -
1 

E, 
2 

E,.1(t) 
- JI 

where E •• 1(t) stands for the tensile relnxation modulus. 

(22) 

Subst.it ut.ing (22) into (12) and restricting ourselves again to 

crncks with an initial le11 gt.h such that f > 1.5, we obtnin the 

following ex pres ·ion for crack velocity as an implicit fun d ion of 

t ime t 

E,'E,.1
2
(t) 

0 
( ti.a) .:!__ = ~ 

2(1 - J1
2

) V</>T 273 b 
(23) 

The temperature effect has been included int.his statement. 0 11 the 

snme basis as in the derivation of (18). 

Since E,0 1(t) is a monotonically decreasing function 'with t ime, 

it follows, cf. Fig. 4, that the crack velocit.y v is 11 lso a decreasing 

function of time, provided 

E r 
Eomru: > E, > J?: EOmin 

u 

(24) 

Tho limit strains used to estnblish this inequality are defined by 

equations (19) and (20). In case the magnitude of E, is such tha t. 

(24) is satisfied and E, < Eom;
0

, the crack will propagate for some 

dist.ance and be arrested at t ime t• after st,rnin application. This 

t ime is implicit ly given by 

E' (t•) = EOmin E 
re l , r (25) 

E, 

Since the relaxation modulus decays rapidly with t ime, crack 

arrest will occur within a short t ime unless E, is a lmost equal to 
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the strain Eo.,10, below which steady crack propagat.ion is im­

possible. Jt is of peripheral interest to note that, in the limit 

case of a perfectly elnstic materiul (E, = Eu; Eo1111 ., = Eo'"0 ,), the 

inequnli ty (24) merely iudicat.es that E, Eo,.,1.,, which corre­

sponds to an unstable equilibrium state. 

Concluding Remarks 
1t has been demonstrated that extending I.he Trwin aualys is 

of t rnctions at the crnck t ip t.o linearly viscoelastic materials 

leads to a theory that is in rea onablc agreement with experi­

mental resul ts on crack proprtgation in a strip. For a small 

crack growing in a large plate under constant external load, 

agreement, between t.heory and experiment has nlso been demon­

strn.ted [26J. 

We therefore believe that this approach to cm.ck propagation 

in viscoelastic m n.te r i 11L~ provides a rational tool for the under­

standing of fract ure in this class of material. I t should be 

emphasized I.hat brittle fract.ure is a limit case in this theory, 

and thn.t it is suffi cient to consider rate effect.s to arise solely 

from tbe viscoelastic constit.utive behavior, leaving the fracture 

(surface) energy a rate-insenRit ive quantit.y and t.hus consist.ent 

with its men.ning in brittle fracture. 
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